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Abstract

Tyrosine Kinase Inhibitors (TKI) have significantly changed the landscape of current cancer therapy.
Understanding of mechanisms of aberrant TK signaling and strategies to inhibit TKs in cancer,
further promote the development of novel agents.

ABT-869, a novel ATP-competitive receptor tyrosine kinase inhibitor is a potent inhibitor of
members of the vascular endothelial growth factor (VEGF) and platelet derived growth factor
(PDGF) receptor families. ABT-869 showed potent antiproliferative and apoptotic properties in
vitro and in animal cancer xenograft models using tumor cell lines that were "addicted" to signaling
of kinases targeted by ABT-869. When given together with chemotherapy or mTOR inhibitors,
ABT-869 showed at least additive therapeutic effects. The phase | trial for ABT-869 was recently
completed and it demonstrated respectable efficacy in solid tumors including lung and
hepatocellular carcinoma with manageable side effects. Tumor cavitation and reduction of contrast
enhancement after ABT-869 treatment supported the antiangiogenic activity. The correlative
laboratory studies conducted with the trial also highlight potential biomarkers for future patient
selection and treatment outcome.

Parallel to the clinical development, in vitro studies on ABT-869 resistance phenotype identified
novel resistance mechanism that may be applicable to other TKls. The future therapeutic roles of
ABT-869 are currently been tested in phase Il trials.

Introduction signaling pathways has been correlated with the progres-

Receptor tyrosine kinases (RTKs) and protein phos-
phatases control reversible protein phosphorylation [1,2].
This process mediates critical signaling transduction
between cell and extracellular stimulation, including sur-
vival, growth and differentiation. Dysregulation of RTK

sion of cancers with different histological origins [1]. For
example, amplification of the HER2 gene is observed in
~30% of breast cancer biopsies and forms the basis for the
use of trastuzumab (Herceptin, Genentech, Inc, Califor-
nia) to treat breast cancer patients.
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The common molecular mechanisms underlying such
aberrant activities are point mutation, duplication, and
amplification of the RTK, which leads to gain-of-function
and consecutive activation of the kinases in general. The
fms-like tyrosine kinase 3 (FLT3) is a class III RTK family
and shares strong structural similarity with other family
members including receptors for platelet-derived growth
factors A (PDGFRA) and B (PDGFRB), the colony-stimu-
lating factor 1 receptor (CSF1-R) and steel factor receptor
(KIT) [3-5]. FLT3 mutations are identified in about one-
third of adult acute myeloid leukemia (AML) [6-10]. The
interactions between the vascular endothelial growth fac-
tors (VEGF) and their receptors (VEGFRs) are crucial for
angiogenesis [11,12]. The expression of VEGF and its
receptors are detected in most of solid tumors and hema-
tological malignancies [13]. Overexpression of VEGF and/
or it's receptor VEGFR2 contributes to invasiveness and
metastasis of breast, lung, prostate, renal-cell, colon can-
cers and hepatocellular carcinoma [11,12]. In AML, a
number of studies have demonstrated that an autocrine/
paracrine pathway between VEGF and its receptors are
involved in poor survival of a subset of patients and pro-
gression of the disease [14-17]. This evidence underpins
an important discovery in the molecular biology of cancer
that histological different types of cancer could share the
same dysregulated signaling pathway(s) and one particu-
lar type of cancer could have multiple genetic abnormali-
ties. Therefore, there has been great interest in discovering
compounds targeting multiple RTKs with the rationale of
potential superior antitumor activity for a variety of cancer

types.

ABT-869, a novel ATP-competitive RTK inhibitor, is active
against all VEGFRs and PDGFR families, but minimally
active against unrelated RTKs and cytosolic tyrosine
kinases and serine/threonine kinases [18]. The goals of
this article are to summarize the published data on pre-
clinical and clinical development of ABT-869, an orally
active multi-targeted RTK inhibitor in the treatment of
leukemia and solid tumors. Secondly, various strategies
and rationale as well as mechanistic studies of combining
ABT-869 with other agents will be reviewed. Lastly, we dis-
cuss the potential drug resistance issue in ABT-869 ther-
apy based on our laboratory's published data. ABT-869 is
under active clinical development primarily in solid
tumors and early phase data and ongoing phase II studies
will be reviewed.

