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Abstract

The unfolded protein response (UPR) is a cascade of intracellular stress signaling events in response to an
accumulation of unfolded or misfolded proteins in the lumen of the endoplasmic reticulum (ER). Cancer cells are
often exposed to hypoxia, nutrient starvation, oxidative stress and other metabolic dysregulation that cause ER
stress and activation of the UPR. Depending on the duration and degree of ER stress, the UPR can provide either
survival signals by activating adaptive and antiapoptotic pathways, or death signals by inducing cell death
programs. Sustained induction or repression of UPR pharmacologically may thus have beneficial and therapeutic
effects against cancer. In this review, we discuss the basic mechanisms of UPR and highlight the importance of
UPR in cancer biology. We also update the UPR-targeted cancer therapeutics currently in clinical trials.

1. The unfolded protein response: mechanism
During tumorigenesis, the high proliferation rate of can-
cer cells requires increased activities of ER machinery in
facilitating protein folding, assembly, and transport.
Other pathologic stimuli can interrupt the protein folding
process and subsequently cause accumulation of
unfolded or misfolded proteins in the ER, a condition
referred to as “ER stress” [1-5]. These pathologic stimuli
include those that cause ER calcium depletion, altered
glycosylation, nutrient deprivation, oxidative stress, DNA
damage, or energy perturbation or fluctuations. In order
to handle the accumulation of the unfolded or misfolded
proteins, the ER evolves a group of signal transduction
pathways, collectively termed the unfolded protein
response (UPR), to alter transcriptional and translational
programs to maintain ER homeostasis [6-8].
UPR has two primary functions: 1) to initially restore

normal function of the cell by halting protein translation
and activating the signaling pathways that lead to
increased production of molecular chaperones involved
in protein folding [9,10]; 2) to initiate apoptotic path-
ways to remove the stressed cells when the initial objec-
tives are not achieved within a certain time lapse or the
disruption is prolonged [11,12].

As a part of the UPR program, ER-associated Protein
Degradation (ERAD) is responsible for the degradation
of aberrant or misfolded proteins in the ER, providing
an important protein folding “quality control” mechan-
ism. During the process of ERAD, molecular chaperones
and associated factors recognize and target substrates
for retrotranslocation to the cytoplasm, where they are
polyubiquitinated and degraded by the 26S proteasome
[13]. ERAD is essential for maintaining ER homeostasis,
and the disruption of ERAD is closely associated with
ER stress-induced apoptosis [14].
Proteasomal degradation and autophagy have been

identified as two main mechanisms in charge of protein
clearance in stressed cells. Proteasomal degradation
digests soluble ubiquitin-conjugated proteins. Autophagy
involves cytoplasmic components engulfed within a dou-
ble membrane vesicle (autophagosome). The maturation
of these vesicles may fuse with lysosomes, which leads
in turn to the degradation of the autophagosome com-
ponents by the lysosomal degradative enzymes. Condi-
tions that induce ER stress also lead to induction of
autophagy [15]. Activation of the IRE1, phosphorylation
of eIF2a, and ER Ca2+ release can all regulate autop-
hagy. Activation of autophagy after ER stress can be
either cell-protective or cytotoxic. Persistent ER stress
can switch the cytoprotective functions of UPR and
autophagy into cell death programs. Some antitumoral
agents (e.g., cannabinoids) activate ER stress and
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autophagy as the primary mechanism to promote cancer
cell death [16-18].

