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Abstract

Despite the success of imatinib and other tyrosine kinase inhibitors (TKIs), chronic myeloid leukemia (CML) remains
largely incurable, and a number of CML patients die due to Abl mutation-related drug resistance and blast crisis. The
aim of this study was to evaluate proliferation inhibition and apoptosis induction by down-regulating PPP2R5C gene
expression in the imatinib-sensitive and imatinib-resistant CML cell lines K562, K562R (imatinib resistant without an Ab/
gene mutation), 32D-Bcr-Abl WT (imatinib-sensitive murine CML cell line with a wild type Abl gene) and 32D-Bcr-Abl
T315I (imatinib resistant with a T3151 Abl gene mutation) and primary cells from CML patients by RNA interference.
PPP2R5C siRNAs numbered 799 and 991 were obtained by chemosynthesis. Non-silencing siRNA scrambled control
(SO)-treated, mock-transfected, and untreated cells were used as controls. The PPP2R5C mRNA and protein expression
levels in treated CML cells were analyzed by quantitative real-time PCR and Western blotting, and in vitro cell
proliferation was assayed with the cell counting kit-8 method. The morphology and percentage of apoptosis were
revealed by Hoechst 33258 staining and flow cytometry (FCM). The results demonstrated that both siRNAs had the best
silencing results after nucleofection in all four cell lines and primary cells. A reduction in PPP2R5C mRNA and protein
levels was observed in the treated cells. The proliferation rate of the PPP2R5C-siRNA-treated CML cell lines was
significantly decreased at 72 h, and apoptosis was significantly increased. Significantly higher proliferation inhibition
and apoptosis induction were found in K562R cells treated with PPP2R5C-siIRNA799 than K562 cells. In conclusion, the
suppression of PPP2R5C by RNA interference could inhibit proliferation and effectively induce apoptosis in CML cells
that were either imatinib sensitive or resistant. Down-regulating PPP2R5C gene expression might be considered as a
new therapeutic target strategy for CML, particularly for imatinib-resistant CML.
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Introduction

Chronic myeloid leukemia (CML) is a hematopoietic
stem cell disorder that occurs because of t(9;22)(q34;
ql1) translocations. CML prognoses markedly improved
after the introduction of Abl tyrosine kinase inhibitors
(TKIs). Since its approval in 2001 for frontline CML
management, imatinib has proven to be effective in
achieving high remission rates and improving prognosis.
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However, up to 33% of patients will not achieve an opti-
mal response. Most patients with CML treated with
imatinib will relapse if treatment is withdrawn, and
numerous CML patients die due to Ab! mutation-related
drug resistance and blast crisis. These circumstances
have led researchers to develop a new generation of
TKIs. Although second-generation TKIs, such as
AMN107, appear to improve the treatment of CML,
TKI resistance and relapse also frequently occur in pa-
tients. de novo and secondary TKI resistance are signifi-
cant problems for CML [1-5]. Therefore, how to treat
patients with CML who are resistant to Bcr-Abl tyro-
sine kinase inhibitors is an important and urgent issue
for clinical hematology.
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Moreover, TKIs have significant off-target inhibitory
effects on multiple kinases. TKIs, through the off-target
PPP2R5Cinhibition of kinases important for B-cell sig-
naling, reduce memory B-cell frequency and induce sig-
nificant impairment of B-cell responses in CML [6].
TKIs also impair T cell function e.g., imatinib impairs
CD8+ T cells specifically directed against leukemia-
associated antigen function [7].

Further advances in the treatment of CML may re-
quire the development of novel agents such as siRNAs
that target specific CMLs or specific immunotherapies
without significant toxicity that may have cooperative ef-
fects with TKIs [8,9]. siRNAs targeting the Bcr-Abl and
multidrug-resistance (MDR-1) genes were used in an
anti-CML study and demonstrated that a breakpoint-
specific short-interfering RNA (siRNA) was capable of
decreasing Bcr-Abl protein expression and antagonizing
Bcer-Abl-induced biochemical activities [10-12].

Synthetic small interfering RNAs (siRNAs) are promising
gene-targeting agents that have shown great potential, par-
ticularly for development as specific anti-leukemia treatment
[13,14]. A combination of c-raf and bcl-2 siRNAs induced
apoptosis in HL-60, U937, and THP cell lines and increased
chemosensitivity to etoposide and daunorubicin [15].

