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Abstract

and NPM1 status.

with NPM1 and FLT3-ITD mutations, respectively.

Background: MicroRNA have a central role in normal haematopoiesis and are deregulated in acute myeloid
leukaemia (AML). The purpose of the study was to investigate by qRT-PCR the expression of miRNAs involved in
myeloid differentiation (miR-424, miR-155, miR-223, miR-17-5p) in 48 patients with cytogenetically normal AML well
characterized for NPM1 and/or FLT3 mutations. Three types of normalization were used for the data validation.

Findings: We found that miR-424 was down-modulated in AMLs with NPMTmutA regardless of FLT3 status. On the
contrary, miR-155 showed up-regulation in patients with FLT3 internal tandem duplications (ITD) with or without
NPM1 mutations. No significant associations were found by analyzing miR-223 and miR-17-5p in relation to FLT3

Conclusions: This study supports the view that major genetic subsets of CN-AML are associated with distinct
miRNA signatures and suggests that miR-424 and miR-155 deregulation is involved in the pathogenesis of CN-AML
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Introduction
Acute myeloid leukaemia (AML) is a heterogeneous dis-
ease with recurrent cytogenetic alterations detected in
approximately 55% of patients, while no karyotypically
visible lesions are detectable in the remaining 45% of
cases. This latter subset, otherwise referred to as cyto-
genetic normal AML (CN-AML), is characterized by a
variety of subtle mutations affecting several genes. Of
these, nucleophosmin (NPM1) alterations account for
up to 60% of CN-AMLs and fms-related tyrosine kinase
3 (FLT3) lesions are detected in almost 30% of patients
[1,2]. Abnormalities in these genes are not mutually ex-
clusive as they may partially overlap such that four main
categories may be identified, ie. FLT3wt/NPMlwt,
FLT3wt/NPM1+, FLT3+/NPM1wt, FLT3+/NPMI1 +.
MicroRNAs (miRNAs) are endogenous single-stranded
non-coding RNA molecules of 19-24 nucleotides that
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control gene expression mainly at the post-transcriptional
level by binding the 3'untraslated region (UTR) of mes-
senger RNAs to regulate their stability and translation.
MiRNAs have emerged as key regulators of normal haem-
atopoiesis and profiling studies have shown altered miRNA
expression in leukaemias including AML suggesting their
role in leukaemogenesis [3]. However, among the large-
scale miRNA profiling studies on AML only few miRNAs
were commonly deregulated. Differences in the reported
signatures can be attributed to the analysis of distinct cyto-
genetic and molecular subgroups and to the type of used
controls [3,4].

In the present study we focused on CN-AML subsets
well characterized for NPM1 and FLT3 status and
restricted our analysis to 4 miRNAs known to be
involved in normal granulocytic and/or monocytic differ-
entiation (miR-424, miR-155, miR-223, miR-17-5p) [5].
A number of normal controls (CD34+ progenitors, ma-
ture granulocytes and monocytes) were also analyzed in
order to elucidate whether the expression patterns of the
above miRNAs are associated to myeloid differentiation.
We found that deregulated expression of miR-424 and
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miR-155 varies significantly according to NPMIlmutA
and FLT3-ITD mutational status.

Design and methods

Fresh primary blast cells were obtained from bone marrow
(BM) aspirates of adult patients with newly diagnosed
AML admitted at the Department of Biopathology of Tor
Vergata University, Rome. All patients provided written
informed consent in accordance with the Declaration of
Helsinki. BM aspirates with less of 70% of blast infiltration
at morphological analysis were discarded. Samples were
further enriched for mononuclear cells by Lympholyte
Cell Separation Media (Cederlane). FLT3 and NPM1 mu-
tational status was investigated by a multiplex PCR
strategy developed in our laboratory and described else-
where [6].

Samples with FLT3-TKD and nonA type NPM1 muta-
tions were excluded from the study. In order to decrease
the level of heterogeneity, only type A mutations for
NPM1 and internal tandem duplications (ITD) muta-
tions for FLT3 were included (herein referred to as
NPM1+ and FLT3+, respectively). A total of 48 patient
samples were selected to identified 4 groups of 12 cases
each for the following subsets: FLT3wt/NPMlwt,
FLT3wt/NPM1+, FLT3+/NPM1wt, FLT3+/NPM1 +.

Mononuclear cells from BM of healthy control sub-
jects were purified by Lympholyte. CD34+ cells were
obtained from cord blood samples and purified by posi-
tive selection using MACS immunomagnetic separation
system (Miltenyi Biotec). Mature cells were purified
from whole peripheral blood of healthy subjects. Granu-
locytes were recovered and purified by Percoll whereas
cells retrieved from the Lympholyte ring were plated
and monocytes separated by plastic adherence. The pur-
ity of granulocytic (90-95% CD15+, CD16+) and mono-
cytic (78-85% CD14+, CD16-) cell fractions was assessed
by flow cytometry.