1.1. The unfolded protein response pathways
On aggregation of unfolded proteins, GRP78 (known
also as the immunoglobulin heavy chain binding protein,
or BiP), one of the most abundant ER luminal chaper-
ones, binds to unfolded proteins and dissociates from
the three membrane-bound ER stress sensors. These
stress sensors include pancreatic ER kinase (PKR)-like
ER kinase (PERK), activating transcription factor 6
(ATF6), and inositol-requiring enzyme 1 (IRE1). The
dissociation of GRP78 from these stress sensors allows
their subsequent activation (Figure 1). It has been pro-
posed that the activation of the ER stress sensors may
occur sequentially, with PERK being the first, rapidly
followed by ATF6, and IRE1 may be activated last [19].
Activated PERK blocks general protein synthesis by

phosphorylating eukaryotic initiation factor 2a (eIF2a),
which suppress mRNA translation. Reduced global
translation also leads to reduction of key regulatory pro-
teins that are subject to rapid turnover, facilitating acti-
vation of transcription factors such as NF�-B during
cellular stress [4]. However, selective translation of some

proteins is activated, including ATF4, which occurs
through an alternative translation pathway. ATF4, being
a transcription factor, translocates to the nucleus and
induces the transcription of genes required to restore
ER homeostasis. Activation of PERK is initially protec-
tive and crucial for survival during mild stress. However,
it leads to the induction of CHOP (C/EBP homologous
protein), an important element of the switch from pro-
adaptive to pro-apoptotic signaling [20-24].
PERK-mediated translational repression is transient

and is followed by translational recovery and enhanced
expression of genes that increase the capacity of the ER
to process client proteins. P58IPK induction during the
ER-stress response represses PERK activity and plays a
functional role in the expression of downstream markers
of PERK activity in the later phase of the ER-stress
response. P58IPK, GADD34 and TRB3, are reported to
be involved in switching off the PERK mediated path-
way. Blocking this protective pathway can be a central
element of the switch from adaptation to apoptosis
[19,25].
ATF6 is activated by regulated intramembrane proteo-

lysis after its translocation from the ER to the Golgi
apparatus [26]. Active ATF6 is also a transcription

Figure 1 Signal transduction events associated with ER stress and UPR. Upon accumulation of unfolded or misfolded proteins in the ER
three major ER stress sensors, PERK, ATF6 and IRE1, are activated following their dissociation from the ER chaperone GRP78. Activated PERK
phosphorylates eukaryotic initiation factor 2a (eIF2a), which suppresses global mRNA translation but activates ATF4 translation. ATF4 translocates
to the nucleus and induces the transcription of genes required to restore ER homeostasis. Activation of PERK also leads to the induction of
CHOP (C/EBP homologous protein), which is involved in pro-apoptotic signaling. ATF6 is activated by proteolysis mediated by proteases S1P and
S2P after its translocation from the ER to the Golgi apparatus. Active ATF6 translocates to the nucleus and regulates the expression of ER
chaperones and X box-binding protein 1 (XBP1) to facilitate protein folding, secretion, and degradation in the ER. Xbp1 mRNA undergoes
unconventional mRNA splicing carried out by IRE1. Spliced XBP1 protein (sXBP1) translocates to the nucleus and controls the transcription of
chaperones, the co-chaperones and the PERK-inhibitor P58IPK, as well as genes involved in protein degradation.
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factor that regulates the expression of ER chaperones
and X box-binding protein 1 (XBP1), another UPR-
trans-activator. The target genes of ATF6 and XBP1
have been shown to be involved in protein folding,
secretion, and degradation in the ER [27,28].
To achieve its active form, Xbp1 mRNA must undergo

a non-conventional mRNA splicing, which is carried out
by IRE1a. IRE1a protein is a type I transmembrane pro-
tein that contains both a Ser/Thr kinase domain and an
endoribonuclease domain. The endoribonuclease
domain processes an intron from the Xbp1 mRNA.
Spliced XBP1 protein (XBP1s) translocates to the
nucleus to activate the transcription of the genes encod-
ing protein chaperones or folding enzymes involved in
protein folding, secretion, or ERAD. Ablation of IRE1a
in mice produces an embryonic lethal phenotype. It has
been demonstrated that both processes of ATF6 activa-
tion and the IRE1a-mediated splicing of XBP1 mRNA
are required for full induction of the UPR [29-31].

