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Abstract

Background: Downregulation of the B-cell chronic lymphocytic leukemia (CLL)/lymphoma11B (BCL11B) gene by
small interfering RNA (siRNA) leads to growth inhibition and apoptosis of the human T-cell acute lymphoblastic
leukemia (T-ALL) cell line Molt-4. To further characterize the molecular mechanism, a global gene expression profile
of BCL11B-siRNA -treated Molt-4 cells was established. The expression profiles of several genes were further
validated in the BCL11B-siRNA -treated Molt-4 cells and primary T-ALL cells.

Results: 142 genes were found to be upregulated and 109 genes downregulated in the BCL11B-siRNA -treated
Molt-4 cells by microarray analysis. Among apoptosis-related genes, three pro-apoptotic genes, TNFSF10, BIK, BNIP3,
were upregulated and one anti-apoptotic gene, BCL2L1 was downregulated. Moreover, the expression of SPP1 and
CREBBP genes involved in the transforming growth factor (TGF-b) pathway was down 16-fold. Expression levels of
TNFSF10, BCL2L1, SPP1, and CREBBP were also examined by real-time PCR. A similar expression pattern of TNFSF10,
BCL2L1, and SPP1 was identified. However, CREBBP was not downregulated in the BLC11B-siRNA -treated Molt-4
cells.

Conclusion: BCL11B-siRNA treatment altered expression profiles of TNFSF10, BCL2L1, and SPP1 in both Molt-4 T cell
line and primary T-ALL cells.

Background
Although treatment outcome in patients with T-cell
acute lymphoblastic leukemia (T-ALL) has improved in
recent years, relapsed T-ALL remains a challenge [1].
Monoclonal antibodies, gene inhibitors, and upregulation
of microRNAs [2,3] are promising tools for cancer tar-
geted therapy. However, few targeted therapies are avail-
able for T-cell malignancies. For example, transforming
Mer signals may contribute to T-cell leukemogenesis,
and regulation of Mer expression could be a novel thera-
peutic target for pediatric ALL therapy [4]. The recent
identification of activating Notch1 mutations in the
majority of patients with T-ALL has brought interests on
targeting the Notch signaling pathway for this disease [5].
The B-cell chronic lymphocytic leukemia (CLL)/lym-

phoma 11B (BCL11B) gene was first identified on

human chromosome 14q32.2 [6] and encodes a Krüp-
pel-like C2H2 zinc finger protein initially identified as a
transcriptional repressor [7]. BCL11B plays an important
role in T-cell differentiation and proliferation [8-11].
Altered expression, mutation, disruption, or rearrange-
ment of BCL11B has been associated with T-cell malig-
nancies [12-14]. In humans, BCL11B overexpression is
found primarily in lymphoproliferative disorders, such
as T-ALL and adult T-cell leukemia/lymphoma
[12,15-17]. BCL11B mediates transcriptional activation
by interacting with the p300 co-activator at the
upstream site 1 (US1) of the interleukin (IL)-2 promo-
ter, leading to transcriptional activation of IL-2 expres-
sion in activated T cells [18]. Although the interaction
partners and binding sequence have been revealed, only
a few BCL11B direct target genes have been identified
to date. Our previous study in the human T-ALL cell
lines Molt-4, Jurkat, and hut78 has shown increased
apoptosis upon BCL11B suppression by RNA interfer-
ence [19].
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In the present study, we further analyzed the global
gene expression profiles in Molt-4 and primary T -ALL
cells after BCL11B-935-siRNA treatment.

