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Abstract

Most non-Hodgkin's lymphomas (NHL) initially respond to chemotherapy, but relapse is common and treatment is
often limited by chemotherapy-related toxicity. Bortezomib, is a highly selective proteasome inhibitor with anti-NHL
activity; it is currently FDA approved for second-line treatment of mantle cell lymphoma (MCL). Bortezomib exerts

its activity in part through the generation of reactive oxygen species (ROS) and also by the induction of apoptosis.

species, apoptosis, mantle cell lymphoma

We previously validated CD22 as a potential target in treating NHL and have shown that the anti-CD22 ligand
blocking antibody, HB22.7, has significant independent lymphomacidal properties in NHL xenograft models. We
sought to determine whether or not these agents would work synergistically to enhance cytotoxicity. Our results
indicate that treatment of NHL cell lines with HB22.7 six hours prior to bortezomib significantly diminished cell
viability. These effects were not seen when the agents were administered alone or when bortezomib was
administered prior to HB22.7. Additionally, HB22.7 treatment prior to bortezomib increased apoptosis in part
through enhanced ROS generation. Finally, in a mouse xenograft model, administration of HB22.7 followed 24
hours later by bortezomib resulted in 23% smaller tumor volumes and 20% enhanced survival compared to
treatment with the reverse sequence. Despite the increased efficacy of HB22.7 treatment followed by bortezomib,
there was no corresponding decrease in peripheral blood cell counts, indicating no increase in toxicity. Our results
suggest that pre-treatment with HB22.7 increases bortezomib cytotoxicity, in part through increased reactive
oxygen species and apoptosis, and that this sequential treatment combination has robust efficacy in vivo.
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Introduction

Non-Hodgkin’s lymphomas (NHL) are a heterogeneous
group of lymphoid malignancies; the majority are of B-
cell origin [1]. Incidence rates have almost doubled in
the last 40 years and NHL is now the sixth most com-
mon cause of cancer-related death in the US [2]. Initial
therapy for NHL includes chemotherapy, biologic ther-
apy, and radiotherapy, but relapse is common and the
efficacy of chemotherapy is limited by toxicity [1].
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Therefore, novel, less toxic therapeutic combinations are
needed to improve patient survival.

Bortezomib (Velcade, PS-341) is a reversible inhibitor
of the 26S proteasome [3] and is approved for the treat-
ment of multiple myeloma and relapsed mantle cell lym-
phoma. The mechanism by which bortezomib induces
apoptosis is not completely understood, but is thought to
involve the accumulation of NF-kB [3,4], increased ROS
generation [5,6], and activation of the unfolded protein
response [7,8]. Bortezomib has shown robust preclinical
anti-tumor activity in several NHL cell lines including
MCL, FL and Burkitt’s lymphoma [9,10]. Five indepen-
dent studies led to the approval of bortezomib by the
FDA as second line treatment of MCL [11-15] and its
efficacy in FL has been studied in phase I trials [3].
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Additional phase II [11,14,16] and phase III studies in FL
are ongoing.

As B-lymphocytes mature to fully differentiated plasma
cells, the B-lymphocyte-specific glycoprotein, CD22,
which is expressed by nearly all mature B-lymphocytes,
disappears [17]. The two amino-terminal immunoglobu-
lin (Ig) domains of CD22 mediate ligand binding and het-
ero- and homotypic cell adhesion [18-20] and studies
have demonstrated that the ligand binding domains are
critical for B-cell receptor signaling and B-cell survival
[21]. MAbs such as HB22.7, which target these amino
terminal Ig domains and block the interaction of CD22
with its ligand, are effective at inducing proliferative
responses in primary B-cells while activating apoptotic
pathways in neoplastic B-cells [22]. Since most NHLs
express CD22, this glycoprotein is a promising target for
immunotherapy. We previously reported the lymphoma-
cidal properties of HB22.7 in nude mice bearing Raji
(human B-cell NHL) xenografts [22].