1.2. ER stress-induced apoptosis
The adaptive responses to the accumulation of unfolded
or misfolded proteins in the ER provide initial protection
from cell death. But persistent or excessive ER stress can
trigger cell death, typically through apoptosis. Both mito-
chondria-dependent and -independent pathways have
been proposed for ER stress-induced apoptosis [32,33].
The mitochondria-dependent pathways involve pro-

apoptotic cascades that culminate in cytochrome c
release. CHOP (C/EBP homology protein) is one of the
proteins involved, which heterodimerizes with several C/
EBP family members to regulate their transcriptional
activity [34]. CHOP is downstream of phosphorylation
cascade of PERK and eIF-2a. CHOP has a role in the
induction of cell death by promoting protein synthesis
and oxidation in the stressed ER. It modulates the Bcl-2
family of proteins, GADD34 (growth arrest and DNA
damage inducible protein 34), and TRB3 (tribbles-
related protein 3), among other downstream proteins.
After transcriptional activation by ATF4, CHOP directly
activates GADD34, which promotes ER client protein
biosynthesis by dephosphorylating phospho-Ser 51 of
the a subunit of eIF-2a in stressed cells [35,36]. Addi-
tionally, it has been suggested that CHOP upregulates
pro-apoptotic members of the BCL2 family (BAK/BAD)
and downregulates the anti-apoptotic members (BCL2),
causing subsequent damage to the mitochondrial mem-
brane and releasing cytochrome c into the cytosol. The
released cytochrome c in turn activates cytosolic apopto-
tic protease activating factor1 (APAF1), which then acti-
vates the downstream caspase-9 and caspase-3-
dependent cascade [37].
A number of ER stress conditions can cause calcium

release from the ER to the cytosol, Increases in cytosolic

calcium can also cause activation of calpain, which
induces cleavage of procaspase-12 [38]. Once activated,
the catalytic subunits of caspase-12 are released into the
cytosol, where they activate the caspase-9 cascade in a
cytochrome c independent manner [39].
It has also been suggested that activated IRE1a can

recruit tumor-necrosis factor receptor associated factor
2 (TRAF2), which activates procaspase-4 as a mitochon-
dria-independent apoptotic response. Both pathways
ultimately lead to the activation of the caspase cascade
mediated through caspase-9 and caspase-3, resulting in
cell death [40].

2. The unfolded protein response and its effect
on tumorigenesis
A broad range of cancer-types rely on ER protein fold-
ing machinery to correctly fold key signaling pathway
proteins [41]. ER stress and the UPR are highly induced
in various tumors. Accumulating evidence has demon-
strated that the UPR is an important mechanism
required for cancer cells to maintain malignancy and
therapy resistance. Identifying the UPR components that
are activated or suppressed in malignancy and exploring
cancer therapeutic potentials by targeting the UPR are
very active research areas [7].
The UPR pathways are activated in a great variety of

tumor types, and have been demonstrated to be essential
for tumor cells to survive the unfriendly tumor microen-
vironment. There are evidence of over-expression of
XBP1s (excision of a 26 nucleotide unconventional intron
from XBP-1 mRNA), activation of ATF6, phosphoryla-
tion of eIF-2a, induction of ATF4 and CHOP in a variety
of cancer cells. The ER chaperones GRP78/BiP, glucose-
regulated protein 94 (GRP94, also known as gp96 or
HSP90b1) and GRP170 were also upregulated [42].
These studies were conducted in primary human tumor
cells or cell lines, and animal models with breast tumor,
hepatocellular carcinoma, gastric tumor, and esophageal
adenocarcinoma [42-52]. UPR and stress response in
general have also been implicated in participating in
inflammation-induced oncogenesis [53].
UPR is required for tumorigenesis. Animal study