Methods
Samples
Samples from three newly diagnosed patients with T-
ALL and one patient with T-cell lymphoma/leukemia
were obtained after informed consent. The diagnosis of
T-ALL was based on cytomorphology, immunohisto-
chemistry, and flowcytometry analyses. The samples were
named P1 (55-year-old male with T-ALL), P2 (6-year-old
male with T-ALL), P3 (55-year-old female with T-cell
lymphoma/leukemia), and P4 (19-year-old male with T-
ALL). Peripheral blood was collected with heparin and
peripheral mononuclear cells (PBMCs; contained more
than 70% leukemic T cells) were separated using the
Ficoll-Hypaque gradient centrifugation method. All pro-
cedures were conducted in strict accordance with the
guidelines of the Medical Ethics committees of the
Health Bureau of Guangdong province, China.

Cell culture
Molt-4 cells (Institutes for Biological Sciences Cell
Resource Center, Chinese Academy of Sciences, Shang-
hai, China) and PBMCs collected from the four patients
were cultured in complete RPMI 1640 medium with
15% fetal calf serum and were maintained in a sterile
incubator at 37°C, 95% humidity, and 5% CO2.

Nucleofection
BCL11B-siRNA935 (Chinese patent application number:
200910193248.3) and the scrambled non-silencing
siRNA control (BCL11B-sc) were designed with online
software http://www.invitrogen.com and synthesized by
Invitrogen (Carlsbad, CA, USA).
Malignant T cells were resuspended at 2.5 × 106 (Molt-4

cells) or 1 × 107 (PBMCs) per 100 μL of the appropriate
Nucleofector kit solution (Amaxa Biosystems, Cologne,
Germany), and were nucleofected with 3 μg of BCL11B-
siRNA or control non-silencing scrambled (sc) RNA using
the C-005 (Molt-4 cells) or U-014 (PBMCs) program in
the Nucleofection Device II (Amaxa Biosystems). Mock-
transfected cells (nucleofected without siRNA) were used
as a negative control. After nucleofection, the cells were
immediately mixed with 500 μL of pre-warmed culture
medium and transferred to culture plates for incubation.
Samples were collected for RNA isolation.

RNA isolation, expression profiling, reverse transcription,
and real-time PCR
Total RNA was isolated using Trizol (Invitrogen), and
cDNA was synthesized with a Superscript II RNaseH
Reverse Transcriptase kit (Invitrogen).

Total RNA (> 3 μg) was sent for global gene expres-
sion profile analysis using an Affymetrix HG U133 Plus
2.0 gene chip (Shanghai Biochip Co., Ltd., Shanghai,
China). The Affymetrix microarray analysis was per-
formed using Gene Spring GX10.0 software (Agilent
Technologies, Santa Clara, CA, USA).
The primer and probe information for BCL11B and

the reference gene b-2-microglobulin (b2-MG), as well
as the details of the real-time PCR for BCL11B were
described in our previous studies [12,15]. Expression
levels of tumor necrosis factor (ligand) superfamily,
member 10 (TNFSF10; TRAIL), BCL2-like 1 (BCL2L1;
Bcl-xL), secreted phosphoprotein 1 (SPP1), cAMP-
response element binding protein (CREBBP), and b2-
MG were determined by real-time PCR using a SYBR
Green I qPCR Master Mix kit [15].

Flow cytometry assay
Cells from different groups were prepared according to
the protocols, and the BCL2 expression level was mea-
sured by flow cytometry (Beckman Coulter, Fullerton,
CA, USA). Mouse anti-human BCL2-PE and mouse
IgG1-PE (eBioscience, San Diego, CA, USA) were used.
Results were analyzed using the Win MDI 2.9 software.