Because of bortezomib’s pronounced cytotoxic effects
and unique mechanism of action, novel agents in NHL are
increasingly being studied in combination with bortezomib
[23-26]. In preclinical studies, additive cytotoxic effects
have been reported with the combination of bortezomib
and the anti-CD20 mADbD rituximab (Rituxan) in B-cell
lymphoblastic leukemia (B-CLL) and MCL [25-27]. The
combination has been found to be active in a Phase II clin-
ical trial [16] and is now being compared to single arm
rituximab in a Phase III trial in relapsed FL. The cytotoxic
effect of rituximab occurs via multiple pathways, one of
which is the downregulation of the anti-apoptotic protein
Bcl-xL [28] and in B-NHL cell lines, Bcl-xL down-regula-
tion occurs partly via inhibition of NF-kB activation [29].
Interestingly, crosslinking CD22 with HB22.7 can similarly
down regulate Bcl-xL [20]. Since proteasome inhibition by
bortezomib also inhibits NF-kB activation [3,4], which in
turn modulates levels of Bcl-2 family members such as
Bcl-xL [5,30,31], this suggests that the combination of
HB22.7 and bortezomib may be additive. Additionally,
studies have shown that some of rituximab’s cytotoxic
effects are complement mediated, occurring through ROS
generation [32]. In addition to its effects on NF-kB, borte-
zomib increases ROS generation [5,6]. The effect of
HB22.7 on ROS production has not been previously deter-
mined. However since rituximab and bortezomib enhance
cytotoxicity in part through ROS generation and NF-kB
inhibition and HB22.7 cross-linking of CD22 can similarly
downregulate Bcl-xL, we hypothesized that HB22.7 may
also exhibit enhanced cytotoxicity against malignant B-
cells when combined with bortezomib, in part through
increased ROS generation.

To determine this, we used both in vitro cell culture
and in vivo mouse xenograft NHL models to determine
the effects of HB22.7 or bortezomib treatment alone

Page 2 of 10

and in combination (concurrently and sequentially), on
cytotoxicity, apoptosis, ROS induction, tumor volume,
and survival.

Materials and methods

1. Materials

RPMI 1640 medium, penicillin-streptomycin, fetal
bovine serum (FBS) and 5-and 6-carboxy-2’, 7’-dichloro-
dihydrofluorescein diacetate (carboxy-H,DCFDA) mixed
isomers were purchased from Invitrogen/Life Technolo-
gies (Carlsbad, CA). WST-1 proliferation reagent was
purchased from Roche (Indianapolis, IN). The mouse
anti-human CD22 mAb, HB22.7, was purified from
ascites and has been previously characterized [20]. Bor-
tezomib was obtained from Millennium Pharmaceuticals
(Cambridge, MA). All chemicals were of analytical grade

purity.

2. Cell lines

The human Burkitt’s B-cell lymphoma lines, Raji (CCL-
86) and Ramos (CRL-1596), and the mantle cell lym-
phoma line, Granta-519 (ACC-342) were obtained from
American Type Culture Collection (Rockville, MD). The
cells were grown in suspension in full RPMI (supple-
mented with 10% FBS, 50 units/ml penicillin G, and 50
pg/ml streptomycin sulfate). The cells were maintained
in tissue culture flasks at 37°C in 5% CO, and 90%
humidity. Cells used for experiments were harvested
while in the log growth phase.

3. In vitro cytotoxicity assays

Ramos or Granta-519 cells (5 x 10*/mL) were plated in
96 well flat bottom plates in a final volume of 100 uL.
Cells were treated with bortezomib (75 nM) alone,
HB22.7 (60 pg/mL) alone, bortezomib plus HB22.7, bor-
tezomib followed 6 h later by HB22.7, or HB22.7 fol-
lowed 6 h later by bortezomib (see Figure 1). Control
cells received no treatment. Suboptimal doses (doses
lower than those needed to cause cytotoxicity) of borte-
zomib and HB22.7 were used in order to detect additive
or synergistic effects of combination treatment. All sam-
ples were plated in triplicate. The plates were then incu-
bated at 37'C, 5% CO, and 90% humidity overnight.
After overnight treatment, WST-1 reagent was added (20
uL per well) and incubated for 2 h, after which the plate
was read at 450 nm on an EMax precision microplate
reader using SoftMax Pro software (Molecular Devices,
Sunnyvale, CA). Absorbance readings were converted to
% of control (untreated cells) and plotted.