Recently, we were the first to show that a higher
PPP2R5C expression level is found in peripheral blood
mononuclear cells from chronic phase CML patients,
and PPP2R5C expression is significantly decreased in
patients who achieved CR [16]. PPP2R5C is a regula-
tory B subunit of protein phosphatase 2A (PP2A),
which is one of the main serine-threonine phospha-
tases in mammalian cells, and it maintains cell homeo-
stasis by counteracting most of the kinase-driven
intracellular signaling pathways [17]. The PPP2R5C
gene encodes five different spliced variants including
B56y1, B56y2, B56y3, B56y5, B56y6, and B56y4, which
is only found in mice. The locus for the functional
PPP2R5C gene is at 14q32.2, and a nonfunctional
B56y1 pseudogene for PPP2R5C is located at 3p21.3
[16-18]. PPP2R5C plays a crucial role in cell prolifera-
tion, differentiation, and transformation based on its
induction of the dephosphorylation of p53 at various
residues [19]. It has been reported that the dynamic
nuclear distribution of the B56y3 regulatory subunit
controls nuclear PP2A activity and may be responsible
for the tumor-suppressive function of PP2A [18]. Re-
cently, alterations in the PPP2RSC expression pattern
that are associated with malignant transformation have
been characterized in lung cancer, and the PPP2R5C mu-
tation F395C disrupts the B56y—p53 interaction [20].

To confirm the role of PPP2R5C in the proliferation of
CML, we analyzed the effect of down-regulating PPP2R5C
gene expression in imatinib-sensitive and imatinib-resistant
chronic myeloid leukemia (CML) cell lines and primary
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cells from CML patients by RNA interference and con-
firmed the proliferation inhibition and apoptosis induction
of PPP2R5C in CML cells.

Methods

Cell culture

Imatinib-sensitive K562 cells (Institutes for Biological Sci-
ences Cell Resource Center, Chinese Academy of Sciences,
Shanghai, China) carrying 210 kDa wild-type Bcr-Abl were
grown in Roswell Park Memorial Institute (RPMI) 1640
medium (Gibco-BRL, Grand Island, NY, USA) with 10%
fetal calf serum (FCS) (Sijiging Co., Hangzhou, China) and
maintained in a humidified incubator at 37°C and 5%
CO,. Imatinib-resistant K562R cells (provided by Prof.
Jingxuan Pan, Department of Pathophysiology, Zhongshan
School of Medicine, Sun Yat-sen University, Guangzhou,
China) carrying 210 kDa wild-type Bcr-Abl were routinely
maintained in the same medium including 1 pM imatinib.
32D-Ber-Abl WT, an imatinib-sensitive murine CML
cell line carrying a wild type Abl gene, and 32D-Bcr-Abl
T315], an imatinib-resistant CML cell line carrying a
T315I mutation in Bcr-Abl (provided by Prof. Lin Qiu,
Harbin Institute of Hematolgy & Oncology, Harbin,
China), were established and maintained in RPMI 1640
medium with 10% FCS as previously described [21]. In
addition, PBMCs from two patients with newly diagnosed,
untreated chronic phase CML (case 1: female, 18 years
old, PB white blood cell number (WBC): 108.6 x 10°/L, PB
blast + promyelocyts 10%, case 2: female, 30 years old,
WBC: 208.53 x 10°/L, PB blast + promyelocytes 3%), which
were obtained with consent (the procedures were con-
ducted according to the guidelines of the Medical Ethics
commiittee of the health bureau of Guangdong Province of
China), were grown in RPMI 1640 with 15% FCS. All
experiments were performed using cells in the exponen-
tial growth phase.

siRNA design and synthesis

The siRNAs PPP2R5C-siRNA799 (Chinese patent number:
ZL 201110340411.1) and PPP2R5C-siRNA991 (Chinese
patent number: ZL 201110337837.1), which target domains
in the sixth and between the eighth and ninth exons in the
PPP2R5C gene (ACCESSION NM_178587), respectively,
and a non-silencing siRNA scrambled control (SC) were
designed with online software (http://www.invitrogen.com)
and synthesized by Invitrogen (Carlsbad, CA, USA) [22].
An Alexa Red Oligo (Invitrogen) was used to measure
transfection efficiency.

