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Erythropoietin is a JAK2 and ERK1/2 effector that
can promote renal tumor cell proliferation under
hypoxic conditions
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Abstract

Background: Erythropoietin (EPO) provides an alternative to transfusion for increasing red blood cell mass and treating
anemia in cancer patients. However, recent studies have reported increased adverse events and/or reduced survival in
patients receiving both EPO and chemotherapy, potentially related to EPO-induced cancer progression. Additional
preclinical studies that elucidate the possible mechanism underlying EPO cellular growth stimulation are needed.

Methods: Using commercial tissue microarray (TMA) of a variety of cancers and benign tissues, EPO and EPO receptor
immunohistochemical staining was performed. Furthermore using a panel of human renal cells (Caki-1, 786-O, 769-P,
RPTEQ), in vitro and in vivo experiments were performed with the addition of EPO in normoxic and hypoxic states to
note phenotypic and genotypic changes.

Results: EPO expression score was significantly elevated in lung cancer and lymphoma (compared to benign tissues),
while EPOR expression score was significantly elevated in lymphoma, thyroid, uterine, lung and prostate cancers
(compared to benign tissues). EPO and EPOR expression scores in RCC and benign renal tissue were not significantly
different. Experimentally, we show that exposure of human renal cells to recombinant EPO (rhEPO) induces cellular
proliferation, which we report for the first time, is further enhanced in a hypoxic state. Mechanistic investigations
revealed that EPO stimulates the expression of cyclin D1 while inhibiting the expression of p219°" and p274F" through
the phosphorylation of JAK2 and ERK1/2, leading to a more rapid progression through the cell cycle. We also
demonstrate an increase in the growth of renal cell carcinoma xenograft tumors when systemic rhEPO is administered.

Conclusions: In summary, we elucidated a previously unidentified mechanism by which EPO administration regulates

progression through the cell cycle, and show that EPO effects are significantly enhanced under hypoxic conditions.
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Background

Tumor cells within a growing lesion often need to adapt
and survive in hypoxic conditions. One-way tumor cells
are known to respond to hypoxia is to up-regulate the
transcription factor hypoxia inducible factor (HIF). HIF
has two subunits, HIF-1a and HIF-1p [1], and intracellular
oxygen levels can modulate HIF-1« levels, while HIF-1f is
constitutively expressed [2]. In normoxic conditions, it has
been shown that a complex including functional von
Hippel-Lindau (pVHL), a key tumor suppressor gene in
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clear cell renal cell carcinoma (RCC) is able to rapidly de-
grade HIF-1a [3]. However, in the absence of a functional
pVHL, HIF-la can accumulate, in hypoxic or normoxic
conditions [4,5]. When the HIF complex translocates to
the nucleus it binds to hypoxia-response elements of DNA
leading to the regulation of multiple hypoxia-inducible
genes [6,7]. One of the lesser-known hypoxia-inducible
genes encodes the glycoprotein, erythropoietin (EPO),
which is in fact a hormone, produced by the kidneys and
to a lesser extent the liver [8]. EPO stimulates the produc-
tion of red blood cells in the bone marrow [9]. Accord-
ingly, one of the key indications for its use is in the
management of severe anemia [10], a situation that can
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often occur during the administration of cytotoxic chemo-
therapy in the treatment of malignancies.

Recently, concerns have arisen over the potential of re-
combinant human erythropoietin (rhEPO) treatment and
an association with tumor growth [11,12]. The effect may
be induced through interaction with tumor cell EPO re-
ceptors (EPOR), which when activated promote the tumor
vascularization required for adequate oxygenation [13,14].
An understanding of the mechanism of EPO in tumor
biology and when EPO treatment is likely to be efficacious
is an important goal at this juncture. In this study, we
performed a series of in vitro and in vivo analyses to test
whether EPO can stimulate the growth of renal cells. We
found that rhEPO administration stimulated cellular pro-
liferation, and the effect was enhanced in a hypoxic state,
which we report for the first time. Mechanistic investiga-
tions revealed that EPO stimulates the expression of cyclin
D1 while inhibiting the expression of p21P! and p27-P*
through the phosphorylation of JAK2 (JAK-Stat pathway)
and ERK1/2 (MAPK pathway), leading to a more rapid
progression through the cell cycle. We were also able to
demonstrate that the growth of renal cell carcinoma
xenograft tumors was increased in tumors with in-
creased hypoxia when systemic rhEPO was adminis-
tered. These investigations provide some insight into
the mechanism of EPO in tumor cell stimulus, and
show that the effects are significantly enhanced in asso-
ciation with hypoxic conditions.