The chemical structure and target selection of
ABT-869

ABT-869 was discovered in Abbott Laboratories (Abbott
Park, IL, USA) through a structure-based rational design,
by incorporating an N, N'-diaryl urea moiety at the C4-
position of 3-aminodazole (Figure 1) [19]. The molecular
weight of ABT-869 is 375.4. ABT-869 shows potent effi-
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The chemical structure of ABT-869: N- [4-(3-amino-
| H-indazol-4-yl)phenyl]- N |-(2-fluoro-5-methylphenyl) urea.

cacy to inhibit all the members of VEGFR and PDGFR
family with nanomolar range of IC;,,, but much less activ-
ity to other nonrelated tyrosine kinase (Table 1) [18]. The
selectivity profile of ABT-869 against a broader range of
kinases is illustrated in Figure 2. In comparison to 5 other
multitargeted RTK inhibitors (PTK787 [Vatalanib®,
Novartis-Schering AG], AG013736 [Axitinib®, Pfizer],
BAY43-9006 [Nexavar®, Bayer|, CHIR258 [Chiron], and
SU11248 [Sutent®, Pfizer]) [19], that have undergone clin-
ical development, ABT-869 inhibited a broader number of
kinases relevant to the VEGF signaling pathway.
AGO013736, CHIR258, and SU11248 are also active
against most of the targeted kinases but these inhibitors
demonstrate more off-target activity than ABT-869 [18].

Another potentially important aspect of the distinctive
activity profile of ABT-869 is the molecule's activity
against CSF1R [20]. This activity is manifested as potent
inhibition of CSF-1R signaling in macrophage-derived
cells [21]. In vivo activity of ABT-869 for inhibiting
CSF1R-mediated responses is exemplified by results illus-
trated in Figure 3 showing the effect of oral administration
of ABT-869 on CSF1 priming of LPS-induced TNF release
in mice. This activity may contribute to the anti-tumor
activity of ABT-869 in cancer models where elevated levels
of inflammatory tumor-associated macrophages drive
tumor progression.
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Figure 2

Kinase inhibition profile of ABT-869 against a broader range of kinases.

Nonclinical in vivo activity of ABT-869

Initial nonclinical studies demonstrated potent antiprolif-
erative and apoptotic effects of ABT-869 on cancer cells
whose proliferation is dependent on mutant kinases, such
as FLT3 [18,20,22]. ABT-869 given orally was effective in
multiple in vivo human xenograft tumor growth models
and showed in vivo mechanism-based targeting, including
acute myeloid leukemia with FLT3 mutation (MV4-11),
highly angiogenic fibrosarcoma (HT1080), small cell lung
carcinoma (H526, known to express KIT), colon adeno-
carcinoma (DLD-1), epidermoid carcinoma (A431) and
breast cancinoma (MX-1). In addition to flank xenografts,
ABT-869 has demonstrated dose dependant efficacy in
orthotopic tumor growth models with the breast carci-

Table I: Kinase inhibition profile of ABT-869 (with permission
adapted from Molecular Cancer Therapeutics 2006;5:995-1006)

Related RTK2 Non-related TK2 Ser/Thr Kinasesb

Kinase I1C;y(nM) Kinase I1C;;(nM) Kinase 1Cg,(nM)

KDR 8 SRC
FLTI 3 IGFR
FLT4 40 INSR
PDGFRa 29 LCK
PDGFRpB 25 EGFR
CSF-IR 5 HCK
KIT 20 CMET
FLT3 10 LYN
TIE2 170 FYN
RET 1,900 FGR
FGFR > 12,500

>50,000 AKT > 50,000

>50,000 SGK 940

>50,000 CDC2 9,800
38,000 PKA 5,900

> 50,000

> 50,000

> 50,000

> 20,000

> 50,000

> 50,000

(M)

. 1C5y values determined at an ATP concentration of | mM.
b. ICy, values determined at an ATP concentration of 5 to [0 uM.

CSF1 + LPS

409

30

20

TNF (ng/mL)

10

ABT-869 (mgl/kg)

Figure 3

Inhibition of CSFI-primed LPS-induced TNF release.
Mice were given ABT-869 (PO) at the indicated dose and 45
minutes later primed with CSFI (1.8 ug IP). After 3.25 hours,
LPS (300 pg IP) was administered. Serum TNF, expressed as
mean + SEM (n = 6), was assessed 1.5 hours later. CSFI
increased serum TNF induced by LPS by >4 fold (8 vs 37 ng/
mL).
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noma cell lines MDA-231 (epithelial) and MDA-435LM
(ductal) as well as a rat glioma cell line (9L). ABT-869 was
also efficacious at inhibiting the growth of prostate cancer
cells in a bone environment, thereby demonstrating
potential therapeutic utility in a metastases setting [23]. A
summary of activity in these and other tumor models is
presented in Figure 4.