Results and discussion
Global gene expression profile in BCL11B-siRNA935
treated Molt-4 cells
To determine the molecular mechanisms of BCL11B
siRNA-mediated cell apoptosis, global gene expression
profiling was performed at 24 h post-transfection, when
BCL11B mRNA was most effectively suppressed (data
not shown). Results were clustered, based on the differ-
ential expression level (2-fold up or down), and visua-
lized using a color scale (Figure 1A). Principal
component analysis indicated that the changes in the
Molt-4 cell gene expression profile could be accounted
for primarily by the BCL11B siRNA935 treatment
(Figure 1B). A GCOS1.4 software analysis showed that
upregulated genes were identified by 142 probe sets,
whereas 109 genes were downregulated at least 2-fold,
compared with the sc control (Figure 1C). Changes in
genes of the same signaling pathways closely related to
tumor cell proliferation and apoptosis were analyzed
further (Figure 1D).
Among apoptosis-related genes, changes in expression

levels occurred mainly in three pro-apoptotic genes;
TNFSF10, BCL-2 interacting killer (BIK), and BCL-2/
E1B 19 kDa interacting protein 3 (BNIP3), which were
upregulated 2-4 fold, and one anti-apoptotic gene
(BCL2L1) was downregulated by 3-4 fold. The expres-
sion levels of SPP1 and CREBBP genes involved in the
transforming growth factor (TGF-b) pathway were down
by 16 fold. The changes in the expression levels of the
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Figure 1 Results of the gene chip microarray analysis and validation. (A) Visual display of the cluster analysis for the BCL11B siRNA935-
transfected and control cells. (B) Principal component analysis. The closer the dots, the more similar the gene expression profiles are; the farther
apart the dots, the greater the differences are. (C) Two-dimensional scatterplot analysis of gene expression values for all genes on the BCL11B
siRNA935-transfected cells and control cells from the microarray. Yellow dots represent genes absent from both samples; blue dots represent
genes present in one sample but absent from the other sample; and red dots represent genes present in both samples. Dots outside the 2 ×
difference lines, indicated by black arrows, represent differentially expressed genes. The farther from the line, the greater the difference in gene
expression are. (D) Analysis of pathways closely related to tumor cell proliferation and apoptosis. Results are shown as fold-change in mRNA
transcripts. Genes indicated with a red star are in the apoptosis pathway; genes indicated with a blue star are in the transforming growth factor-
b pathway. (E) Gene validation by real-time PCR. Changes in TNFSF10, BCL2L1, and SPP1 expression levels agreed with the microarray results,
while those of CREBBP did not. (F) Reduced BCL-2 protein expression was confirmed by flow cytometry. BCL-2 expression in BCL11B siRNA3-
transfected cells was significantly lower, at 46% of that in SC (99.1%), MOCK (99.2%), and NC cells (99.7%).
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TNFSF10, BCL2L1, SPP1, and CREBBP genes were
further detected by real-time PCR (Figure 1E). The
BH3-only domain proteins BIK and BNIP3, which were
located upstream of BCL-2 (Figure 2), may enhance
their binding to BCL-2, thereby inhibiting the anti-apop-
totic function. Thus, we analyzed the BCL-2 protein
expression level by flow cytometry in Molt-4 cells at 72
h after BCL11B-siRNA treatment (Figure 1F). A similar
altered expression pattern of these genes, as well as
expression of the BCL-2 protein, was confirmed. How-
ever, CREBBP did not show downregulation in BCL11B-
siRNA treated Molt-4 cells.
The global gene expression profile results suggest that

the molecular mechanisms of BCL11B siRNA-mediated
cell death may involve BCL-2 family genes in the intrin-
sic mitochondrial pathway as well as the TNFSF10 gene
in the death receptor signaling pathway (Figure 2) [20].
Upregulation of the TNFSF10 gene activated the death
receptor signaling pathway, whereas upregulation of the
two mitochondrial BCL-2 family genes (the BH3-only
domain proteins BIK and BNIP3) enhanced their bind-
ing to BCL-2, with a reduction in the anti-apoptotic
gene BCL2L1, thereby inhibiting the anti-apoptotic func-
tion and promoting Bax and Bak activation. This in turn
activates the downstream caspases 3, 6, and 7, leading to

increased apoptosis. Reduced expression of SPP1 corre-
lated with increased apoptosis in Molt-4 cells, suggest-
ing that the SPP1 gene may be a BCL11B gene target.
CREBBP overexpression has been detected in Jurkat