Materials and method

Immunohistochemistry

Commercial tissue microarrays (TMA) (MC5003a, US
Biomax, Inc., Rockville, MD) constructed from clinical
samples obtained from a cohort of 500 patients (400
malignant tissues and 100 benign tissues from 20 differ-
ent organs) were examined by immunohistochemical
staining. The clinicopathologic variables of the study
cohort are available at http://www.biomax.us/tissue-ar-
rays/Multiple_Organ/MC5003a. TMAs were examined
by H&E for histological verification of disease status.
TMAs were deparaffinized followed by antigen retrieval
using citric acid buffer (pH 6.0, 95°C for 20 mins). Slides
were treated with 1% hydrogen peroxide in methanol to
block endogenous peroxidase activity. After 20 mins of
blocking in 1% bovine serum albumin (BSA), the TMAs
were incubated overnight at 4°C with anti-human EPO
antibody (sc-7956; rabbit polyclonal, dilution 1/200 in
1% BSA) and anti-human EPOR antibody (sc-695; rabbit
polyclonal, dilution 1/100 in 1% BSA) from Santa Cruz
Biotechnology (Santa Cruz, CA). Next, the slides were
incubated with 2 pg/mL of biotinylated anti-rabbit IgG
secondary antibody (Vector Laboratories, Burlingame,
CA) for 30 mins at room temperature. Subsequently,
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the sections were stained using Standard Ultra-Sensitive
ABC Peroxidase Staining kit (Pierce/Thermo Fisher Scien-
tific, San Jose, CA) and 3, 3'- diaminobenzidine (DAB;
Vector Laboratories), counterstained by hematoxyline,
dehydrated, and mounted with a cover slide. Mouse xeno-
graft tumors from the human renal cancer cell line Caki-1,
known to stain strongly for EPO and EPOR were used as a
positive control.

The proportion of positive cells was scored by two in-
vestigators (AL, MM) in four grades and represented the
estimated proportion of immunoreactive cells (0 = 0% of
cells; 1 = 1% to 40%; 2 = 41% to 75% and 3 = 76% to
100%). The intensity was scored and represented the aver-
age intensity of immunopositive cells (0 = none; 1 = weak;
2 = intermediate and 3 = strong). The proportion and in-
tensity scores were combined to obtain a total EPO or
EPOR staining score, which ranged from 0 to 6. The EPO
or EPOR expression level was determined based on the
total EPO or EPOR staining score as follows: none = 0,
low = 1 or 2, moderate = 3 or 4, high = 5 or 6 [15]. A third
investigator (CJR) reviewed discrepancies and rendered a
final score. The comparison between EPO and EPOR ex-
pression in human tumors and benign tissues was calcu-
lated using Mann—Whitney U test.

Cells, reagents and equipment

Human renal cancer cell lines; Caki-1, 786-O, 769-P
(ATCC, Manassas, VA), and the normal primary human
renal tubule epithelial cells (RPTEC; Lonza, Walkersville,
MD) were available for analysis. Cancer cell lines were
maintained in RPMI1640 medium supplemented with 10%
fetal bovine serum, 50 units/ml penicillin and 50 mg/ml
streptomycin (Invitrogen Corporation, Carlsbad, CA).
RPTEC was maintained in renal epithelial cell basal
medium (REBM) supplemented with REGM complex
(Lonza CC-3190). All cells were incubated in humidified
atmosphere at 37°C in air with 5% CO, (normoxic condi-
tions). For hypoxic conditions, cells were incubated at 37°C
containing 1% O,, 5% CO,, and balance N in a humidified
incubator. The oxygen level was automatically maintained
with an oxygen controller (ProOx P110; Biospherix,
Redfield, NY) supplied with compressed nitrogen gas. Re-
combinant human EPO (rhEPO) was purchased from
R&D Systems, Inc. (Minneapolis, MN).

Immunoblotting

Whole cell lysates were prepared using RIPA buffer with
Halt Protease Inhibitor Cocktail (Thermo Fisher Scien-
tific) as previously reported [16]. Twenty micrograms of
total protein (assessed using BCA protein assay) were
subjected to SDS-PAGE using Mini-PROTEAN TGX pre-
cast gels (Bio-Rad Laboratories, Richmond, CA). Proteins
were transferred to polyvinylidene difluoride (PVDF)
membrane (Bio-Rad). Anti-human pVHL (#2738, dilution
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1:1 000), HIF-2« (#7096, dilution 1:1 000), p-Jak2 (#4406,
dilution 1:1 000), total Jak2 (#3230, dilution 1:1 000), p-
Stat5 (#9359, dilution 1:1 000), total Stat5 (#9363, dilution
1:1 000), p-Akt (#4060, dilution 1:1 000), total Akt (#9272,
dilution 1:1 000), p-ERK1/2 (#4370, dilution 1:1 000), total
ERK1/2 (#9102, dilution 1:1 000), cyclin D1 (#2978, dilu-
tion 1:1000), cyclin D3 (#2936, dilution 1:1 000), CDK4
(#2906, dilution 1:1 000), CDK6 (#3136, dilution 1:1 000),
p219P (#2947, dilution 1:1000), p27"P" (#3686, dilution
1:1 000) and p15 (#4822, dilution 1:1 000) were purchased
from Cell Signaling Technology. Anti-human HIF-1a (sc-
53546, dilution 1:200), VEGF (sc-152, dilution 1:200), EPO
(sc-7956, dilution 1:1 000), total EPOR (sc-697, dilution
1:1 000) and p-EPOR (sc-20236, dilution 1:1 000) anti-
bodies were purchased from Santa Cruz Biotechnology.
Equal loading was confirmed with B-actin (AC-15, dilution
1:10 000, Sigma-Aldrich) [17]. Stained proteins were
detected using the ECL Plus Western Blotting Detection
System (GE Healthcare).

Proliferation and viability assay

Human renal cells Caki-1, 786-O, 769-P and RPTEC
were plated in 96 well dishes in triplicate (10° cells/well)
and incubated in normoxic condition. Cells were then
subjected to increasing doses of rhEPO (0—50 units/mL)
and incubated in normoxic or hypoxic conditions. After
48 hrs, cell proliferation was determined by CellTiter-
Glo Luminescent cell viability assay (Promega, Madison,
WI) according to manufacturer’s instructions. Lumines-
cence was measured using a FLUOstar Optima Reader
(BMG LABTECH, Ortenberg, Germany). Three inde-
pendent experiments were performed in triplicate.