In addition to single agent activity ABT-869 also exhibited
antitumor activity when given in combination with chem-
otherapy agents, including: carboplatin, cisplatin,
docetaxel, gemcitabine, irinotecan, paclitaxel, rapamycin,
TMZ and Ara-C [18,22,24,25]. The effect of combination
therapy with carboplatin-paclitaxel (dosed concurrently)
on the dose-dependent activity of ABT-869 in a NSCLC
model response is shown in Figure 5. This response to
combination therapy is typical in that it reflects an
increase in efficacy with no increase in overall toxicity.
However, the outcome of combination therapy can be
somewhat sequence-dependent, as is discussed below.

In light of its preclinical activity profile, ABT-869 under-
went the industrial standard pre-clinical toxicology,
metabolism, and pharmacology studies and the com-
pound was deemed to be suitable to further clinical devel-
opment (see below).

http://www.jhoonline.org/content/2/1/33

Nonclinical studies of ABT-869 and in
combination with chemotherapy in acute
myeloid leukemia with and without FLT-3
mutations

Approximately, 25% of AML patients have acquired FLT3
internal tandem duplications (FLT3-ITDs), varying from 3
to > 400 base pairs in the juxtamembrane domain, and
7% of AML patients harbor activating point mutations in
the second kinase domain (FLT3-TK) [7-10]. FLT3 muta-
tions therefore represent the most common genetic alter-
ation in AML and therefore, have been targeted for
therapeutic agent development. Patents with FLT3-ITD are
usually associated with poor outcome, but the prognosis
of FLT3-TK mutation remains inconclusive [7-10]. FLT3-
ITD mutations trigger strong autophosphorylation of the
FLT3 kinase domain, and constitutively activate several
downstream effectors such as the PI3K/AKT pathway,
RAS/MAPK pathway, and the STAT pathway, mainly
STATS5 (Figure 6). Oncogenic protein kinase PIM1 also is
up-regulated by FLT3-ITD. These rampant signaling path-
ways are wired to promote uncontrolled cell survival and
proliferation, leading to transformation of leukemia [26].

For leukemia cell lines with FLT3-ITD such as MV4-11
and MOLM-14, ABT-869 potently inhibits their prolifera-
tion at ICy,less than 10 nM [22,27]. ABT-869 also induces
dose-dependently G, cell cycle arrest and apoptosis in
these FLT3-ITD positive cells [22,27]. Analysis of key cell
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Figure 4

Efficacy of ABT-869 in representative xenografts. Efficacy was defined as percent of tumor size relative to vehicle-
treated remaining after 3—4 weeks of dosing ABT-869 (10-25 mg/kg/day).
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Efficacy of ABT-869 in combination with carboplatin-
paclitaxel in a NSCLC xenograft. ABT-869 was adminis-
tered orally at the indicated dose for 3 weeks and carbopla-
tin-paclitaxel was administered weekly (IP and IV
respectively) beginning 3 weeks after inoculation of H1299
cells into the flank of SCID/beige mice. Percent inhibition of
tumor size relative to vehicle treated control was calculated
at the end of the study is indicated in parentheses in the leg-
end.

cycle regulators reveals that simultaneous terminal reduc-
tion of cyclins D and E, the key G,/S cyclins, and progres-
sive increases in cyclin dependent kinase inhibitors
(CDKIls) p21wafl/Cip, p27kipl contributed to the blockage
of G,/S progression induced by ABT-869 [22]. ABT-869
increases the expression of a few proapoptotic proteins
including BAD, BAK and BID, and decreases the pro-sur-
vival molecule Bcl-xL. Cleaved BID and PARP, a hallmark
of apoptosis, is evident [22].

ABT-869, as predicted from its kinase inhibition profile,
targets the FLT3 signaling pathway. In MV4-11 cells, ABT-
869 inhibits phosphorylation of FLT3 receptor (p-FLT3),
as well as downstream signaling effectors p-AKT, p-ERK,
p-STAT5 and PIM-1 kinase at a concentration of 1 nM
[22,27]. Importantly, ABT-869 has been shown to effec-
tively inhibit colony formation of primary AML bone
marrow cells at 100 nM, but no inhibition on normal
human bone marrow progenitor cells up to 1 uM, suggest-
ing ABT-869 is not toxic to normal bone marrow cells
[27]. In a mice bone marrow engraftment model of MV4-
11 cells, ABT-869 treatment significantly prolonged sur-
vival and reduced leukemic burden (CD45+ human cells)

http://www.jhoonline.org/content/2/1/33

Nucleus

Figure 6

The FLT3-ITD signaling pathways. The presence of
FLT3-ITD induces ligand-independent receptor dimerization
and activates three major signaling pathways including PI3K/
AKT, MAPK and STATS pathways. These signalings are
transferred to nucleus, which lead to the transcription of
genes involved in cell proliferation and survival.

in a dose-dependent fashion when compared to vehicle
control treatment [27].