Total RNA was isolated from fresh cells using Trizol
reagent (Invitrogen). All RNA samples were checked for
RNA quality by gel electrophoresis. Quantitative real-
time PCR (qRT-PCR) of miRNAs was carried out using
TagMan MicroRNA Reverse Transcription Kit and the
Tagman MicroRNA primer/probe Assays (Applied Bio-
systems). Reverse Transcription (RT) reactions were per-
formed using 10 ng of total RNA as detected with
NanoDrop ND-1000 spectrophotometer. qRT-PCR reac-
tions, were performed on ABI 7900 HT Sequence Detec-
tion System (SDS; Applied Biosystems) and performed
in triplicate. The 224" relative quantification method
was used to calculate relative miRNA expression. A
small nuclear RNAs (RNU6B) and a small nucleolar
(RNU54) commonly employed in miRNA studies were
used for internal normalization. The mean value of a
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normal BM RNA was used as a calibrator in all plates
and for all miRNAs.

Group wise comparisons of the distributions of experi-
mental results were performed using unpaired Student
t test. All tests were two-tailed, type 3. Results were con-
sidered significant for p values equal or below 0.05.

Results and discussion

A significant down-modulation of miR-424 was observed in
CN-AML carrying the NPM1 mutation type A (NPM1+).
The down-modulation of miR-424 was observed when
qRT-PCR data were normalized against both RNU6B
(Figure 1A) and RNU54 (Figure 1B). RNU54 has been
indicated as the most stable reference gene for miRNAs
expression studies in leukaemia samples [7]. However,
more recently the use of non-coding RNAs (ncRNA) as
internal controls in qRT-PCR reactions has been ques-
tioned because they may be deregulated in cancer [8]. In
our study, loading of an identical amount (10 ng) of total
RNA in the RT reaction (that is given as quantitative by
the manufacturer) allowed to evaluate the raw Ct data
results for comparisons. The expression of miR-424,
related to the total RNA for each sample, was significantly
down-modulated in NPM1+ CN-AML (Figure 1C) also in
the absence of normalization with a reference gene. As
shown in the three panels of Figure 1, miR-424 reduction
in NPM1+ cases was not influenced by FLT3-ITD status
(FLT3+).

When NPMI1+ cases were compared with normal
haematopoietic cells we observed a significant down-
regulation of miR-424 compared to both differentiated
and undifferentiated blood cells, suggesting that such
low expression is not related to blast cell immaturity but
rather to an aberrant alteration strictly correlated to the
NPM1+ expression (Figure 1D).

MiR-424 has been recently classified in a large family
cluster together with miR-15/miR-16. Members in this
cluster are known to act as tumor suppressors as they
can inhibit cell proliferation and promote apoptosis of
cancer cells both in vitro and in vivo [9]. Moreover, miR-
424 is known to regulate human myeloid differentiation,
at least in part, by blocking translation of the transcrip-
tion nuclear factor I-A (NFI-A) [10,11]. Our data, show-
ing a reduced miR-424 expression in CN-AML with
NPM1+, further support a potential role of this miRNA
in leukaemogenesis.

MiR-155 is one of the most studied miRNAs. Sus-
tained expression of miR-155 in haematopoietic stem
cells caused myeloproliferative disorders [12]. Moreover,
a large number of genes implicated in haematopoietic
development and diseases can be directly repressed by
miR-155 [13].

As shown in Figure 2A and Figure 2B, we found that
miR-155 expression was significantly higher in CN-AML



Faraoni et al. Journal of Hematology & Oncology 2012, 5:26
http://www.jhoonline.org/content/5/1/26

Page 3 of 5

miR-424
A ¢ B s
. P<0,02 P<0,02 . P<0,05 P<0,02
8 — by —
23 24 .
3 ° g °
s H ° 53 -
82 a b
< d ° 4
< S2 ® ]
x x
g ° — $ [ ]
>1 @
£ v e H 21 ° H o
= L 2 ° ° 5 3
[ [ ] f [ [ ‘ ':'
0 . "' 0 0 ) °
samplen®= 12 11 12 12 6 5 3 samplen®= 12 12 11 12 6 5 3
& § & o & & ¥ IR S < & S
& L & 2 &L S 0
%Q Q )X(\, Sog 04*00 & %q Q x\, ’\\soo o(go @
Q@N’ Q;\'bQ < qé\’ &£ <
< <
C P<0,05 P<0,01 D The two-tailed p value with respect to normal samples
» — — - -
Normalizedwith| |\ \oyige  FiT3e NPMLe/FLT3H
= g RNU6B
% Granulocytes ns 0,0145 ns 0,0112
O R Monocytes ns 0,0467 ns 0,0110
s CD34+ ns 00497  ns 0,0429
L 33
3
-F?, # normalized with
v t NPM1 FLT3 NPM1+/FLT3+
£® RNUS4 v i * /
% Granulocytes | 0,0011 0,0010 0,0012 0,0219
Monocytes ns 0,0358 ns 0,0219
3 . CD34+ ns__ 0,0089 ns 0,0497
x x
& Q@N 3 <
$ < 8
%Qé