Nucleofection

Cells were collected by centrifugation and resuspended
at 2.5 x 10° cells/100 pl for the CML cell lines and pri-
mary CML cells in the appropriate Nucleofector™ kit V
solution (Amaxa Biosystems, Cologne, Germany) [23-26].
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Malignant CML cells were nucleofected with 3 pg of the
PPP2R5C siRNAs or a non-silencing scrambled control
(SC) siRNA using the T-003 program of the Nucleofection
Device II (Amaxa Biosystems). Mock-transfected cells
nucleofected without siRNA were used as a negative con-
trol. After nucleofection, the cells were immediately mixed
with 500 pl of pre-warmed culture medium and transferred
into culture plates. The treated cells were incubated at 37°C
for 3 days for cell proliferation, apoptosis and microarray
analyses. Three independent experiments for the cell lines
were performed every 24 h.

RNA isolation, reverse transcription, real-time qRT-PCR
Total RNA was isolated from different samples (CML
cell lines and primary CML cells) using TRIzol (Invitrogen).
cDNA for qRT-PCR was synthesized using the Super-
script II RNaseH Reverse Transcriptase Kit (Invitrogen).
The expression level of PPP2R5C and the 52-MG refer-
ence gene was determined by SYBR Green I real-time
PCR. PCR was performed as previously described [16].
The sequences of the primers used in qRT-PCR are as
follows: PPP2R5C: 5'-GTAATAAAGCGGGCAGCAG
G-3’ (forward) and 5'-CAAAGTCAAAGAGGACGCA
ACA-3" (reverse) and S,M: 5'-CAGCAAGGAC TGGT
CTTTCTAT-3" (forward) and 5'-GCGGCATCTTCAA
ACCTC-3’ (reverse) [22].

Immunoblotting

A total of 2 x 10° K562 and K562R cells were collected 72
h after nucleofection, and proteins were extracted using a
RIPA total protein lysate kit (Shennengbocai, Shanghai,
China). Protein quantification was performed according to
conventional methods. Protein samples (30 pg) were
added to SDS loading buffer, heated at 100°C for 5 min,
and then electrophoresed in 10% SDS-polyacrylamide gels
at 100 V for 30 min followed by 120 V for 50 min (Bio-
Rad). The separated proteins were transferred onto nitro-
cellulose membranes (Invitrogen) using a tank system
(Bio-Rad). The membranes were blocked with 3% blocking
reagent for 2 h and then incubated with polyclonal rabbit
anti-human PPP2R5C antibody (1:200; Sigma, USA) or
mouse anti-actin antibody (1:1000; Lianke, Hangzhou,
China) followed by incubation with goat anti-rabbit or
donkey anti-mouse IgG antibodies, respectively (Jackson
ImmunoResarch, USA; Lianke, Hangzhou, China). Immu-
noreactive proteins were visualized by chemiluminescence
(Lianke, Hangzhou, China), and images were obtained
with a Vilber Lourmat system (UVI, UK). The expression
level of PPP2R5C was calculated with image quantitation
analysis software using f5-actin as a reference gene [25,26].

Cell proliferation assays
The proliferation of CML cell lines and primary CML cells
was indirectly assayed using the CCK-8 kit (Dojindo,
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Japan), which stains living cells. After transfection, ap-
proximately 5 x 10* cells in 100 pL, including control
cells, were incubated in triplicate in 96-well plates.
At 24, 48, and 72 h, the CCK-8 reagent (10 pL) was
added to each well, and the cells were incubated at 37°C
for 6 h. The optical density at 450 nm was measured
using an automatic microplate reader (Synergy4; Bio-Tek,
Winooski, VT, USA) [23].

Apoptosis analysis

At 72 h post-transfection, 5 x 10* of the CML cell lines
and primary CML cells were fixed, washed twice with
PBS, and stained with Hoechst 33258 staining solution
according to the manufacturer’s instructions (Beyotime,
Haimen, China). Changes in the nuclei of cells after
Hoechst 33258 staining were observed with a confocal
laser-scanning microscope (LSM 510 META DuoScan;
Carl Zeiss, Germany). The cell lines (5 x 10°) were col-
lected 48 and 72 h after transfection and then prepared
with FITC-labeled anti-Annexin-V (BD Pharmingen, San
Diego, CA, USA) and propidium iodide (Kaiji, Nanjing,
China) according to the manufacturers’ protocol and mea-
sured by flow cytometry (Beckman Coulter, Fullerton, CA,
USA). The results were analyzed using Windows MDI 2.9
software [23].