Cell cycle analysis

Human renal cells were seeded in 6-well plates at a
density of 2x10° cells per well and incubated for
24 hrs. Cells were starved for 18 hrs in serum/growth
factors-free media containing 0.1% BSA in normoxic or
hypoxic condition. After starvation, media were re-
placed with fresh media containing 2% FBS with or
without 2 units/mL of rhEPO and incubated for 10 hrs
in normoxic or hypoxic condition. Cells were harvested
and fixed with 70% ethanol overnight at -20°C. Next,
cells were suspended in propidium iodide (PI) staining
buffer containing 50 pg/ml PI and 200 pg/ml RNase A
and incubated in 37°C for 15 min. PI fluorescence
was determined by flow cytometry using a FACSCalibur
and CellQuest software for acquisition (BD Biosciences,
San Jose, California). Cell cycle phase distribution
was analyzed and reported by using FlowJo software
(TreeStar Inc., Ashland, OR). Three independent ex-
periments were performed in triplicate.
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Cell synchronization and measurement of DNA synthesis
using EdU labeling

To obtain populations of cells in Gy/G; phase, all human
renal cells were arrested by double thymidine block as de-
scribed previously [18]. Briefly, human renal cells were
seeded at 5 x 10* cells per well in a 6-well plate. Cells were
blocked for 18 hrs with 2.5 mM thymidine (Sigma-
Aldrich), released for 6 hrs, washed to remove the thymi-
dine, and then exposed again to 2.5 mM thymidine this
time for 16 hrs in normoxia or hypoxia. The cells were
then released from the double thymidine block by cultur-
ing in 2% FBS-containing fresh media with or without
2 units/mL of rhEPO and allowed to progress through G1
and into S-phase. The percentage of proliferating cells was
determined at 0, 2, 4, 6, 9 and 12 hrs after release from the
double thymidine block using the Click-iT* EdU Alexa
Fluor® 647 Flow Cytometry Assay Kit (Life Technologies,
Carlsbad, CA) according to the manufacturer's instruc-
tions. EAU (5-ethynyl-2’-deoxyuridine) is a thymidine ana-
log that becomes incorporated into DNA during active
cellular DNA synthesis. Detection is determined via a cop-
per catalyzed covalent reaction between an azide (conju-
gated to Alexa Fluor 647) and an alkyne. EAU (10 puM)
was added to each well 2 hrs prior to harvesting. Cells
were trypsinized and fixed in 4% formaldehyde. Cell Quest
Pro Software determined cellular DNA synthesis using
FlowJo Software. Three independent experiments were
performed in triplicate.

In vivo tumorigenicity

Animal care was in compliance with the recommenda-
tions of The Guide for Care and Use of Laboratory Ani-
mals (National Research Council) and approved by our
local IACUC. The subcutaneous tumorigenicity assay was
performed in athymic BALB/c (nu/nu) mice, 6 to 8 weeks
old purchased from Harlan Laboratories (Indianapolis,
IN). Procrit (epoetin o; Amgen Inc, Thousand Oaks, CA)
was used for the in vivo treatment of EPO. The properties
of rhEPO were tested in vivo using a subcutaneous xeno-
graft model by inoculating 10° Caki-1, 786-O and 769-P
cells as described previously [16,19]. Since RPTEC cells
are benign and not known to produce xenograft tumors,
this cell line was not tested in vivo. After 24 hrs, mice were
divided randomly into two groups (control or 200 inter-
national units (IU)/kg of rhEPO) and treatment was initi-
ated. RhEPO was administered subcutaneously once
weekly. Control mice received vehicle alone (PBS) on the
same schedule. At least 10 animals were in each group.
Tumor volumes were measured twice weekly with digital
calipers and calculated by V (mm°) = length x (width)* x
0.5236. After 10 wks of treatment, the mice were sacrificed.
However, 30 mins before being sacrificed, each mouse was
intraperitoneally injected with 0.1 mL (60 mg/kg of body
weight) of pimonidazole hydrochloride (Hypoxyprobe-1
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Plus Kit; Hypoxyprobe Inc., Burlington, MA), according to
the manufacturer's instructions [20]. Subsequently, the
mice were sacrificed and xenografts resected. The excised
tumors were placed in 10% buffered formaldehyde solu-
tion and embedded in paraffin. Paraffin blocks were
sectioned for H&E staining and immunohistochemical
(IHC) staining.