However, considering the complexity of the disease, ABT-
869 as a single agent is unlikely to deliver complete or last-
ing responses in AML. We demonstrated that ABT-869
also produces synergistic antileukemic effect with chemo-
therapy in a sequence dependent manner [22]. This
sequence-specific synergism was also demonstrated with
another FLT3 inhibitor, CEP-701 (Lestaurtinib®,
Cephalon, Inc., Frazer, PA, USA) [28]. For simultaneous
treatment in MV4-11 and MOLM-14 cells, combination
of lower doses of ABT-869 and cytosine arabinoside (Ara-
C) generates an additive or mildly synergistic interaction.
All of the combinations of ABT-869 and Doxorubicin
(Dox) results in synergistic effects. However, pretreatment
with ABT-869 antagonizes the cytotoxicity of Ara-C and
Dox [22]. In contrast, chemotherapy (either Ara-C or
Dox) followed by ABT-869 produces significant syner-
gism on inhibition of proliferation and induction of
apoptosis in MV4-11 and MOLM-14 cells, as well as pri-
mary patient AML cells with FLT3-ITD mutations [22]. In
a MV4-11 tumor xenograft model, combination of Ara-C
at 15 mg/kg/day for 4 days and ABT-869 at 15 mg/kg/day
results in faster reduction of tumor burden compared to
ABT-869 treatment alone. Importantly, no adverse side
effect is observed in the combination treatment group in
terms of behavior or body weight changes [22]. Low den-
sity array (LDA) analysis reveals that inhibition of cell
cycle related genes and MAPK pathway play an important
role in the synergistic mechanism. Particularly, Cyclin D1
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(CCND1) and Moloney murine sarcoma viral oncogene
homolog (c-Mos) were the two most significantly down-
regulated genes [22]. Collectively, these studies help to
define the optimal combination sequence of chemother-
apy and ABT-869 for clinical trials in AML.

Neoangiogenesis plays an important role in the pathogen-
esis of AML, so targeting VEGF/VEGFR receptors appears
to be an alternative approach for treating AML [13]. Based
on the early promising clinical trial results in AML
patients regardless of FLT3 status achieved by other multi-
targeted inhibitors like SU11248 and PTK787/ZK 222584
[29-31]. ABT-869 was also tested against a wild type FLT3-
AML cell line, HL6O in a xenograft model. HL60-RFP, a
stable transfectant with red fluorescence protein, was
examined in both the subcutaneous and systemic leuke-
mia xenograft models using an advanced Olympus
OV100 Whole-Animal Imaging System [32]. ABT-869
reduces leukemia burden and prolongs survival of NOD/
SCID mice engrafted with HL60-RFP. ABT-869 is effective
in delaying tumor growth about five-fold in the subcuta-
neous xenograft model (Figure 7) by inhibiting angiogen-
esis via VEGF/VEGEFRs loop [32].

Nonclinical studies of ABT-869 as a single agent
and in combination with mTOR inhibitor in
Hepatocellular carcinoma (HCC)

Expression of VEGF, the primary pro-angiogenic factor,
has higher in HCC than in normal hepatic parenchyma
cells and has been shown to positively correlate with vas-
cularization of HCC [33,34]. HCC cells are dependent on
the supply of oxygen and nutrient through this neoangio-
genesis [33,34]. Consequently, inhibition of neoangio-
genesis could serve as a promising approach for the
intervention of HCC.

In addition, the mammalian target of rapamycin (mTOR),
a cytosolic serine/threonine kinase, has emerged as an
attractive anticancer target in recent years [35]. mTOR
plays an essential role not only in controlling the mam-
malian translation machinery, but also in regulating sign-
aling pathways that respond to growth factors and
nutrition. Activation of mTOR enhances translation of
mRNAs that encodes key regulation protein for cell cycle,
cell proliferation and growth such as cyclin D148 and
ornithine decarboxylase 49 by phosphorylation of S6K1
(p70S6 kinase) and 4E-BP1 (EIF4-binding protein 1) [36].
mTOR is also a central downstream effector of PI3K/AKT
pathways.[37] The mTOR signaling pathway has been
reported to be deregulated in HCC [38,39]. Rapamycin, a
mTOR inhibitor, binds to the immunophilin FKBP12,
and the formed complex inactivates mTOR, further sup-
pressing p70S6 kinase and 4E-BP1, two critical down-
stream targets of mTOR signaling. Rapamycin inhibits
proliferation of HCC cell lines, including HepG2, Hep3B,

http://www.jhoonline.org/content/2/1/33

and Sk-hep-1 [40,41]. Therefore, combining ABT-869
with rapamycin would be a reasonable targeted therapy
for HCC.