Statistical analysis

Statistical analyses were performed with paired t-tests
and one-way ANOVA using SPSS 11.5 statistical soft-
ware. Kruskal-Wallis analysis was used to analyze the
PPP2R5C mRNA levels in different samples. Differences
were considered statistically significant at p < 0.05.

Results

PPP2R5C-specific siRNAs suppress PPP2R5C expression in
CML cells

We first verified transfection efficiency with Alexa Red
Oligo-transfected K562, K562R, 32D-Bcr-Abl WT and
32D-Bcr-Abl T3151 cell lines, which was 86.38 + 6.82%
(Figure 1), 40.52+4.48% (Figure 2), 50.97 +4.36%
(Additional file 1: Figure S1) and 63.26 + 3.75% (Additional
file 2: Figure S2), respectively, and Alexa Red Oligo-
transfected primary CML cells, which was only 15.6%.

To determine the suppression of PPP2R5C expression
in CML cells after siRNA treatment, PPP2R5C mRNA
expression was analyzed by qRT-PCR 24, 48, and 72 h
after nucleofection, while the suppression of PPP2R5C
protein expression in K562 and K562R cells was analyzed
by immunoblotting 72 h after nucleofection. PPP2R5C-
siRNA799 and PPP2R5C-siRNA991 were measured from
24 to 72 h post-transfection. The PPP2R5C mRNA level in
K562 cells was 7.00 + 0.83 and 6.44 + 0.87% at 24 h with
PPP2R5C-siRNA799 and PPP2RSC-siRNA991 transfec-
tion, respectively, while the SC level was 26.11 + 2.69%
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Figure 1 Inhibition of PPP2R5C expression in K562 cells by RNA interference. Detection of the transfection efficiencies in K562 cells by
fluorescence microscopy (Bar =50 um) and flow cytometry (Positive cells are shown as the P2 domain). A and B: Alexa Red Oligo-transfected
K562 cells (fluorescence microscope); C: Alexa Red Oligo-transfected K562 cells (FCM); D and E: Mock-transfected K562 cells (fluorescence
microscope); F: Mock-transfected K562 cells (FCM). G: Suppression of PPP2R5C mRNA expression as measured by gRT-PCR after nucleofection
with PPP2R5C siRNAs (3 pg). *, p < 0.05 compared with expression in cells treated with non-silencing control RNA. H: PPP2R5C protein level in
K562 cells 72 h after nucleofection with PPP2R5C siRNAs (3 ug). Non-treated cells (nc), mock-transfected (mock), and scrambled control
non-silencing RNA (SC)-treated cells were used as controls.
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Figure 2 Inhibition of PPP2R5C expression in K562R cells by RNA interference. Detection of the transfection efficiencies in K562R cells by
fluorescence microscopy (Bar =50 pum) and flow cytometry (positive cells are shown in the P2 domain). A and B: Alexa Red Oligo-transfected
K562R cells (fluorescence microscope); C: Alexa Red Oligo-transfected K562R cells (FCM); D and E: Mock-transfected K562R cells (fluorescence
microscope); F: Mock-transfected K562R cells (FCM). G: Suppression of PPP2R5C mRNA expression as measured by gRT-PCR after nucleofection
with PPP2R5C siRNAs (3 ug). *, p < 0.05 compared with expression in cells treated with control non-silencing RNA. H: PPP2R5C protein level in
K562R cells 72 h after nucleofection with PPP2R5C siRNAs (3 pg). Non-treated cells (nc), mock-transfected (mock), and scrambled non-silencing
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Figure 3 Biological consequences of PPP2R5C silencing. (A) Absorbance of PPP2R5C-siRNA799- and PPP2R5C-siRNA991-treated and control
cells (K562) at different time points as measured by the CCK-8 method. The results represent mean values of three independent experiments. ¥,
p <0.001 compared with the scrambled non-silencing control RNA-treated cells. (B) Induction of apoptosis by PPP2R5C suppression in K562 cells
72 h after nucleofection with PPP2R5C-siRNA (3 ug). **, p = 0.004 compared with non-silencing control RNA-treated cells. (C) Hoechst
33258-stained K562 nuclei 72 h after transfection in the PPP2R5C siRNA groups were mostly densely stained, demonstrating a white color, while
the normal nuclei in the control groups were light blue under a fluorescence microscope. Bar =50 um.