4. ROS assay

Ramos cells (5 x 10*/mL) were seeded into T-25 flasks
(5 mL per flask) and treated with bortezomib alone
(15 pM), HB22.7 (100 pg/mL) alone, both agents
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Figure 1 Cells treated with HB22.7 followed by bortezomib demonstrate increased cytotoxicity. A. Ramos or Granta-519 cells were
treated overnight with either bortezomib (Bz) (75 nM) or HB22.7 (60 pg/ml) alone (1]), bortezomib and HB22.7 concurrently (2]), bortezomib six
hours prior to overnight treatment with HB22.7 (3]), or HB22.7 six hours prior to bortezomib overnight treatment (4]). B. Viability of Ramos (black
bars) or Granta-519 (white bars) were measured spectrophotometrically utilizing the dye WST-1 and is expressed as % control (untreated) cells.
Treatments are listed on the X-axis. Error bars = SEM. (¥) = p-value < 0.05 against all other treatment groups (n = 3).
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concurrently, or one agent followed 6 h later by the second
agent. Doses were chosen based on concentrations needed
to cause cell death in this cell line in previous cell viability
assays. All flasks were then incubated at 37°, 5% CO,, 90%
humidity overnight. The next morning, cells were washed
twice and resuspended in 5 mL RPMI-1640 without phenol
red. Cells were then labeled with carboxy-H,DCFDA (final
concentration 4.7 uM) for 90 minutes at 37°C, 5% CO,,
90% humidity. Cells were washed twice, then resuspended
in 5 mL RPMI-1640 without phenol red and allowed to rest
for 1 h at room temperature in the dark. Cells were then
acquired on a flow cytometer (BD FACSCaliber, San Jose,
CA) using the FL-1 parameter and analysis was performed
using BD CellQuest software (San Jose, CA). The assay was
repeated 3 times and the mean fluorescence intensity (MFI)
was determined for each treatment group. The average fold
increase in MFI over control (untreated cells) was calcu-
lated and plotted. Hydrogen peroxide was used as a positive
control.

5. Apoptosis assay

Ramos cells (5 x 10*/mL) were seeded into T-25 flasks
(5 mL per flask) and treated with bortezomib alone
(15 uM), HB22.7 alone (100 pg/mL), both agents concur-
rently, or one agent followed 6 h later by the second agent.
Doses were chosen based on concentrations needed to
cause cell death in this cell line in previous cell viability
assays. All flasks were then incubated at 37°, 5% CO,, 90%
humidity for 24 h. After 24 h, cells were washed three
times with PBS supplemented with 0.2% FBS and resus-
pended in 3 mL of PBS supplemented with 0.2% FBS con-
taining 5 mg/mL propidium iodide. The cell samples were
then acquired on a FACSCaliber flow cytometer using
FL2-A and FL2-W parameters. Cell cycle analysis was per-
formed using Verity ModFIT software (Topsham, ME)
and the percentage of cells in the sub-G1 (apoptotic) frac-
tion determined.

6. Mice and Xenograft model

Female athymic Balb/c nude (nu/nu) mice (Harlan Spra-
gue Dawley, Indianapolis, IN) were housed and main-
tained according to University of California, Davis animal
care guidelines. Raji cells were harvested in log growth
phase and each mouse was injected subcutaneously with
0.5 x 10° cells on the left flank. The Raji cell line was
used for xenografts rather than the Ramos cell line
because Ramos xenografts tend to grow very rapidly,
quickly becoming necrotic and therefore, resistant to
uptake of treatment. After tumors were palpable, mice
were divided into 4 groups (n = 5 per group) and treated
with either bortezomib (20 pg) alone, bortezomib fol-
lowed 24 h later by HB22.7 (2.1 mg), or HB22.7 followed
24 h later by bortezomib. Control mice were treated with
PBS at volumes equivalent to mice receiving both
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bortezomib and HB22.7. All groups were treated twice
weekly for two weeks (for a total of 4 treatments) and all
treatments were administered via the tail vein. Tumor
size was assessed twice weekly by measurement with cali-
pers and tumor volume was calculated using the equation
length x width x depth x 0.52. Blood samples were col-
lected (n = 2 mice per treatment group) at days 0, 2, 5, 9,
12, 15, 18, 23, 26, 29, 33, 36, and 40 by nicking the tail
vein. For red blood cell and platelet counts, 10 pl blood
was diluted into 2 ml PBS pH 7.4 containing 0.5 M
EDTA. For white blood cell counts, 20 ul blood was
added to 380 pl of 2% acetic acid/1% crystal violet solu-
tion. All cells were counted on a hemocytometer.