We demonstrated that oral administration of ABT-869 as
a single agent at a dose of 10 mg/kg/day effectively inhib-
its the growth of Huh7 and Sk-hep-1 tumors in mouse
xenograft models [24]. ABT-869 shows a dramatic inhibi-
tion of neoangiogenesis in vivo. This is supported by
immunohistochemistry (IHC) analysis that shows ABT-
869 significantly down-regulates VEGF and reduces the
formation of Microvessel density (MVD). Bevacizumab, a
specific anti-VEGF antibody, was also compared with
ABT-869 in a Sk-hep-1 mouse xenograft. The antitumor
activity of ABT-869 is significantly higher than bevacizu-
mab in this model [24]. Further analysis reveals that phos-
phorylation of p44/42 MAP kinase is also substantially
decreased in the ABT-869-treated tumor samples [24]. The
additional targeting achieved by the multi-targeted prop-
erties of ABT-869 could explain the significant advantage
of anti-angiogenic activity of ABT-869 over bevacizumab,
since MAPK pathway is known to be dsyregulated in
human HCC.

Combination of ABT-869 (10 mg/kg/day) with Rapamy-
cin (2 mg/kg/day) shows significant tumor volume reduc-
tion in both Huh7 and Sk-hep-1 animal models when
compared to either of the single drug treatments (p <
0.05). Up-regulation of the cell cycle inhibitor, p27, and
inhibition of the MAPK pathway contribute to the syner-
gistic antitumor effect observed in combination therapy
[24].

Taken together, these results support the rationale for clin-
ical development of combination therapy of ABT-869 and
other chemotherapies such as Rapamycin in HCC.

Dissecting the potential resistance phenomenon
in ABT-869

In contrast to their potent efficacy in cellular based assays
and xenograft models, in clinical trials, FLT3 inhibitors
alone only achieve moderate and transient responses in
the majority of AML patients [29,42-45]. Furthermore,
important experience has been gained from imatinib
mesylate (Gleevec) used as monotherapy for treating
chronic myeloid leukemia (CML) indicating that under
prolonged therapy with TKIs, patients could develop
resistance or relapse [46]. Point mutations in the ATP
binding site or gene amplification of BCR-ABL are the
main cause of imatinib-resistance in CML patients [47].
However, point mutations in the FLT3 kinase domain are
not common [48,49].

As ABT-869 was entering early phase clinical development

with continuous daily dosing schedule, we investigated
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Day 14

Sequential real-time whole-body fluorescence imaging of HL60-RFP tumor growth in living mice. (A) Mice were
treated with vehicle control. (B) Mice treated with ABT-869 (15 mg/kg/day). Arrow-pointed pictures show the direct view of

distribution of blood vessel network on the tumor surface in the two representative mice. There is less of a tumor vessel net-
work in ABT-869 treated mice. BF: bright field channel. RFP: RFP channel (The picture is modified from Leukemia Research

2008; 32:1091-1100 with permission) [32].

some of the mechanisms that could potentially be used by
leukemia cells to overcome the cytotoxic effect under
long-term use of ABT-869. Three resistant cell lines (desig-
nated as MV4-11-R1, -R2, -R3) were developed by over
three-month co-culture of the human leukemia cell line,
MV4-11 (AML, both alleles FLT3-ITD) with increasing
concentrations of ABT-869 [50]. These resistant lines are
much less sensitive to ABT-869-medidated cell prolifera-
tion inhibition and apoptosis, but also are cross-resistant
to structurally unrelated FLT3 inhibitors (AG1296,

SU5416 and FLT3 inhibitor III). No point mutation is
found in the FLT3 kinase domain in all 3 resistant lines
[50]. Low density array analysis reveals that a total of 61
genes are differentially expressed more than 2-fold
between the 3 resistant and parental MV4-11 cells. Inter-
estingly, MV4-11-R cells over-express FLT3 ligand
(FLT3LG) and BIRC5 (Survivin), while down-regulate the
suppressor of cytokine signaling (SOCS) family (SOCS-1,
-2, -3) [50]. The C-terminal domain of SOCS proteins acts
as an adapter targeting kinase receptor complex for ubiq-
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uitination and subsequent proteasome-mediated degra-
dation [51]. The SOCS family also is an important
negative regulator of STAT pathways [51,52]. In MV4-11-
R cells, hypermethylation silencing of SOCS genes leads
to reactivation of STAT pathway activities, as evidenced by
increasing levels of phosphorylation of STAT1 protein (p-
STAT1), p-STAT3 and p-STATS5 [50].