demonstrated that XBP1 was required for tumor growth
in vivo. Xbp1-/- and Xbp1-knockdown cells did not form
tumors in mice even though their growth rate and
secretion of vascular endothelial growth factor (VEGF)
in response to in vitro hypoxia treatment were not
decreased [46]. ER stress can also induce anti-apoptotic
responses. The activation of glycogen synthase kinase 3b
(GSK 3b) leads to phosphorylation of p53, which
increases its degradation [54], therefore protects cancer
cells from p53 dependent apoptosis. In addition, NF�B
is activated during ER stress to induce anti-apoptotic
responses [55].
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Heat shock proteins were reported to assist cancer cell
adaptation to oncogenesis-associated stress either by
repairing damaged proteins (protein refolding) or by
degrading them. Heat shock proteins have also been
implicated in the control of cell growth, and in resis-
tance to various anticancer treatments that induce apop-
tosis. For example, HSP90 interacts with several key
proteins in promoting prostate cancer progression,
including wild-type and mutated AR, HER2, ErbB2, Src,
Abl, Raf and Akt [56,57]. GRP78/BiP, expressed at high
levels in a variety of tumors, confers drug resistance in
both proliferating and dormant cancer cells. Genetically
engineered animal model with reduced GRP78 level sig-
nificantly impedes tumor growth. Three major mechan-
isms were proposed for GRP78 mediated cancer
progression: enhancement of tumor cell proliferation,
protection against apoptosis, and promotion of tumor
angiogenesis [58-60].
ER stress has been implicated in different stages of

tumor development. The proposed mechanism is, dur-
ing early tumorigenesis and before angiogenesis occurs,
that activation of the UPR induces a G1 cell cycle arrest
and activation of p38, both of which promote a dormant
state. If the apoptotic signals are induced by the UPR
during this stage of tumor development, cancer cells
with mutated elements of the apoptotic pathway may
evade the alternative fate of death. ER stress also
induces anti-apoptotic NF-�B and inhibits p53-depen-
dent apoptotic signals. If the balance of early cancer
development tilts against cell death, ER stress can
further promote the aggressive growth of these cancer
cells by enhancing their angiogenic ability. One example
is the increased VEGF secretion through induction of
GRP170, a BiP-like protein that acts as a chaperone for
VEGF [37].

3. The unfolded protein response and its effect
on disease prognosis
GRP78 is a marker of UPR activation. An elevated
GRP78 level generally correlates with higher pathologic
grade, recurrence rate, and poor survival in patients
with breast, liver, prostate, colon, and gastric cancers;
though there are conflicting reports on lung cancer.
Neuroblastoma is an apparent exception with correla-
tion of GRP78 abundance with earlier stage and better
prognosis [59,61-64].
A retrospective cohort study of 127 stage II and III

breast cancer patients who were treated with Adriamy-
cin-based chemotherapy, showed association between
GRP78 positivity and shorter time to tumor recurrence
[59]. Another breast cancer study showed that the UPR
is activated in the majority of breast cancers and confers
resistance to chemotherapy and endocrine therapy.
Estrogen is known to stimulate UPR in vitro. UPR

activation interacts with estrogen response elements and
may regulate tumor growth [65].
Overexpression of GRP94 and GRP78 has been

observed more often in patients with poorly differen-
tiated lung cancer than in well or moderately differen-
tiated tumors [66]. According to a study on
adenocarcinoma of the esophagus, GRP78 and GRP94
mRNA were elevated in all tumors. Increased expression
of GRP78 may be responsible for controlling local
tumor growth in early tumor stages, while high expres-
sion of GRP78 and GRP94 in advanced stages was
believed to be dependent on other cellular stress reac-
tions such as glucose deprivation, hypoxia, or the hosts’
immune response [67]. Up-regulated expression of
GRP78 and GRP94 was also reported in gastric carci-
noma, which was associated with aggressive tumor
growth and poor prognosis [68].
Heterozygous GRP78 mice with half of wild-type GRP78

level are comparable to WT siblings in tumor growth and
development. The tumor progression was significantly
impeded in these mice as exemplified by a longer latency
period, reduced tumor size, and increased tumor apopto-
sis. Reduction of GRP78 in cancer xenograft animal model
inhibited tumor formation and growth [69].
XBP1s is a trans-activator of UPR signaling. High

XBP1s level is associated with increased tumor growth,
resistance to anti-estrogen therapy and poor patient sur-
vival [70,71]. In a B cell-specific XBP1s-overexpressing
transgenic mouse model, multiple myeloma developed
spontaneously, highlighting the importance of UPR in
tumorigenesis [72].