7. Statistics

For in vitro data, individual groups were compared against
each other using a two-tailed Student’s t-test. For xeno-
graft tumor volume data, individual mice in each treat-
ment group were either ranked as 0 (did not achieve
event) or 1 (achieved event). An event was defined as
tumor volume reaching 450 mm? or greater. The time to
event (in days) was then determined. If the event was not
reached (ranked 0), a time to event of 84 days (the end of
the study) was used. Treatment groups were then plotted
against each other as Kaplan-Meier curves and the Log-
rank test applied to determine Chi* and p-values. Results
were considered statistically significant if calculated
p-value was < 0.05. All statistical calculations were per-
formed using GraphPad Prism software (San Diego, CA).

Results and discussion

Additive cytotoxic effects have been reported with combi-
nation bortezomib/rituximab treatment in B-CLL and
MCL [25,26] and the combination is currently being com-
pared to single arm rituximab in a Phase III trial in
relapsed FL, however the effects of sequencing these
agents have not been fully explored. In terms of rationale,
bortezomib and rituximab combination therapy allows for
the targeting of the same pathways, such as NF-kB/Bcl-xL
and ROS generation, by two different agents, potentially
preventing resistance to either single agent alone. In
choosing to explore the bortezomib/HB22.7 combination,
we used a similar rationale that HB22.7’s combination
with bortezomib would result in alteration of apoptotic
pathways, such as Bcl-xL, perhaps through enhanced ROS
generation, ultimately leading to an increase in cytotoxicity
and apoptosis in malignant B-cells.

In combination therapies, the sequence of treatment
may affect the outcome. As reviewed by Shah and
Schwartz, this sequence dependence can have multiple
explanations, including, but not limited to, treatment
induced alterations of the cell cycle, or pharmacodynamic
interactions between two or more agents [33]. Many stu-
dies have demonstrated that treatment sequence may
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augment or inhibit efficacy in many types of cancer, both
in vitro and in vivo [13,34-38]. In support of these studies,
we previously demonstrated that HB22.7 had the greatest
effects on NHL tumor volume shrinkage when adminis-
tered simultaneously with and 24 hours after radioimmu-
notherapy [22]. Therefore, we examined both concurrent
and sequential HB22.7 and bortezomib treatment
approaches.

To determine if the combination of HB22.7 and borte-
zomib would produce additive or synergistic effects on
cellular cytotoxicity, Ramos cells (Burkitt’s B-cell NHL)
or Granta-519 cells (MCL) were treated with each agent
alone, both agents simultaneously or sequentially (treat-
ment with one agent for 6 h followed by overnight treat-
ment with the second agent) (Figure 1a). Suboptimal
doses (doses lower than those needed to cause cytotoxi-
city by each drug individually) of bortezomib and
HB22.7 were used to allow for detection of additive or
synergistic effects of the combination. As seen in Figure
1b, treatment with HB22.7 alone, bortezomib alone,
HB22.7 plus concurrent bortezomib, and bortezomib
followed by HB22.7, had little to no cytotoxic effect.
However, treatment with HB22.7 followed by bortezo-
mib decreased the number of viable cells by about 95%
(Figure 1b). This indicates that combination treatment
with HB22.7 and bortezomib is synergistic and depends
greatly on the sequence of treatment.

The lack of efficacy of either bortezomib or HB22.7
alone in the cytotoxicity assays was not surprising since
we used suboptimal concentrations in order to deter-
mine if there was a synergistic effect of the two drugs
together. However, we were surprised to see that the
combination of the two drugs differed from our pre-
vious work which showed that the greatest efficacy was
seen when HB22.7 was administered concurrently with
or 24 hours after radioimmunotherapy [22]. At least in
the case of the latter this may be explained by several
reasons. By treating the cells with bortezomib first, the
cells may be in cell cycle arrest before HB22.7 treatment
has begun [39,40]. In effect, pretreatment with bortezo-
mib may protect the cells from HB22.7’s apoptotic
actions. In addition, the accumulation of Mcl-1 caused
by bortezomib treatment [27,41] may overwhelm
HB22.7’s ability to downregulate Mcl-1 [20]. A cleaved
form of Mcl-1 in MCL cell lines treated with bortezo-
mib has been reported [27] and it was shown that clea-
vage of Mcl-1 may affect its anti-apoptotic function
[42]. Alinari et al suggest that a ratio of intact to cleaved
Mcl-1 may be important in altering the apoptotic
threshold [27]. Alternatively, proteasome inhibition may
upregulate some factor which can act as a negative reg-
ulator of HB22.7’s apoptotic effects.