(Figurel). The PPP2RS5C mRNA level in K562R cells
was 5.06 + 1.47 and 6.23 + 1.19% at 24 h with PPP2R5C-
siRNA799 and PPP2R5C-siRNA991 transfection, res-
pectively, while the SC level was 21.37 + 1.17% (Figure 2).
Similar inhibition results were found for the protein
levels. The PPP2R5C protein expression level was re-
duced by 55.26 and 52.58% in PPP2R5C-siRNA799- and
PPP2R5C-siRNA991-treated K562 cells, respectively,
compared with the control level at 72 h (Figure 1), while
the reduction in treated K562R cells was 53.81 and
50.21%, respectively (Figure 2).

We also analyzed the suppression effect of both
siRNAs in the murine CML cell lines 32D-Bcr-Abl WT
and 32D-Bcr-Abl T3151. The PPP2R5C mRNA level in
32D-Bcer-Abl WT cells was 5.71 +2.45 and 8.88 + 1.39%
at 24 h with PPP2R5C-siRNA799 and PPP2R5C-siR-
NA991, respectively, while the SC level was 20.25 +
1.37% (Additional file 1: Figure S1). The PPP2R5C
mRNA level in 32D-Bcr-Abl T3151 cells was 3.14 + 2.04

and 3.18 + 1.13% at 24 h with PPP2R5C-siRNA799 and
PPP2R5C-siRNA991, respectively, while the SC level was
12.04 + 1.11% (Additional file 2: Figure S2). A reduction
in the PPP2R5C mRNA levels was also observed at 48-
72 h. The PPP2R5C mRNA level in primary leukemic
CML cells was decreased 4.71 and 6.09% at 24 h with
PPP2R5C-siRNA799 and PPP2R5C-siRNA991, respec-
tively, compared with the SC (14.01%). A reduction in
the PPP2R5C mRNA level was also observed at 48-72 h
(Additional file 3: Figure S3). Although the 32D-Bcr-Abl
WT and 32D-Bcr-Abl T315I1 cells are originally from a
mouse, the PPP2R5C siRNAs target the same sequences
in these cells due to homology of the mouse PPP2R5C
and that of humans according to data from GenBank.

PPP2R5C suppression inhibits proliferation and induces
apoptosis in CML cells

The proliferation rate of K562 and K562R cells transfected
with PPP2R5C-siRNA799 and PPP2RS5C-siRNA991 was
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significantly decreased at 48-72 h compared with controls
(p<0.0001) (Figures 3 and 4). The proliferation rate of
32D-Ber-Abl WT with PPP2R5C-siRNA799 was signifi-
cantly decreased at 48-72 h, and it was significantly de-
creased at 72 h with PPP2R5C-siRNA991 (p <0.0001)
(Figure 5). The proliferation rate of the 32D-Bcr-Abl
T3151 cells with PPP2R5C-991-siRNA was significantly
decreased at 48-72 h compared with controls (p < 0.0001)
(Figure 5). The proliferation rate of primary CML cells
with PPP2R5C-siRNA799 and PPP2R5C-siRNA991 was
significantly decreased at 72 h (p<0.0001) (Figure 6).
K562 cells transfected with PPP2R5C-799-siRNA showed
a significant increase in Annexin V/PI-positive cells (apop-
tosis) at 72 h, reaching 30.6 + 2.61% (p = 0.04) (Figure 3).
Moreover, the apoptotic (Annexin V/PI-positive cells) rate
of K562R cells transfected with PPP2R5C-799-siRNA and
PPP2R5C-991-siRNA showed a significant increase at

72 h, reaching 52.25 + 3.54 and 45.42 + 2.93%, respectively
(p<0.0001) (Figure 4). Similar results were found for
32D-Bcr-Abl WT and 32D-Bcer-Abl T3151 cells transfected
with PPP2R5C-siRNA799 and PPP2R5C-siRNA991. The
apoptotic rate of 32D-Bcr-Abl WT cells was significantly
increased at 72 h, reaching 55.25 + 3.22 and 58.08 + 2.91%
with PPP2R5C-siRNA799 and PPP2R5C-siRNA991, re-
spectively (p < 0.0001) (Figure 5), while it reached 38.86 +
3.75 (PPP2R5C-siRNA799) and 46.04 + 2.82% (PPP2R5C-
siRNA991) in 32D-Bcr-Abl T3151 cells treated for 72 h
(p =0.005, p =0.001) (Figure 5). Furthermore, morphological
changes consistent with apoptosis were observed by
Hoechst staining (Figures 3 and 4).