4. Therapeutic targeting of unfolded protein
response in cancer
The accumulation of unfolded proteins triggers the
UPR, which mediates the inhibition of general protein
synthesis but increases expression of several transcrip-
tion factors that activate genes encoding ER stress-indu-
cible molecular chaperones, transcription factors and
signal pathway proteins. Most normal cells are not
undergoing active “stress” response, and the UPR path-
ways remain in a quiescent state in these cells. This dis-
crepancy between tumor cells and normal cells offers
an advantage for the agents that target the UPR to
achieve the specificity in cancer therapy. The therapeu-
tic potential of targeting the UPR components in cancer
mainly involves two approaches: induction of accumula-
tion of misfolded protein in ER to overload the
unfolded protein response, and inhibition of UPR adap-
tive and antiapoptotic pathways to prevent cells from
adapting to stressful conditions leading to cell death. In
the following paragraphs, we will discuss some examples
of agents that are being developed as cancer therapeu-
tics (Table 1).
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4.1. Targeting induction of unfolded protein response
Proteasomal inhibitor
Proteasomal degradation of misfolded proteins retro-
translocated from the ER to the cytosol represents the
final step in ERAD. Bortezomib (Velcade, PS-341), a
boronic acid derivative, was the first proteosome inhibi-
tor to be developed successfully for anti-cancer therapy.
Although the drug probably has multiple mechanisms of

action, proteasomal inhibition causes an additional bur-
den of unfolded proteins in the ER. This explains the
high efficacy of bortezomib treatment against types of
cancer cells in which the ER is already predisposed with
a considerable protein load. In multiple myeloma cell
lines, Bortezomib rapidly induced components of the
proapoptotic UPR, including PERK, the ER stress-speci-
fic eIF-2a kinase, ATF4 and its proapoptotic target,

Table 1 Examples of UPR-targeted cancer drugs in development

Drug Classification/
Mechanism

Development
Stage

Disease Indication Reference

Bortezomib Proteasome
inhibitor

FDA approved Multiple myeloma, mantle-cell lymphoma San et al. [97]

NPI-0052
(salinosporamide A)

Irreversible
proteasome
inhibitor

Phase I clinical
trials

Multiple Myeloma, Advanced malignancies Chauhan et al. [98]

Carfilzomib (PR-171) Selective
proteasome
inhibitor

Phase I, II, III
clinical trials

Multiple Myeloma, Waldenstrom’s
Macroglobulinemia

O’Connor et al. [99] Lee
et al. [100]

PS-341 Selective
proteasome
inhibitor

Phase II Multiple Myeloma Richardson et al. [101]

CEP-18770 Proteasome
inhibitor

Phase I, II
clinical trials
and preclinical
studies

multiple myeloma, Non- Hodgkin’s lymphoma Piva et al. [102]

Tanespimycin (17-AAG, (17-
Allylamino-17-
demethoxygeldanamycin),
KOS-953)

HSP90 Inhibitor Phase I, II, III
clinical trials

Gastrointestinal stromal tumors, breast cancer,
gynecological, leukemia, lymphoma, melanoma,
prostate, renal, thyroid carcinoma, melanoma

Richardson et al. [103,104]
Heath et al. [105] Pacey et al.
[106]

Alvespimycin (KOS-1022,
17-DMAG)

HSP90 Inhibitor Phase I clinical
trials and
preclinical
studies

Acute myeloid leukemia, advanced carcinoma Kummar et al. [107] Lancet
et al. [108] Pamanathan et al.
[109] Zismanov et al. [110]