Using the Ramos cell line and same treatment para-
digm outlined in Figure la, we next determined if this
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synergistic cytotoxicity was due to apoptosis. In support
of the cell viability studies, concurrent addition of
HB22.7 does little to improve the apoptotic effect of
bortezomib (54% versus 52% for bortezomib alone),
while the sequential treatment of HB22.7 followed by
bortezomib enhances the apoptotic effect (63%),
although this enhancement was not statistically signifi-
cant (Figure 2). Interestingly, the reverse sequential
treatment of bortezomib followed by HB22.7 actually
induces less apoptosis (29%) than concurrent HB22.7/
bortezomib (54%) or bortezomib alone (52%) (Figure 2).

Since ROS generation has been shown to play an
important role in bortezomib induced apoptosis [5,6]
and in rituximab and anti-IgM induced B-cell death
[32,43], we sought to determine if ROS levels were
increased after HB22.7 treatment and if ROS generation
might be enhanced in combination with bortezomib
treatment. ROS generation in Ramos cells treated with
the above mentioned protocols (Figure 1a) were exam-
ined. As a positive control, treatment of Ramos cells
with hydrogen peroxide alone resulted in an expected
increase in ROS production (3.5 + 1.2 fold over control
untreated cells) (data not shown). As shown in Figure 3,
anti-IgM treatment, a known inducer of apoptosis in B-
cell NHL [43], increased ROS by 10.4 + 7.3 fold. In sup-
port of previous findings [5], bortezomib alone increased
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Figure 3 Cells treated with HB22.7 followed by bortezomib
demonstrate increased ROS generation. Ramos cells were treated
with hydrogen peroxide, bortezomib, HB22.7, or both bortezomib
and HB22.7 (concurrently or sequentially) as shown in Figure 1a and
described in Materials and Methods. Treatments are listed on the X-
axis. ROS levels were assessed by flow cytometry and are presented
as the fold increase in MFI (mean fluorescence intensity) compared
to control (untreated) cells. Results shown are the average of three
experiments. Error bars = SEM. (¥) = p-value < 0.05 against all other
treatment groups.
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Table 1 Change in tumor volume before and after treatment
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Group Volume Week 1 (mm?®) Volume Week 12 (mm?3) Volume change (mm?3)
Control 65+ 153 14477 + 291.3 1382.7 + 276
Bz alone 104 + 66 10494 + 381 9454 + 3744
Bz > HB 104 + 9.7 7023 + 2603 598.3 + 2505
HB — Bz 646 £ 75 5385 + 2815 4739 + 2741

Mean tumor volumes + SEM are listed for each group at weeks 1 and 12 of the study. Change in tumor volume between week 1 and week 12 are listed in the
final column. The arrow denotes the order of treatment. Bz = Bortezomib, HB = HB 22.7. n = 5 mice per group

ROS generation by 20.4 + 9.4 fold over untreated con-
trol cells (Figure 3). Interestingly, this did not correlate
with increased cytotoxicity, which can be explained by
the suboptimal concentrations of bortezomib used in
the cell viability assays. The mechanisms of bortezomib
induced cytotoxicity are thought to proceed through
several different pathways and it is likely that while ROS
levels are increased, other cytotoxic effects of bortezo-
mib are not being initiated. Treatment with HB22.7
alone did not greatly induce ROS production (0.1 + 9.8
x 107'® fold) and neither concurrent treatment with
both agents nor treatment with bortezomib followed by
HB22.7 elevated ROS beyond levels mediated by borte-
zomib alone (Figure 3). However, treatment with
HB22.7 followed by bortezomib generated a robust 41.4
+ 18.8 fold increase in ROS over control untreated cells
(Figure 3). Taken together, our in vitro data shows that
the sequential combination of HB22.7 followed by bor-
tezomib demonstrates synergistic cytotoxicity, and that
this occurs via enhanced apoptosis and a synergistic
increase in ROS generation.