We next compared the effect of the PPP2R5C siRNAs on
imatinib-sensitive and imatinib-resistant cell lines, and
interestingly, significantly higher proliferation inhibition
and apoptosis induction were found for K562R cells treated
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with PPP2R5C-siRNA799 than for K562 cells (Figures 7
and 8). In contrast, the inhibition of proliferation and apop-
tosis was higher for 32D-Bcr-Abl WT than 32D-Bcr-Abl
T315I cells treated with the same siRNA (Figures 7 and 8).
However, the effect of PPP2R5C-siRNA991 on the inhi-
bition of proliferation and apoptosis induction appeared
variable between the imatinib sensitive and resistant cells
(Figures 7 and 8).

Discussion

Targeted therapies are directed at unique molecular sig-
natures of cancer cells to produce greater efficacy with
less toxicity. The development and use of such therapeu-
tics allow us to practice personalized medicine and im-
prove cancer care [27]. Imatinib is the first successful
molecular drug specifically targeting the Abl gene and
has proven to be effective in achieving high remission
rates and improving CML prognosis. Because TKI resist-
ance and relapse frequently occur in patients, new
targeted drugs that can specifically inhibit TKI-resistant
CML urgently need to be developed. RNAi represents a
new alternative for CML treatment that overcomes the
difficulties of current drug treatments such as acquired
resistance. The therapeutic targeting of Bcr-Abl tran-
scripts by siRNA was demonstrated in imatinib-resistant
CML cells [10,28].

PPP2R5C plays a crucial role in cell proliferation, dif-
ferentiation, and transformation based on its induction
of the dephosphorylation of p53 at various residues [19]
and may be responsible for the tumor-suppressive func-
tion of PP2A [18]. To confirm the role of PPP2R5C
down-regulation on the inhibition of CML cells, particu-
larly TKI-resistant CML cells, we used two PPP2R5C
siRNAs that target different exon sequences to analyze
their effect on the inhibition of proliferation and apop-
tosis induction in CML cells. Moreover, to investigate
the PPP2R5C siRNA effects in imatinib-resistant CML
cells, we selected two pairs of CML cell lines, including
the imatinib-sensitive cell lines K562 and 32D-Bcr-Abl
WT and the imatinib-resistant cell lines K565R, which
lacks an Abl mutation, and 32D-Bcr-Abl T3151, which
has an T3151 Abl mutation, to compare the different
changes induced by PPP2R5C siRNA.

In general, RNAI effects are detected between 24 and 72
h after siRNA transfection. We demonstrated that the
siRNAs effectively silenced PPP2R5C post-transcriptionally,
and the control siRNA had no obvious influence 72 h
after nucleofection. These results were confirmed at the
RNA and protein levels. siRNAs targeting different exon
domains had different efficacies for PPP2R5C gene si-
lencing and subsequent biological consequences. Both
PPP2R5C siRNAs demonstrated significant effects on
the knockdown of PPP2R5C expression in CML cell
lines, and PPP2R5C-siRNA799, which targets exon six,
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demonstrated robust knockdown of PPP2R5C expres-
sion in K562R cells at all time points.

There are reports that siRNAs targeting Bcr-abl in-
creased sensitivity to imatinib in Bcr-Abl-overexpressing
cells and cells expressing the imatinib-resistant Bcr-Abl
kinase domain mutations H396P and Y253F [10,28].
There are no reports regarding the effects of the sup-
pression of PPP2R5C on changing cell biological func-
tions. Our previous study first demonstrated that the
suppression of PPP2R5C by RNAi effectively inhibited
the proliferation of the Molt-4 and Jurkat cell lines; how-
ever, the suppression of PPP2R5C by RNAi could not
significantly induce apoptosis in Molt-4 and Jurkat T
cells [22]. In contrast, the PPP2R5C siRNAs not only in-
hibited cell proliferation but also induced apoptosis
in imatinib-sensitive and imatinib-resistant CML cell
lines. These results indicated that down-regulating PP-
P2R5C could significantly inhibit the proliferation of
CML cells, and the underlying mechanism might be dif-
ferent between CML and T-ALL cells. More importantly,
we found a significantly higher inhibition effect in
K562R cells treated with PPP2R5C-siRNA799, and the
inhibition effect in 32D-Bcr-Abl T315I cells, which have
a T3151 Abl mutation, was similar to that of 32D-Bcr-
Abl WT cells. Such effects are particularly important for
the targeted therapy of imatinib-resistant CML cells that
either lack an Ab/ mutation and have primary and
imatinib-induced resistance or those with an Ab/ T3151
mutation, which resist new-generation TKIs. Therefore,
it is interesting to analyze the molecular mechanism of
PPP2R5C siRNA-mediated cell proliferation suppression
in different leukemia cells. It has been reported that
TKI-resistant, Philadelphia chromosome-positive cell
lines without an Ab/ mutation are unique because they
dephosphorylate ERK1/2 and STAT5 after imatinib
treatment, while PI3K/AKT1/mTOR activity remains
unaffected. The inhibition of AKT1 leads to apoptosis in
imatinib-resistant cell lines. Therefore, these Ph + cell
lines show a form of imatinib-resistance attributable to
the constitutive activation of the PI3K/AKT1 pathway
[3]. Whether down-regulating PPP2R5C contributes
similar effects to the inhibition of PI3K/AKT1/mTOR
signaling requires further investigation. We also found
that PPP2RSC siRNA could inhibit the proliferation of
primary CML cells in limited experiments, and this ef-
fect should be further explored using a larger patient
cohort.