Figure 1 MiR-424 expression in CN-AML and in normal hematopoietic cells. MiRNA expression was measured by gRT-PCR using total RNA
extracted from fresh samples. CN-AML were subdivided in 4 groups: wt=FLT3wt and NPM1wt; NPM1+=FLT3wt and NPM1mutA; FLT3+=FLT3-TD
and NPM1wt; NPM1+/FLT3+=FLT3-ITD and NPM1mutA. Calibration was obtained with respect to normal BM. (A) Relative expression of miR-424
obtained normalizing with respect to RNU6B. (B) Relative expression of miR-424 obtained normalizing with respect to RNU54. (C) Mean threshold
cycles (Ct) of miR-424 in CN-AML was obtained by gRT-PCR. The ordinate scale is represented with the values in reverse order. The error bar
indicates the+SE. (D) p values of each single group of CN-AML compared to normal samples. ns=not significant.

as compared to normal haematopoietic cells. In particu-
lar, miR-155 increased expression was associated with
FLT3+ mutations in both NPM1wt and NPM1+ samples.
However, miR-155 up-regulation was not statistically dif-
ferent when comparing FLT3wt and FLT3+ cases within
the NPM1+ groups (Figure 2A and Figure 2B). This
finding could rely on normalization over ncRNAs, as
previously suggested by the group of Gee et al. [8]. In-
deed, evaluation of Ct values showed a statistically sig-
nificant miR-155 up-regulation in the FLT3+ group
regardless of NPM1 status (Figure 2C). It is likely that
greater expression differences are not affected by
normalization, as in the case of miR-424, in fact, all
types of normalization that we showed were equivalent.
To increase the number of cases for comparisons we
also analyzed separately FLT3wt vs FLT3+ (Figure 2D)
and NPM1wt vs NPM1+ (Figure 2E) CN-AML. The
mean value of miR-155 from RNU6B and RNU54
normalization was used to reduce the bias. A significant
up-regulation of miR-155 in FLT3+ samples was
detected. The same analysis carried out for miR-155

expression values in CN-AML with respect to NPM1
status disclosed no significant differences.

The up-regulation of miR-155 in AMLs carrying
FLT3-ITD is in line with reported findings in CN-AML
[14,15]. However, it was also shown by others that miR-
155 is slightly up-regulated in CN-AML with NPM1+
[16]. These apparently discrepant data might be better
interpreted when considering that, in the study by Ross
et al. the NPM1+ subset was considerably enriched in
FLT3+ cases (87% of NPM1+ patients). In the present
series, comparing the same number of samples for each
molecular group we overcame this selection bias, clearly
showing that up-regulation of miR-155 is strictly corre-
lated to FLT3+ and not to NPM1+ status.

MiR-223 and miR-17-5p are two additional miRNAs
involved in myeloid differentiation [17,18]. By investigat-
ing expression levels of these miRNAs in patients with
CN-AML, we found no significant association with
NPM1 or FLT3 mutation status (data not shown).

In conclusion, we show here for the first time a down-
regulated expression of miR-424 in CN-AML and its
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Figure 2 MiR-155 expression in CN-AML and in human hematopoietic cells. (A) Relative expression of miR-155 was obtained normalizing
with respect to RNUEB. (B) Relative expression of miR-155 was obtained normalizing with respect to RNU54. (C) Mean threshold cycles (Ct) of
miR-155 were obtained by gRT-PCR in CN-AML. The ordinate scale is represented with the values in reverse order. The error bar indicates
the + SE. (D and E) Relative expression of miR-155 was obtained by the geometric mean of RNU6B and RNU54 normalization values. (D) CN-AML
are subdivided in 2 groups: FLT3wt and FLT3+, each group contains half samples with NPM1wt and half with NPM1+. A significant up-regulation
of miR-155 was seen in FLT3+ (ITD-positive) leukemia samples. (E) CN-AML are subdivided in 2 groups: NPM1wt and NPM1+, each group
contains half samples with FLT3wt and half with FLT3+. No difference in the expression of miR-155 was observed.
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association with the pathological expression of NPM1+,
while we confirm the association of miR-155 up-
regulation in CN-AMLs carrying the FLT3-ITD. The
classification of miR-155 as an oncomir [19] and the
prognostic value of FLT3-ITD in leukemia [1,20] make
this association of clinical relevance. These results may
foster investigation on the leukaemogenic role of miR-
424/miR-155 and on the mechanistic links between key
gene mutations and miRNA deregulation in CN-AML.
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