We next sought to determine if this in vitro synergy
would translate to an iz vivo mouse tumor xenograft
model. Mice were implanted with Raji xenografts and
treated with either bortezomib alone, or one agent fol-
lowed 24 h later by the second agent as illustrated in
Figure 1a and described in Materials and Methods. As
shown in Figure 4a, mice that were treated with HB22.7
followed by bortezomib demonstrated 23.3% smaller
tumor volumes than mice treated with the reverse
sequence (bortezomib followed by HB22.7), 48.6% smal-
ler tumor volumes than mice treated with bortezomib
alone, and 62.8% smaller tumor volumes than control
(mock-treated) mice. (Mean tumor volumes prior to
treatment initiation and at the end of the 12 week study
are listed in Table 1). Only the comparison between
HB22.7 followed by bortezomib and control mice
reached statistical significance (p-value < 0.05, Table 2).
Mice treated with the reverse sequence (bortezomib fol-
lowed by HB22.7) and bortezomib alone also had smal-
ler tumor volumes (51.4% and 27.5%, respectively) than
control mice, but these comparisons were not statisti-
cally significant (Table 2). It may be noted that tumors
in all treatment groups grow in volume until about

week 4, then appear to plateau. This is very typical of
this xenograft model and even untreated tumors can
sometimes plateau in volume once the tumor outgrows
its blood supply and becomes necrotic. It is important
to note however, that with all treatment arms the pla-
teau occurs at a smaller tumor volume than in the
untreated arm. While HB22.7 followed by bortezomib
may not induce cure in these mice, it does demonstrate
a statistically significant decreased tumor burden. In
addition to smaller tumor volumes, mice treated with
HB22.7 followed by bortezomib also demonstrated
enhanced survival (60%) compared to mice treated with
the reverse sequence (40%), bortezomib alone (25%), or
control (30%) (Figure 4b). While a combination therapy
may be more efficacious than single agent therapies, it is
important to determine whether the combination
increases toxicity. Toxicity was assessed by total body
weight and peripheral blood cell counts of white blood
cells, red blood cells, and platelets as described in Mate-
rials and Methods. In this xenograft model, mice treated
with combination HB22.7/bortezomib demonstrated
very little toxicity and no more than bortezomib alone,
independent of how they were sequenced (data not
shown). This indicates that while HB22.7 followed by
bortezomib treatment demonstrates enhanced efficacy
compared to the other treatment groups, there was no
corresponding increase in toxicity.

In summary, the administration of HB22.7 followed by
bortezomib is cytotoxic in an in vitro lymphoma cell
culture model. This synergistic cytotoxicity is the result
of, at least in part, enhanced apoptosis and increased

Table 2 Statistical analysis

Group Comparisons* X2 P-Value
Bz v. Control 0.868 0.349
Bz — HB v. Control 1.044 0.307
HB — Bz v. Control 3.884 0.049
Bz - HB v. Bz 0.001 0.972
HB — Bz v. Bz 1.058 0.304
HB — Bz v. Bz ->HB 1324 0.250

* Statistical comparisons between groups were calculated as described in
Materials and Methods. The arrow denotes the order of treatments. Bz =
Bortezomib, HB = HB 22.7. N = 5 mice per group; p < 0.05 is considered
significant.
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ROS generation and is dependent upon the order of
administration. Finally, the in vitro efficacy of HB22.7
followed by bortezomib was also seen in an in vivo
xenograft model with no corresponding increase in toxi-
city. The sequence dependent synergy of the two drugs
may be due to a priming effect of HB22.7 which would
render cells more sensitive to bortezomib. Studies to
determine the mechanism are ongoing. Nevertheless,
clinical trails assessing the impact of sequencing of
mAbs with bortezomib should be undertaken to deter-
mine the optimal efficacy of the combination.

Abbreviations
NHL: non-Hodgkin's lymphoma; mAb: monoclonal antibody; ROS: reactive
oxygen species; MCL: mantle cell lymphoma; FL: follicular lymphoma.
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