Immunohistochemical (IHC) analysis of xenograft tumors
Paraffin embedded tumors were sectioned (4 pm), depa-
raffinized in xylene and rehydrated using graded percent-
ages of ethanol. Slides were treated with 1% hydrogen
peroxide in methanol to block endogenous peroxidase ac-
tivity. Staining was conducted using anti-human EPO anti-
body (sc-7956, dilution 1:200), anti-human EPOR antibody
(sc-695, dilution 1:100), HIF-1a (sc-53546, dilution 1:100),
VEGF (sc-152, dilution 1:200), cyclin D1 (#2978, dilution
1:50), p21°P* (#2947, dilution 1:100), p27"P! (#3686, dilu-
tion 1:200), anti-human Ki-67 (MIB-1, dilution, 1:200;
Dako). Biotin-labeled horse anti-mouse IgG or rabbit IgG
(2 pg/ml in 1% BSA blocking buffer) was used as secondary
antibody. Immunoreactive signals were amplified by for-
mation of avidin-biotin peroxidase complexes and visu-
alized using 3, 3'- diaminobenzidine (DAB). Nuclear
counterstaining was conducted with hematoxylin. Pro-
liferative index analysis was determined as previously
described [16]. In addition, slides were immunostained
with fluorescein isothiocyanate (FITC)-conjugated
primary antibody against pimonidazole (1:50) and
horseradish peroxidase—labeled secondary anti-FITC
monoclonal antibody (1:50) supplied with the hypoxia
detection kit (Hypoxyprobe-1 Plus Kit), according to a
modification of the manufacturer's instructions as
described previously [20].

Statistical analyses

All data are expressed as mean + standard deviation (SD)
and mean + standard error of the mean (SEM). Statistical
analyses were conducted using GraphPad Prism 5.0
(GraphPad Software, Inc.). The comparison between EPO
and EPOR expression in cancer vs. benign tissue was cal-
culated using Mann—Whitney U test. For most in vitro
and in vivo comparisons, a 2-tailed unpaired Student t test
or Mann—Whitney U test was conducted. Differences
were considered statistically significant at p < 0.05.

Results

Erythropoietin and erythropoietin receptor expression is
upregulated in human cancers

We analyzed a human cancer TMA consisting of malig-
nant and benign tissue from 20 organ sites. The immuno-
histochemistry expression scores from cancerous tissue
were compared to those of corresponding benign tissue
(Figure 1A). The EPO expression score was significantly
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elevated in lung cancer (p = 0.003) and lymphoma
(p = 0.018). Of note, EPO expression scores in RCC (1.15)
and benign renal tissue (1.20) were not significantly differ-
ent (p = 0.91). Figure 1B shows representative images of
EPO immunostaining in lung cancer, lymphoma and
RCC. We also scored EPOR expression in the TMA speci-
mens (Figure 1C). The EPOR expression score was signifi-
cantly elevated in lung (p = 0.011), lymphoma (p = 0.007),
thyroid (p = 0.032), uterine (p = 0.038), and prostate can-
cers (p = 0.011). EPOR expression scores in RCC (1.4) and
benign renal tissue (2.0) were not significantly different
(p = 0.17). Figure 1D shows representative images of
EPOR immunostaining in lung cancer, lymphoma and
RCC. The lack of EPO or EPOR correlation to RCC sub-
stantiates the previous report by Papworth et al. [21].

Exposure of hypoxic human renal cells to recombinant
erythropoietin stimulates cellular proliferation

We next investigated whether rhEPO might influence cel-
lular proliferation in a panel of human renal cell lines. Key
molecules associated with clear cell RCC, as well as EPO
and EPOR status were determined in a panel of human
renal cell lines comprised of RPTEC, Caki-1, 786-O and
769-P (Figure 2A). We know that expression of the EPO
gene is regulated by hypoxia through transcriptional regu-
lators family of hypoxia-inducible factors (HIF) [22], so we
also assessed the same key molecules in the cell line panel
after exposure to hypoxia over the course of 24 hrs. Hyp-
oxia treatment resulted in the increase of HIF-1a, HIF-2a,
EPO and VEGF in all cell lines tested (Figure 2B). A slight
increase in EPOR expression was noted in 786-O and
769-P cells exposed to hypoxia, but no changes in VHL
expression were observed. We then investigated whether
exposing human renal cells to increasing doses of rhEPO
could affect cellular proliferation. In an in vitro prolifera-
tion assay at 48 hrs, proliferation of RPTEC and Caki-1
cells was significantly enhanced by exposure to 0.5 units/
mL rhEPO (p = 0.001) and 2 units/mL rhEPO (p = 0.04),
respectively, while the cell lines 786-O and 769-P were
unaffected, even at the highest concentration of rhEPO
(50 units/mL). Parallel in vitro proliferation assays under
hypoxic conditions were also performed. The observed
proliferation of RPTEC and Caki-1 cells was significantly
enhanced by the exposure of 0.5 units/mL rhEPO
(p = 0.0009) and 2 units/mL rhEPO (p = 0.03), respect-
ively. Furthermore, in this hypoxic state, the proliferation
of 786-O and 769-P was also significantly increased by the
addition of 2 units/mL rhEPO (p = 0.03 and p = 0.04, re-
spectively) (Figure 2C). Thus, in cells with non-functional,
mutated VHL (786-O and 769-P) and thus constitutive ex-
pression of HIF, rhEPO was able to stimulate cellular prolif-
eration only under hypoxic conditions. Conversely, in cells
with functional, wild-type VHL and no HIF expression
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(RPTEC and Caki-1), rhEPO could stimulate proliferation
in both normoxic and hypoxic states.