Retaspimycin (IPI-504) HSP90 Inhibitor Phase II clinical
trials

Gastrointestinal stromal tumors, nonsmall cell
lung, prostate

Hanson et al. [111]

PU-H71 HSP90 Inhibitor Preclinical
studies

Breast cancer, myeloma, myeloproliferative
disorder

Usmani et al. [84] Caldas-
Lopes et al. [112] Marubayashi
et al. [113]

SNX-2112 HSP-90 inhibitor Preclinical
studies

Gastric cancer Bachleitner-Hofmann,
et al. [114]

Eeyarestatin I (EerI) Inhibitor of ER-
associated
degradation
(ERAD)

Preclinical
studies

Cross et al. [115]

Versipelostatin GRP78 inhibitor Preclinical
studies

Matsuo et al. [87]

(-)-epigallocatechin gallate
(EGCG)

GRP78 inhibitor Preclinical
studies

Breast carcinoma Luo et al. [116]

Epidermal growth factor
(EGF)-SubA

GRP78-targeting
cytotoxin

Preclinical
murine animal
models

Prostate tumor Backer et al. [90]

Irestatins IRE1a inhibitor Preclinical
studies

Multiple Myeloma, Feldman et al. [117]

Delta(9)-
Tetrahydrocannabinol (THC)

Cannabinoid,
activates ER
stress and
autophagy

Phase I clinical
trial

Glioblastoma multiforme Guzmán et al. [118]
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CHOP. The amount of immunoglobulin subunits
retained within multiple myeloma cells correlated with
their sensitivity to proteasomal inhibitors [73].
Bortezomib treatment has a cytotoxic effect on various

other cancer types such as breast, colorectal, ovarian,
pancreatic, prostate, lung and oral cancer. It has been
approved by the FDA for the treatment of relapsed mul-
tiple myeloma, and recently for relapsed mantle cell
lymphoma. Combination chemotherapy regimens with
Bortezomib have been developed, leading to unprece-
dented high remission rates in the frontline treatment
or in the relapsed setting for multiple myeloma. The
combination of proteasome inhibition with novel tar-
geted therapies is an emerging field in oncology [74].
ERAD inhibitors
As a part of ER quality control mechanism, misfolded or
unassembled proteins are retained in the ER and subse-
quently degraded by ERAD. In the ERAD pathway,
molecular chaperones and lectin-like proteins are
involved in the identification of misfolded proteins. ER-
resident reductases cleave disulfide bonds in these pro-
teins to facilitate retrograde transport to the cytosol.
Furthermore, the AAA(+) adenosine triphosphatase
withdraws them from the retrotranslocation channel to
the cytosol where they are degraded by the ubiquitin/
proteasome system [75].
Defects in ERAD cause the accumulation of misfolded

proteins in the ER and thus trigger ER stress and UPR.
Eeyarestatin I (EerI), a chemical inhibitor that can block
ERAD, has been shown to have preferential cytotoxic
activity against cancer cells. EerI targets p97 (a cytosolic
ATPase involved in polyubiquitinated proteins transpor-
tation) complex to inhibit deubiquitination of p97-asso-
ciated ERAD substrates, which is required for the
degradation process [76].
PDI inhibitors
Protein disulfide isomerase (PDI) is one of the most
abundant ER proteins and maintains a sentinel func-
tion in organizing accurate protein folding. PDIs are
key protein folding catalysts activated during UPR [77].
Treatment of cells with O(2)-[2,4-dinitro-5-(N-methyl-
N-4-carboxyphenylamino)phenyl]1-(N,N- methyla-
mino)diazen-1-ium-1,2-diolate (PABA/NO) resulted in
a dose-dependent increase in intracellular nitric oxide
that caused S-glutathionylation and therefore inhibition
of PDI. PABA/NO activates the UPR and causes trans-
lational attenuation, phosphorylation and activation of
PERK, and its downstream effector eIF2a in human
leukemia (HL60) and ovarian cancer cells (SKOV3).
There was also evidence for Xbp1 mRNA splicing and
transcriptional activation of the ER resident chaper-
ones GRP78 and GRP94. Stimulating UPR may be
linked with the cytotoxic potential of PABA/NO in
cancer cells [78].