Moreover, whether PPP2R5C siRNAs could potentiate
the efficacy of TKIs in imatinib-resistant cells is worthy
of further investigation. One study has shown a synergis-
tic effect between AMNI107 and arsenic trioxide (ATO)
or Bcr-Abl-siRNA in the K562R imatinib-resistant cells
or those with an H396P abl mutation, indicating that the
combination of AMNI107 and ATO or siRNA may
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represent a new strategy for the treatment of imatinib-
resistant CML patients [10,29].

In conclusion, our findings provide evidence for the ef-
fect of proliferation inhibition and apoptosis induction
in CML cells by PPP2R5C knockdown, and such effects
may particularly benefit developing a strategy including
a combination of targeted therapy using TKIs for resist-
ant cells. A successful clinical trial demonstrated that
the in vivo application of targeted nonvirally delivered
synthetic Bcr-abl siRNA in a female patient with recur-
rent CML that was imatinib resistant (Y253F mutation)
and chemotherapy after an allogeneic hematopoietic
stem cell transplantation could silence the expression of
the Ber-Abl gene [28]. These data imply that siRNA may
be suitable for development as a specific anti-leukemia
treatment. However, a recent study demonstrated that
the phosphatase activity of PP2A is suppressed in
chronic myeloid leukemia and other malignancies char-
acterized by aberrant oncogenic kinase activity, and
preclinical studies show that the pharmacological res-
toration of PP2A tumor-suppressor activity by PP2A-
activating drugs (e.g., FTY720) effectively antagonizes
cancer development and progression [30]. These find-
ings appear to be contrary to our results, and further
characterization of the function of the different regulatory
B subunits of PP2A and a discussion of the different ef-
fects on the different PP2A target subunits is needed.
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Additional file 1: Figure S1. Inhibition of PPP2R5C expression in
32D-bcr-abl-WT cells by RNA interference. Alexa Red Oligo-transfected (A)
and mock-transfected (B) 32D-bcr-abl-WT cells (B) 11 h after transfection
as measured with FCM (Positive cells are shown as the P2 domain). (C)
Suppression of PPP2R5C mRNA expression as measured by gRT-PCR after
nucleofection with PPP2R5C siRNAs (3 ug) compared with expression in
cells treated with non-silencing control RNA.

Additional file 2: Figure S2. Inhibition of PPP2R5C expression in
32D-Bcr-Abl T3151 cells by RNA interference. Alexa Red Oligo-transfected
(A) and mock-transfected (B) 32D-Bcr-Abl T3151 cells 11 h after
transfection as measured with FCM (positive cells are shown in the P2
domain). (C) Suppression of PPP2R5C mRNA expression as measured by
qRT-PCR after nucleofection with PPP2R5C siRNAs (3 pg) compared with
expression in cells treated with non-silencing control RNA.

Additional file 3: Figure S3. Inhibition of PPP2R5C expression in
primary CML cells by RNA interference. A: CML cells from a case with
chronic phase CML treated with Alexa Red Oligo 11 h after transfection
as measured by FCM (positive cells are shown in the P2 domain) with
mock-transfected primary CML cells used as control (B). (C) Suppression
of PPP2R5C mRNA expression as measured by qRT-PCR after
nucleofection with PPP2R5C siRNAs (3 pg) compared with expression in
cells treated with non-silencing control RNA.
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