cells [21]. However, previous studies have not reported
a change in CREBBP expression in T cell lines after
BCL11B-siRNA treatment. In the present study, downre-
gulation of CREBBP was identified in the microarray
analysis, but not confirmed by real-time PCR analysis.
The reason may be due to a systemic error on the
microarray analysis. Interestingly, unlike the result from
Molt-4 cells, the alteration of the CREBBP expression
level in primary T-All cells after BCL11B-siRNA treat-
ment was in accordance with the results from the
microarray analysis (Figure 3). Thus, the role of
CREBBP during BCL11B downregulation in malignant T
cells requires further investigation.

Expression of TNFSF10, BCL2L1, SPP1, and CREBBP genes
in BCL11B-siRNA935-treated primary leukemic T cells
After obtaining interesting data from Molt-4 cells, we
analyzed the effect of the BCL11B-siRNA in primary T-
ALL cells. We examined the expression levels of
TNFSF10, BCL2L1, SPP1, and CREBBP in primary leu-
kemic T cells after BCL11B siRNA935 treatment.

Figure 2 Schematic model of the molecular mechanism of BCL11B-siRNA-mediated apoptosis in Molt-4 cell [modified from reference 20].
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BCL11B expression level decreased in primary leukemic
T cells treated with BCL11B siRNA935 (282.77 ± 247.57
copies/105 b2-MG) as compared with the sc control
group (519.48 ± 303.41 copies/105 b2-MG). The
TNFSF10, BCL2L1, SPP1, and CREBBP expression levels
in BCL11B-siRNA935- treated primary leukemic T cells
were 2.7 ± 2.17%, 9.53 ± 15.34%, 3.5 ± 2.95%, and 4.25
± 5.82%, respectively, whereas the expression levels in
primary leukemic T cells in the sc control group were
1.77 ± 1.93%, 6.96 ± 9.88%, 10.23 ± 13.09%, and 4.98 ±
7.2%, respectively. The T-ALL specimen number was
too small to perform statistical analysis. The changes in
the mRNA levels of TNFSF10, SPP1, and CREBBP in
the T cells from the four patients agreed in general with
those from the microarray analysis results (Figure 3A, C,
D). However, the changes in the BCL2L1 expression
levels in the different samples varied (Figure 3B). The
reduced BCL2L1 expression rates in leukemic T cells
from patients 1 and 3 were 31.84% and 13.73%, respec-
tively, compared with the sc controls, whereas BCL2L1
expression in leukemic T cells from patients 2 and 4
was upregulated. Although BCL11B gene overexpression

occurred in all samples, it may have been due to the
heterogeneity of T-cell malignancies during apoptosis
induced by BCL11B downregulation [22], so it remains
to be determined whether apoptosis induced by BCL11B
downregulation in some cases with T-ALL involves the
BCL-2 family genes in the intrinsic mitochondrial
pathway.
A previous analysis revealed that overexpression of the

BCL11B, BCL2L1, and CREBBP genes in primary T-ALL
samples blocks apoptosis in malignant T cells [15]. This
study suggests that inhibition of BCL11B may trigger
apoptosis in leukemic T cells by downregulating the
downstream genes SPP1, CREBBP, and TNFSF10.

Conclusions
Our findings provide evidence that BCL11B siRNA-
mediated cell apoptosis may be related to the mitochon-
drial pathway BCL-2 family genes and the TNFSF10
gene of the death receptor signaling pathway. Moreover,
the SPP1 and CREBBP genes in the TGF-b pathway
may also be involved in BCL11B siRNA-mediated cell
apoptosis.

Figure 3 Expression of TNFSF10, BCL2L1, SPP1, and CREBBP genes in peripheral mononuclear cells from four patients (P1-P4) with T-
cell acute lymphoblastic leukemia at 24 h after BCL11B siRNA transfection.
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