4.2. Targeting ER chaperones/heat shock proteins
HSP90 inhibitor
Under conditions of cellular stress, cells upregulate cha-
perones to prevent protein misfolding and degradation.
All three ER-membrane bound sensors are heavily reli-
ant on the protein chaperone functions of the HSP90
complex. The interaction between the heat shock pro-
tein family and the key proteins in the UPR pathway
may, in part, be mediated by their destabilizing effect on
UPR proteins and increased accumulation of misfolded
proteins.
Myeloma cell study demonstrated that HSP90 inhibi-

tors, 17AAG (17-allylamino-17-demethoxygeldanamycin)
and radicicol, similar to tunicamycin (TM) and thapsi-
gargin (TG) (known UPR activators), are capable of acti-
vating all three branches of the UPR. All drugs inhibited
proliferation and increased expression levels of the
molecular chaperones BiP and GRP94. Unlike TG and
TM, the HSP90 inhibitors activate a caspase-dependent
cell death pathway [79]. 17AAG can induce the forma-
tion of ‘intracellular inclusions’ in breast cancer cells. In
myeloma cells, these inclusions are comprised of aggre-
gations of misfolded immunoglobulin light chains and
analysis of protein samples taken from 17AAG-treated
cells suggest that exposure to HSP90 inhibitors alters
the expression of LC3 (microtubule-associated protein 1
light chain 3, a reliable marker for autophagosome for-
mation), consistent with autophagosome formation
[80-82].
Study demonstrated analogous effects of HSP90 inhi-

bitor, 17AAG in the colon cancer cell line HCT116 indi-
cating that they utilize the UPR in a similar manner to
multiple myeloma [41]. A recent phase II trial was done
using the HSP90 inhibitor, 17-AAG in fifteen melanoma
patients with measurable disease. 17-AAG was adminis-
tered i.v. once weekly for 6 weeks at 450 mg/m2. No
objective responses were observed. Western blot analysis
of tumor biopsies showed an increase in HSP70 and a
decrease in cyclin D1 expression in the posttreatment
biopsies. UPR components were not analyzed in this
study. More potent HSP90 inhibitor or a formulation
that are soluble and can be administered chronically for
a more prolonged suppression effect on UPR may be
necessary to be clinically beneficial [83]. A phase III
clinical trial is ongoing to evaluate the utility of 17-AAG
in multiple myeloma patients. There are also Phase II
clinical trails in breast cancer and non-small cell lung
carcinoma. PU-H71, a novel purine scaffold HSP90 inhi-
bitor, has shown interesting preclinical activity against
myeloma [84].
Grp78/BiP inhibitor
Levels of Grp78/BiP are commonly raised in solid
tumors and cancer cell lines [85]. Versipelostatin (VST)
and analogues, novel macrocyclic compound and
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GRP78/BiP inhibitor, showed promise in solid tumors
[86]. VST has demonstrated selective cytotoxicity to glu-
cose-deprived tumor cells by preventing the unfolded
protein response. It was shown to inhibit GRP78 induc-
tion and the expression of the UPR transactivators
XBP1 and ATF4. Eukaryotic initiation factor 4E-binding
protein 1 (4E-BP1), a negative regulator of eukaryotic
initiation factor 4E-mediated protein translation, plays a
role in the UPR-inhibitory action of VST. Aberrant acti-
vation of 4E-BP1 prevents induction of the GRP78 and
ATF4 [7,87-89].
Treatment of glioma cells with another GRP78 inhibi-

tor, epigallocatechin gallate (EGCG,) which targets the
ATP-binding domain of GRP78 and blocks its UPR pro-
tective function, sensitizes glioma cells to chemotherapy
agent temozolomide [85]. Additionally, an engineered
fusion protein, epidermal growth factor-SubA (EGF-
SubA), a chaperone-targeting cytotoxin, was reported to
be highly toxic to growing and confluent epidermal
growth factor receptor-expressing cancer cells, and its
cytotoxicity is thought to be mediated by rapid cleavage
of GRP78 [90].