Membrane-bound and soluble forms of FLT3 ligand are
both biologically active [53]. FLT3 ligand plays an impor-
tant role in survival, proliferation, and differentiation of
hematopoietic stem and progenitor cells (HSPC) [54,55].
It has been demonstrated that the autocrine FLT3LG/FLT3
loop promotes proliferation and prevents apoptosis of
primary AML blasts and AML cell lines.[56,57] Stimula-
tion of MV4-11 cells with extra FLT3 ligand either by
directly adding to the culture medium or by using condi-
tioned medium harvested from MV4-11-R cells can fur-
ther increase p-STAT1, p-STAT3, p-STATS5, as well as the
expression of survivin [50], which correlate with resist-
ance to ABT-869 and other FLT3 inhibitors (AG1296,
SU5416 and FLT3 inhibitor IIT). On the contrary, blocking
FLT3 ligand with a FLT3 ligand neutralizing antibody
enhances ABT-869-induced apoptosis in MV4-11-R cells
[50]. Collectively, these results indicate a prominent role
of FLT3 ligand in mediating the resistance to FLT3 inhibi-
tors.

Survivin (encoded by BIRC5), the smallest member of the
inhibitor of apoptosis protein (IAP) family, has been
regarded as one of the classic fetal oncoproteins [58-61].
Survivin stabilizes X-linked IAP (XIAP), another member
of IAP family, against proteasomal degradation to protect
cells from apoptosis [62]. To demonstrate the critical role
of survivin in the regulation of resistance in MV4-11-R
cells, a pool of shRNA was used to specially target sur-
vivin. Silencing survivin remarkably potentiates ABT-869-
induced apoptosis in MV4-11-R cells when compared to
control shRNA treatment. In contrast, forced expression of
survivin in MV4-11 cells leads to resistant to ABT-869 and
other FLT3 inhibitors [50].

After screening for compounds which could potentially
reverse the resistance phenotype in MV4-11R, Indirubin
derivative (IDR) E804 was identified. As an inhibitor of
the SRC-STAT3 pathway [63], IDR E804 shows potent effi-
cacy in re-sensitizing MV4-11-R to ABT-869. IDR E804
treatment dose-dependently induces MV4-11-R cells to
undergo apoptosis and inhibits the expression of p-
STAT1, p-STAT3, p-STATS5 as well as completely abolishes
survivin expression [50]. In the presence of a sub-toxic
concentration (2 nM) of IDR E804, the IC50 value of ABT-
869 in MV4-11-R decreased from 52 to 6 nM. The combi-
nation of ABT-869 and IDR E804 also achieves better anti-

http://www.jhoonline.org/content/2/1/33

tumor effect than either single agent treatment in a MV4-
11-R mouse xenograft model [50].

In summary, over expression of FLT3 ligand, methylation
silencing of the SOCS family and overexpression of sur-
vivin all together integrate leading aberrant STAT signal-
ing activity and contribute to resistance to FLT3 inhibitors.
The discovery of this novel mechanism of resistance to
FLT3 inhibitors, as described in Figure 8, could help
develop new anti-leukemic agents or uncover compelling
combinations. Combination of FLT3 inhibitors with com-
pounds targeting the STAT pathway or survivin may repre-
sent a therapeutic strategy to minimize resistance or re-
sensitize resistant cells to FLT3 inhibitors in AML patients
with FLT3-ITD mutation.

First in Man (FIM) and phase | study

In 2006, Abbott made a strategic decision and partnered
with the clinical team at National University Hospital in
Singapore and conducted the first in man study for ABT-
869. The first in man study was started in patients with
solid malignancies refractory to or for which no standard
effective therapy exists who were enrolled in escalating
dose cohorts and treated with oral ABT-869 once daily
continuously. This study was designed as a single-arm,
open-label Phase I trial and was conducted in three seg-
ments in order to determine the maximum tolerable dose
(MTD), tolerability, and pharmacodynamics of a lower
dose cohort to better define dose-effect relationships.
ABT-869 lacks high aqueous solubility, therefore, the
study drug was diluted in 60 mLs of Ensure Plus®. Prelim-
inary PK at doses of 10 mg showed a modest correlation

FLT3-ITD I
® ® ®
N6 fy

) (p)