Exposure of renal cells to recombinant erythropoietin
causes progression through G1-phase of the cell cycle by
differentially regulating cell cycle proteins

Standard FACS cell cycle analysis of the panel of cell lines
treated with and without thEPO under normoxic and hyp-
oxic conditions revealed only subtle changes (e.g, S-phase
accumulation in RPTEC and 769-P cells treated with
rhEPO in hypoxia) (Figure 3). Using a double thymidine
block protocol that effectively arrested 98% of the cells at

the Go/G;-phase of the cell cycle, we were able to more
thoroughly assess whether EPO is required for S-phase
progression. Cells were released from the double thymidine
block by exposing the cells to 2% FBS-containing media
with or without 2 units/mL of rhEPO under normoxia or
hypoxia (Figure 4A). Synchronized cells of all cell types
were more sensitive to thEPO under hypoxia compared
with normoxia. This was more pronounced in RPTEC and
769-P cells. Thus, exposure to rhEPO in a hypoxic state se-
lectively promotes progression from GI1 to S-phase, a
phase disproportionately represented in frequently dividing
cells such as cancer cells. This is the first mention of this
phenomenon in the literature.



Miyake et al. Journal of Hematology & Oncology 2013, 6:65
http://www.jhoonline.org/content/6/1/65

Page 6 of 14

A B

RPTEC

Caki-1 786-0 769-P

Hypoxia
(hrs) O

6 24 0

6 24 0 6 24 0 6 24

N i )| e |

HIF1a |

~ |

P —~[Ees

(e i | e | |

B-actin MM '—d l———‘

% of proliferation
-
L
-
-

rhEPO o 6 2,0 .9 1®
(Uimt) 87 TS %P VP

O DP9 NP

400 -
786-0

)

g

*S‘

O TP 0P NOP O TSP O VPP

Normoxia Hypoxia Normoxia Hypoxia

Figure 2 Effect of recombinant human erythropoietin and hypoxia on the proliferative potential of human renal cell lines. A, Western
blot analysis of four human renal cell lines was done to confirm EPO and EPOR status. Furthermore, other key molecules (e.g., VHL, HIF-1a, HIF-2a
and VEGF) related to clear cell RCC were noted. Cells were grown in complete media in normoxic condition and total cellular protein lysate in
the exponential phase were collected for analysis. B, Western blot analysis of four human renal cell lines exposed to hypoxia for 6 and 24 hrs was
perform to note any change in the molecular status evident from normoxic conditions. B-actin is used as a loading control. C, Proliferation rate
was measured in four human renal cell lines cells exposed to normoxia or hypoxia and grown in the indicated doses of recombinant human EPO
(0-50 units/mL) at 48 hrs. Data were represented as mean + SD relative to untreated cells, which are set to 100%. Three independent experiments
were performed in triplicate. Significance compared to untreated cells is denoted by *, p < 0.05; **, p < 0.01, ***, p < 0.001.

Normoxia Hypoxia Normoxia Hypoxia

The expression of molecules that regulate passage of
cells from Go/G; to S-phase was analyzed by Western
blot (Figure 4B). No significant changes in these mole-
cules were noted in cells exposed to hypoxia, except
that p27 P! was disproportionately elevated relative to
cyclin D1 in RPTEC cells. However, upon stimulation
with rhEPO in the hypoxic state, cellular levels of cyclin
D1 were increased, while cellular levels of p21“P* and
p27""P! were reduced. Conversely, when only rhEPO
stimulation was present, only cyclin D1 was increased
in RPTEC and Caki-1, and p21°P* and p27 “"P! were de-
creased in Caki-1 and 769-P. Our data suggests that in
the presence of hypoxia, rhEPO stimulates cellular pro-
liferation in renal cells by promoting progression
through G1 into S-phase through upregulation of cyclin
D1 and reduction of cell cycle inhibitors (p21<'P* and
p27kip1).

Identification of MAPK-ERK1/2 pathway as specific
signaling downstream of erythropoietin resulting in
S-phase progression

Previous studies have linked EPO-induced changes to acti-
vation of JAK2 and MAPK-ERK1/2 pathways in some
model systems [23-26]. To confirm that the proliferative
effects of EPO are mediated through the activation of

JAK2 and MAPK-ERK1/2 in human renal cells, and to
evaluate if these same pathways are involved when cells
are subjected to a hypoxic environment, we monitored the
expression of JAK2, phosphorylated JAK2 (p-JAK2), Stat5
and phosphorylated Stat5 (p-Stat5) to assess the JAK2
pathway, and Akt, phosphorylated Akt (p-Akt), ERK1/2
and phosphorylated ERK1/2 (p-ERK1/2) to assess the
MAPK-ERK1/2 pathway. Under normoxic conditions, ex-
posure to rhEPO resulted in an increase in the expression
of p-JAK2 and p-ERK1/2 in RPTEC cells, an increase in p-
JAK2 in Caki-1 cells, and an increase in p-JAK2, p-AKT
and p-ERK1/2 in 786-O cells. No changes were observed
in 769-P cells (Figure 5A). Hypoxic culture alone was as-
sociated with an increase in the expression of p-ERK1/2 in
RPTEC cells, p-JAK2 in Caki-1 cells, p-JAK2 in 786-O
and p-JAK2 and p-Akt in 769-P cells. Most notably, in the
hypoxic state, the addition of EPO consistently increased
the expression of p-JAK2 and p-ERK1/2 in all four cell
lines (Figure 5A). Subsequently, we set out to evaluate
which pathway, JAK2 or MAPK-ERK1/2, was involved in
the observed molecular changes associated with G1-phase
progression. This was achieved by targeting each pathway
with a small molecule inhibitor (TG101348 targets JAK2
and U0126 targets MEK in the MAPK-ERK1/2 pathway).
In all cell lines, and under all experimental conditions
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Normoxia (21% 02) Hypoxia (1% 02)
No treatment EPO 2 U/mL No treatment EPO 2 U/mL
GO0/G1 : 82.6% G0/G1: 73.8% G0/G1: 80.8% G0/G1: 63.4%
S :121% S :181% S :13.8% S :36.0%
G2IM : 4.6% G2IM : 41% G2/M : 4.5% G2M: 9.9%
RPTEC
GO0/G1: 43.9% G0/G1:32.1% G0/G1: 47.2% GO0/G1: 34.7%
S :429% S :54.4% S 41% S :51.7%
G2/M :12.4% G2/M : 12.6% G2/M : 10.4% G2/M :12.1%
G0/G1 : 54.5% G0/G1: 54.3% G0/IG1 : 56.3% G0/G1: 53.4%
S :36.7% S :37.1% S :349% S :37.4%
G2/IM : 8.7% G2M : 7.2% G2/M : 7.2% G2/M : 9.0%
N
G0/G1: 36.9% GO/G1: 35.7% GO0/G1: 39.5% GO0/G1: 32.1%
S :30.7% S :327% S :32.0% S :40.7%
G2/M : 28.6% G2/M : 30.0% G2/M : 26.8% G2/M : 24.2%
Figure 3 The effects of erythropoietin on cell cycle. Cells, which were starved for 18 hrs in normoxic or hypoxic conditions then treated with
or without rhEPO for additional 10 hrs in normoxic or hypoxic condition, were analyzed. Specifically, the percentage of population in Go/Gy, S,
and G,/M phase of the cell cycle were analyzed by flow cytometry after propidium iodide staining of cellular DNA. Arrows indicate the major
changes in EPO-treated cells compared to untreated cells. Data are representatives from three independent experiments.