4.3. Inhibiting IRE1a/XBP1 pathway
Inhibitors of the IRE1a/XBP1 pathway
Irestatin, an inhibitor of IRE1 and the unfolded protein
response, mediates inhibition of XBP1s transcription
activity. The inhibition of the IRE1 endonuclease
impairs the growth of malignant myeloma cells and
inhibits the survival of oxygen-starved tumor cells in
vitro and subcutaneous HT1080 tumor xenografts [91].
Trierixin, a new member of the triene-ansamycin

group, isolated from the fermentation broth of Strepto-
myces sp. AC654, was shown to be a novel inhibitor of
ER-stress induced cleavage of XBP1 [92]. Future work
needs to be done to evaluate its activity in cancer therapy.

4.4. Other agents affecting unfolded protein response
IPI-504, a soluble HSP90 inhibitor, can block the
unfolded protein response in multiple myeloma (MM)
cells. Partial UPR is constitutively activated in plasma
cell-derived MM cells. IPI-504 can potently inhibit this
pathway. IPI-504 achieves this by inactivating the tran-
scription factors XBP1 and ATF6. In addition, IPI-504
also blocks the tunicamycin-induced phosphorylation of
eIF2a by PERK. The inhibitory effect of IPI-504 on the
UPR parallels its cytotoxic and pro-apoptotic effects on
multiple myeloma cells [93].
As discussed above, autophagy is a cellular process in

which cytoplasmic materials are sequestered into autop-
hagosomes and delivered to lysosomes for degradation
or recycling. It can switch from cytoprotective role to a
form of programmed cell death with persistent ER
stress. Tetrahydrocannabinol (THC), the main active

component of marijuana, induces human glioma cell
death through stimulation of autophagy. THC induced
autophagy is associated with an increased phosphoryla-
tion of eIF2a [94].
Resveratrol (RES), a natural plant polyphenol, is an

effective inducer of cell cycle arrest and apoptosis in a
variety of carcinoma cell types. In addition, RES has
been reported to inhibit tumorigenesis in several animal
models. RES causes cell cycle arrest and proliferation
inhibition via induction of UPR in human leukemia
K562 cell line [95].
The phytoestrogen zearalenone (ZEA), one of the

most active naturally occurring estrogenic compounds
in food and beverages, has also been shown recently to
induce human leukemic cell apoptosis via endoplasmic
stress and mitochondrial pathway [96].

5. Perspectives
We have highlighted the importance of UPR in tumori-
genesis and provided an overview on the potential strat-
egy in perturbing UPR in cancer treatment. URP
promotes the ability of cancer cells to adapt to and sur-
vive the hostile microenvironment through activation of
stress-response pathways and upregulation of chaper-
ones. Targeting URP pathway represents a novel tar-
geted anti-cancer approach with initial successes in
clinical studies. Further understanding of the pathway
should provide additional therapeutic opportunities.
Clearly, UPR and the associated molecular compo-

nents are emerging as important potential targets for
drugs that may be used in the treatment of cancer in
which protein-folding and protein quality control play a
key role in disease pathology. This area looks set to be a
very exciting one in years to come. It is worthwhile to
point out that protein quality control is fundamentally
important for life. Thus targeted therapy towards UPR
or other arms of protein quality control is by no means
cancer-specific and toxicity-free. Of particular impor-
tance is the lack of understanding of the fundamental
roles and mechanisms of protein quality control in
development, organ function, the evolution and fitness
of organism. Thus, as more pharmacological agents are
being developed clinically, attention needs to be paid to
the understanding of the basic mechanism of the regula-
tion of unfolded protein response and to the discovery
of important new players in the protein quality control
for disease target.
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