ﬂ‘ : upregulation
{1 : downregutation

(p): phosphorylation
=] : inhibition

Figure 8

A model of enhanced STAT activation and overex-
pression of survivin leading to resistant phenotype in
MV4-1 I-R cells. (Modified with permission from Blood
journal) [50].
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between oral clearance and body-weight; thus subsequent
dose escalations in segment A were based on bodyweight.
The most common drug-related adverse events were
fatigue, proteinuria, hypertension, myalgia, skin toxicity
(hand and foot blisters) and oral hypersensitivity, and
these toxicities increased in frequency and intensity with
increasing doses. The maximal tolerated dose (MTD) was
determined to be 0.3 mg/kg/day. In general, the treat-
ments are well tolerated in this patient population with
either refractory disease or no standard therapy.

The treatment response of this phase I trial is encouraging.
Three (10%) out of 29 patients achieved partial response
(PR); two had non-small cell lung cancer (NSCLC) treated
at 0.3 mg/kg/day and 10 mg/day respectively, and one
had colorectal cancer (CRC) treated at 0.1 mg/kg/day. An
additional sixteen patients had stable disease lasting
longer than 12 weeks, among which were patients with
CRC (5), NSCLC (2), ovarian cancer (2), hepatocellular
carcinoma (HCC) (2) and neuroendocrine tumour (2).

Tumor cavitation in the lungs and reduction of contrast
enhancement in tumor on post-treatment CT scans after
ABT-869 treatment suggesting central necrosis supported
antiangiogenic activity, and has been observed with other
VEGF antagonists (Figure 9). Prolonged stable disease
lasting more than 12 months with minimal toxicity was
observed in four patients; alveolar soft part sarcoma (27
months), CRC (19 months), HCC (17 months), and renal

http://www.jhoonline.org/content/2/1/33

cell carcinoma (18 months) [64]. The response to ABT-
869 observed in multiple tumor types suggests that histo-
logical different types of cancer could share the same dys-
regulated signaling pathway(s) and the rationale of multi-
targeted approach may be necessary for solid tumors.

Extensive pharmacodynamic analyses were performed
with this phase I trial. Exposures of ABT-869 (AUC from
0-24 h) from this trial were similar between Asian and
Caucasian populations (2.7 vs. 2.3 pug-h/mL, respectively)
and met the exposure targets derived from nonclinical
efficacy studies [18,64]. Dynamic contrast enhanced-MRI
(DCE-MRI) showed dose-dependent reduced tumor vas-
cular permeability that correlated with drug exposure. Cir-
culating endothelial cells (CECs) were significantly
reduced (9.6 + 7.0/uL vs. 16.5 + 13.4/uL, p = 0.007) and
vascular endothelial factor was increased (126.3 + 104.4
pg/mL vs. 74.2 + 82.2 pg/mL, p = 0.004) by day 15 of
treatment (0.25 mg/kg) [64]. The biomarker evidence of
antiangiogenic activity and DCE-MRI evidence of tumor
antiangogenesis are consistent with proof of target inhibi-
tion and can be translated to observed promising clinical
activity.

A multi-center phase I study was also initiated in patients
with refractory or relapsed AML or myelodysplastic syn-
drome (MDS) as FLT-3 is an obvious therapeutic target of
ABT-869. Based on our pre-clinical study [22], the trial
was designed as two stages with initial monotherapy and

Figure 9

Computed tomography scan of tumor response and cavitation of lesions in a patient with metastatic lung car-
cinoma showing cavitation after 2 treatment periods. (with permission from Journal of Clinical Oncology) [64].
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later in combination with Ara-C. Specifically, based on
our pre-clinical combination sequence data, ABT-869 will
be given after the completion of Ara-C at each cycle.

Current ongoing clinical trials

The promising anti-cancer properties of ABT-869 identi-
fied at the early phase trial facilitate further clinical devel-
opment of this novel agent. In June 2007, Abbott and
Genentech Inc. formed collaboration for the global
research, development and commercialization for ABT-
869. Phase II clinical trials evaluating ABT-869 for
advanced or metastatic hepatocellular carcinoma, meta-
static breast cancer, metastatic colorectal cancer, meta-
static non-small cell lung cancer, and advanced renal cell
carcinoma are ongoing. A summary of current ABT-869
clinical trials listed on the National Institutes of Health
Website is shown in Table 2.