(+/- rhEPO and hypoxia/normoxia), TG101348 treatment
resulted in a reduction in p-JAK2, and U0126 treatment
resulted in a reduction of p-ERK1/2 (Figure 5B). In parallel
experiments utilizing these inhibitors, we assessed changes
in cell proliferation (Additional file 1: Figure S1), specific-
ally G1-phase progression by Western blot analysis, which
documented changes in cyclin D1, p21“P! and p27°P*
expression (Figure 5C). We conclude that EPO exposure
results in the activation of both the JAK2 and ERK1/2
pathways leading to changes in proliferation under
hypoxic conditions.

Effects of systemic administration of recombinant

erythropoietin in a mouse xenograft tumor model

To determine whether EPO can regulate tumor growth
and proliferation in vivo, we injected subcutaneously Caki-
1, 786-O and 769-P cells in athymic nude mice, however,
769-P cells did not form subcutaneous tumors in this
model. Systemic administration of rhEPO over the experi-
mental term of 10 wks resulted in a remarkable increase
in 786-O tumor size compared to control. Specifically, at

the end of the study, control 786-O xenografts achieved
an average volume of 603 mm® compared to 1107 mm?
(p = 0.015) for 786-O tumors treated with 200 IU/mg/
week (Figure 6A). However, administration of EPO in
Caki-1 xenografts did not result in a tumor growth advan-
tage compared to controls (p = 0.20) (Figure 6A). Evalu-
ation of excised xenografts revealed a clear increase in
cyclin D1 and a reduction in p21“?* and p27°?! in EPO-
treated 786-O tumors (Figure 6B). Furthermore, an in-
crease in p-EPOR expression was noted in 786-O xenograft
tumors compared to 786-O xenograft controls (Figure 6B).
Immunostaining of Caki-1 xenograft tumors are depicted
in Additional file 2: Figure S2. The proliferative marker, Ki-
67, was studied within the tumor sections and an enhanced
Ki-67 positivity was noted in EPO-treated 786-O xenograft
tumors. No changes in proliferative index were noted in
Caki-1 xenografts treated with rhEPO (Figure 6C). Our
in vitro data suggested that hypoxia potentiates rhEPO
proliferative effects. So at the termination of the in vivo
experiment, pimonidazole staining assessed the extent of
xenograft hypoxia. Interestingly, in the Caki-1 xenografts,
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Figure 4 Erythropoietin promotes S phase progression. A, Cells were synchronized in Go/G;-phase by using a double thymidine block and
S-phase entry was monitored by the EDU incorporation following thymidine release. The percentage of proliferating cells at the indicated time
after release was determined. The result of normoxia and hypoxia are shown in upper panels and lower panels, respectively. Asterisks indicate the
significant difference (p < 0.05) between untreated cells (solid blue line) and rhEPO-treated cells (dashed red line). Data were represented as
mean + SD from three independent experiments. B, Cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors which are known to
be keys for G,/S transition were analyzed by Western blot to monitor the association of the stimulation of EPO and transduction of cell cycle
proteins. Renal cells were treated with the indicated concentrations of rhEPO for 24 hrs in normoxic and hypoxic condition. Cell lysates were
subjected to Western blot analysis. 3-actin was used as a loading control.

which had no increase in tumor growth when exposed to
rhEPO, limited areas of hypoxia were noted. Conversely,
the 786-O xenografts had a considerable number of hyp-
oxic regions (Figure 6D). These in vivo observations con-
firm the potential of EPO to stimulate cellular proliferation
and, hence, tumor growth, especially in a hypoxic setting.