Preliminary clinical data on single agent ABT-869 was pre-
sented in the 2009 ASCO annual meeting. Encouraging
clinical activity has been observed in non-small cell lung
cancer (NSCLC) and advanced hepatocellular carcinoma

Table 2: Current listed clinical trials on ABT-869

http://www.jhoonline.org/content/2/1/33

(HCCQ) trials as well as in a renal cell carcinoma (RCC)
trial after Sunitinib failure [65-67]. However, additional
studies are required to determine the optimal dosing strat-
egy especially in RCC and HCC patient population as fre-
quent dose interruption or reduction was observed. In the
NSCLC trial, two different doses were tested (0.10 mg/kg
and 0.25 mg/kg), and preliminary data did not show sig-
nificant difference in OS and PFS between these two arms.
Furthermore, current pharmacokinetic analysis indicates
that body weight does not significantly impact exposure
suggesting that a fixed dosing strategy may be appropriate
[68].

Conclusions and future directions

In summary, ABT-869 is a novel inhibitor that simultane-
ously provides potent and selective inhibition of the
VEGFR and PDGEFR kinase families and has demonstrated
activity in patients with solid tumors who failed standard
regimen. Optimal dosing and scheduling are being inves-
tigated and the potent in vivo angiogenesis effect has
already produced a promising clinical response in early
phase clinical development.

Trial title

Enrollment Trial design

Last verified Recruitment Start date

Phase 2 Study of ABT-869 in Combination With 102
Paclitaxel Versus Paclitaxel Alone as First Line

Treatment For Metastatic Breast Cancer

Phase 2 Study of ABT-869 in Advanced 44
Hepatocellular Carcinoma (HCC)

Study of ABT-869 in Combination With Tarcevain 0 w
Subjects With Solid Tumors

Phase | Study of ABT-869 in Subjects With Solid 24
Tumors

Phase 2 Study of ABT-869 in Subjects With 139
Advanced Non-Small Cell Lung Cancer (NSCLC)

Phase 2 Study of ABT-869 in Combination With 102
mFOLFOXé Versus Bevacizumab in Combination

With mFOLFOX6 as Second Line Treatment for
Advanced Colorectal Cancer

Phase 2 Study of Carboplatin/Paclitaxel in 80
Combination With ABT-869 in Subjects With

Advanced or Metastatic Non-Small Cell Lung

Cancer (NSCLC)

Phase 2 Study of ABT-869 in Subjects With 53
Advanced Renal Cell Carcinoma Who Have

Previously Received Treatment With Sunitinib

Phase 2 Study of Oxaliplatin, Fluorouracil, 0
Leucovorin and ABT-869 or Bevacizumab as

Second-Line Therapy in Treating Patients With

Locally Recurrent or Metastatic Colorectal Cancer

Phase | Pharmacokinetic Study To Evaluate Effect of 12
Food and Diurnal Variation on ABT-869

RDBT, MC

RDBT, MC

Conducted in Japan

RUO, MC

RUO, MC

RDBT, MC

Open label, NR

Single center

Single center

April 2009 Recruiting March 2008

March 2009 Active, not recruiting  August 2007

January 2009  Withdrawn September 2008

March 2009 Recruiting September 2008

March 2009 Active, not recruiting  August 2007

April 2009 Recruiting August 2008

April 2009 Recruiting June 2008

April 2009 Active, not recruiting  August 2007

October 2008 Not yet recruiting October 2008

March 2009 Recruiting February 2009

Data compiled from http://www.clinicaltrials.org
RDBT: Randomized, placebo-controlled, double blind trial

MC: Multicenter

W: Withdrawn prior to recruitment

RUO: Randomized, uncontrolled, open label
NR: Non-Randomized
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Based on the Population PK analysis presented in an
abstract [68], ABT-869 PK fits one-compartment model
with first order absorption and elimination. Race, sex and
impaired renal function do not appear to significantly
affect PK. In addition, body weight does not significantly
impact exposure suggesting that a fixed dosing strategy
may be appropriate.

The reported side effects such as fatigue, proteinuria,
hypertension, myalgia, skin toxicity (hand and foot blis-
ters) are similar to commonly described toxicity in other
FDA approved oral tyrosine kinase inhibitors such as
Sunitinib. Long term dosing of ABT-869 did not appear to
pose problems of cumulative toxicity in patients who
received more than a year of dosing. The nonclinical stud-
ies on combination therapies have demonstrated synergy
and are likely to be more effective than monotherapy.
Clinical studies of ABT-869 in combination with chemo-
therapy or other novel targeted therapies, will further our
understanding of how to optimize this exciting new ther-
apy. The recent identification of the critical role of sur-
vivin in the regulation of ABT-869 resistance is interesting
and is therapeutically relevant. Mechanisms of resistance
to ABT-869 remain under active investigation.
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