Discussion
Questions were first raised about the possible exacerbat-
ing influence of EPO on human tumors after a landmark

study was published in 2003 [12]. Specifically, Heinke
et al. reported significantly shorter progression-free sur-
vival and overall survival in a cohort of head and neck
cancer patients who were receiving radiation therapy
and rhEPO, the latter presumably administered to over-
come therapy-induced anemia. In a comparable cohort,
Overgaard and colleagues subsequently reported a simi-
lar reduction in survival of head and neck patients
undergoing tumor therapy while receiving rhEPO [27].
Table 1 illustrates the meta-analysis results of Glaspy
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Figure 5 Erythropoeitin activates the JAK and MAPK/ERK pathways. A, Four renal cell lines were starved in serum/growth factor-free media
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extracts with indicated antibodies (at left of panel) shows JAK2 and MAPK/ERK pathway components in renal cell lines stimulated with rhEPO in
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prior to the addition of 10 units/mL rhEPO. Ten minutes after exposure of rhEPO, cell lysates were collected and subjected to Western blot
analysis with the indicated antibodies. 3-actin is used as a loading control. C, Cells are treated with the indicated concentrations of rhEPO in
media containing 2% FBS for 24 hrs in normoxic or hypoxic condition. Cell lysates are subjected to Western blot analysis. Western blot analysis
shows cyclin D1 was induced and p27 " and p21 P were down-regulated in renal cells stimulated with rhEPO in the presence of hypoxia.
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et al. that examined EPO affects on disease progression
in cancer patients receiving chemotherapy [28]. When
outcomes were analyzed ‘per protocol, there was no sig-
nificant effect of rhEPO on disease progression. How-
ever, a post-hoc analysis reported by Henke et al
including erythropoietin receptor (EPOR) expression
suggested that loco-regional progression-free survival
was poorer in patients with EPOR-positive tumors re-
ceiving rhEPO [29]. Unfortunately, additional studies

using this EPOR antibody revealed problems of non-
specific binding of the antibody thus reducing the valid-
ity of these results [30]. In the genitourinary literature,
only limited reports have commented on RCC disease
progression in patients receiving rhEPO [31-33]. Thus,
the equivocal data does not allow one to draw definitive
conclusions. Consequently, we are confronted with
conflicting results when assessing the affects of rhEPO
administration in cancer patients.
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Similarly, in vivo model studies on the topic are contra-
dictory. In a Lewis lung carcinoma xenograft model,
rhEPO was noted to increase primary tumor growth [50].
However in ovarian and other xenograft models, systemic
administration of rhEPO did not result in growth of pri-
mary tumors [51,52]. Our results demonstrate the import-
ance of assessing more than one cell line in vitro and
in vivo. Though all of the cells in our study possessed
EPOR, we demonstrated that the administration of rhEPO
resulted in the stimulation of growth of 786-O xenograft
tumors, but not of Caki-1 xenografts. The only significant

difference in the composition of these xenograft tumors
was that 786-O possessed more regions of hypoxia; a state
in which significantly exacerbates the effects of rhEPO
in vitro. It was critical to assess these cell lines in an
in vivo model, because similar to Fujisue and others [53],
we noted in in vitro that Caki-1 cells had an increase in
proliferation when exposed to rhEPO in the normoxic or
the hypoxic state. However, this was not reproduce in the
xenograft model thus we were able to postulate that tu-
mors with a reduced oxygen tension (e.g, large, expansive
tumors) are more likely to be stimulated when exposed to
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Table 1 Meta-analysis results of oncology trials that examined erythopoietin’s affect on disease progression in patients

receiving chemotherapy

Study publication Tumor type No. of patients analyzed Odds ratio (95%) for disease progression
Osterborg et al. 1996[34] Hematologic 144 1.20 (0.60-2.40)
Littlewood et al. 2001[35] Solid (non-hematologic) 375 0.64 (040-1.02)
Pronzato et al. 2010[36] Breast 223 1.02 (0.46-2.26)
Vansteenkiste et al. 2002(37] SCLC and NSCLC 314 0.58 (0.30-1.11)
Hedenus et al. 2003[38] Hematologic 344 1.08 (0.66-1.76)
Vadhan-Raj et al. 2003[39] Gastric and rectal 60 1 (0.35-2.94)
Chang et al. 2005[40] Breast 354 0.82 (0.39-1.72)
Grote et al. 2005[41] SCLC 224 0.85 (0.50-1.44)
Leyland-Jones et al. 2005[42] Breast 939 0.84 (0.64-1.08)
Osterborg et al. 2005[43] Hematologic 343 0.74 (0.44-1.25)
Witzig et al. 2005[44] Mixed 344 1.20 (0.75-1.91)
Wilkinson et al. 2006[11] Ovarian 181 747 (0.95-58.54)
Engert et al. 2007[45] Hodgkin's lymphoma 1303 0.86 (0.33-2.24)
Aapro et al. 2008[46] Breast 463 1.07 (0.82-1.40)
Pirker et al. 2008[47] SCLC 59 0.87 (0.52-1.46)
Strauss et al. 2008[48] Cervical 74 0.87 (0.32-2.33)
Thomas et al. 2008[49] Cervical 109 1.02 (0.48-2.15)

EPO. Regarding our in vivo experiments, we noted a fail-
ure of 769-P cells to grow as subcutaneous tumors in nude
mice. Though reported as tumorigenic by ATCC, limited
studies have reported on this aspect [54,55]. However, our
in vitro results of 769-P cells are similar to previously pub-
lished 769-P in vitro results [53].

In our THC tissue arrays in which tissue hypoxic status was
unknown, EPO expression score was significantly elevated
in lung cancer (p = 0.003) and lymphoma (p = 0.018), but
not in RCC (p = 0.91). Furthermore, EPOR expression
score was significantly elevated in lung (p = 0.011), lymph-
oma (p = 0.007), thyroid (p = 0.032), uterine (»p = 0.038)
and prostate cancers (p = 0.011), however it was not ele-
vated in RCC (p = 0.17). The lack of EPO or EPOR correl-
ation by IHC in RCC vs. benign samples substantiates a
previous large cohort (n = 195) reported by Papworth et al.
[21], but is contradictory to two small studies from Asia
(combine n = 129) [56,57]. Interestingly a recent study
noted that EPO levels were elevated in high stage RCC
compared to low stage RCC [58]. Thus further investiga-
tion into this, and correlating the tumor hypoxic status to
EPO/EPOR expression may be warranted.

Our results provide evidence that EPO exposure leads
to stimulation of JAK2 and ERK1/2 signaling, which in
turn positively regulates progression through the cell cycle
by inducing cyclin D1 and inhibiting p21“P' and p27"'*
expression (Figure 4). The progression through the cell
cycle is further potentiated under hypoxic conditions.
Tumor hypoxia is noted in approximately 30% of RCC
[59] and is known to increase in all lesions as tumor

burden increases. In this study, we present clear evidence
that rhEPO is a potent mitogen, especially under hypoxia.
Through pharmacologic stimulation, we also show that ac-
tive JAK2 and ERK1/2 signaling tightly controls cyclin D1
expression in a panel of human cell lines (Figure 5). We
have also found that exposure to rhEPO resulted in signifi-
cant growth of 786-O xenografts (which contained many
regions of hypoxia), with concomitant increased expres-
sion of cyclin D1 (Figure 6).

It is known that active EPOR can stimulate JAK2 kinase
[23] and cause subsequent activation of multiple signaling
pathways, including the MAPK-ERK-1/2 pathway [24]. For
example, Jeong et al. treated human ovarian cells with
rhEPO (50,000 mU/ml) and noted an increase in the phos-
phorylation of extracellular signal related kinase (ERK)-1/2,
but no change in cellular growth or survival [25]. Similarly,
treatment of lung cancer cells resulted in an increase in
ERK-1/2 levels [50]. We were able to confirm that rhEPO
can induce JAK2 and ERK1/2 expression in renal cell lines.
Furthermore, the increase in cellular proliferation seen with
rhEPO could be abrogated with the addition of the JAK2 or
ERK1/2 inhibitor (Additional file 1: Figure S1). Thus, cells
can circumvent JAK2-dependent pathway for the JAK2-
independent pathway (ERK1/2). Mannello and other previ-
ously reported about a JAK2-independent pathway [60].

After synchronizing cells with a double thymidine block
strategy, exposure to rhEPO was noted to more rapidly
advance the cells through the cell cycle. Cursory studies
have described how EPO may affect molecules related to
cell cycle. For example, STATS5 is an intracellular protein
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associated with the cytoplasmic portion of EPOR with a
noted interplay between the phosphorylation of JAK2 and
STATS5 [61]. Phosphorylated JAK2 forms homodimers and
translocates to the nucleus where it directly binds to the
DNA and activates cyclin D1 [22]. We showed that EPO
stimulation of two renal cell lines, RPTEC (normal primary
human renal tubule epithelial cells with wild-type VHL)
and Caki-1 (clear cell RCC with wild-type VHL), under
normoxic conditions resulted in cyclin D1 overexpression.
But in hypoxic conditions, rhEPO stimulation resulted in
cyclin D1 upregulation in all four renal cell lines tested
(Figure 3D), and this induction was accompanied by un-
abated progression through G1-phase of the cell cycle. Fur-
thermore, rhEPO treatment, both in normoxic and hypoxic
conditions, resulted in a down regulation of p21“?* and
p27"P!, Downregulation of these molecules was more pro-
nounced during hypoxia, shedding light on molecular
mechanisms involved and further confirming that EPO
effects are exacerbated by hypoxia. The re-evaluation of
large cohorts with respect to EPO and hypoxic state of the
tumor could shed light on this phenomenon and help dir-
ect future clinical trials. These data presented herein sug-
gest that rhEPO treatment may have adverse effects in
specific scenarios and thus the use of rhEPO in the cancer
patient should be considered carefully weighing the benefits
and risks.

Additional files

Additional file 1: Figure S1. Blockade of JAK2 and ERK1/2 by specific
inhibitors suppress cellular response to EPO. Cells (10° cells/well) were
seeded in 96 well dishes and incubated in normoxic condition. TG10348
(1 uM) or U0126 (1 uM) were added 60 mins prior to the addition of

2 units/mL of rhEPO. The plates were exposed to normoxic or hypoxic
conditions. Cell viability was determined at 48 hrs after the exposure to
EPO. Data were represented as mean + SD relative to untreated cells,
which are set to 100%. Three independent experiments were performed
in triplicate. Significance compared to untreated cells is denoted by *,

p < 005; **, p < 001, ** p < 0.001.

Additional file 2: Figure S2. Representative pictures of Caki-1 xenograft
tumors of H&E staining and IHC staining for EPO, phospho-EPOR, cyclin Dy,
p21<P! and p27<P", Original magnification, 200 x. Scale bars, 100 um.
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