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Abstract

Dysregulation of the nucleo-cytoplasmic transport of proteins plays an important role in carcinogenesis. The nuclear
export of proteins depends on the activity of transport proteins, exportins. Exportins belong to the karyopherin β
superfamily. Exportin-1 (XPO1), also known as chromosomal region maintenance 1 (CRM1), mediates transport of
around 220 proteins. In this review, we summarized the development of a new class of antitumor drugs, collectively
known as selective inhibitors of nuclear export (SINE). KPT-330 (selinexor) as an oral agent is showing activities in
early clinical trials in both solid tumors and hematological malignancies.
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Introduction
The nucleo-cytoplasmic transport of proteins plays an
important role in maintaining normal cellular functions.
The nuclear export of proteins depends on the activity
of transport proteins, exportins. Exportin-1 (XPO1), also
known as chromosomal region maintenance 1 (CRM1),
mediates transport of around 220 proteins [1-4]. XPO1
is the sole nuclear exporter of several tumor suppressor
(TSP), growth regulatory (GRP) proteins. These include
p53, p21, p73, Rb1, apc, bcr-abl, FOXO and STAT3.
Under physiological conditions, the export of these pro-
teins prevents them from overacting in the absence of
DNA injury or other oncogenic activities [5,6]. In can-
cerous cells, however, this export of proteins inhibits
their tumor suppressor activity and promotes tumori-
genesis [6,7]. Many hematologic and solid tumor malig-
nancies have elevated XPO1 levels [8-12]. Therefore,
inhibiting XPO1 can be a potential treatment option. In
this review, we will discuss a new class of potential anti-
tumor drugs, collectively known as selective inhibitors of
nuclear export (SINE). These agents can block the ex-
port of TSPs and GRPs, thus maintaining their intranuc-
lear concentration and exert anti-cancer activity.
* Correspondence: Delong_liu@nymc.edu
3Henan Tumor Hospital, Zhengzhou University, Zhengzhou, China
Full list of author information is available at the end of the article

© 2014 Parikh et al.; licensee BioMed Central L
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
Nucleo-cytoplasmic transport and its inhibition by
SINE compounds
XPO1 binds to the cargo proteins through a leucine rich
nuclear export signal (NES) and transports the proteins
through a membrane pore complex via a Ran-GTP gradi-
ent [13-15] (Figure 1). Several small molecule inhibitors of
XPO1 are being studied. These include Leptomycin B
(LMB), ratjadone, goniothalamin, N-azolylacrylates, angui-
nomycin, and CBS9106 [16-21]. They bind covalently to
the cysteine residue (Cys528) in the NES binding groove
of XPO1 [18]. This binding irreversibly inactivates XPO1,
leading to intranuclear accumulation of TSPs and GRPs.
Of these, leptomycin B (LMB) has been studied most ex-
tensively in various cancer cell lines and murine xenograft
tumor models.
A phase 1 study of an XPO1 inhibitor showed only mod-

est efficacy and severe dose limiting toxicity (e.g. malaise,
anorexia, vomiting and nausea) [22]. The clinical trial was
therefore discontinued. KOS-2462, a semisynthetic LMB
derivative showed activity in mouse xenograft models with-
out inducing significant toxicity [16]. CBS9106 is another
small molecule oral reversible inhibitor of XPO1. It in-
duced growth inhibition in several cancer cell lines [17].
Neither KOS-2462, nor CBS9106 have entered clinical
trials.
Subsequently, several novel inhibitors of XPO1, collect-

ively known as SINE compounds, have been developed.
These compounds include KPT-330 (selinexor), KPT-335
(verdinexor), KPT-185, KPT-276, and KPT-251. Of these,
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Figure 1 Mechanism of action for selective inhibitors of nuclear transportation. In the nucleus, RanGTP and cargo (tumor suppressors,
pro-apoptotic proteins, etc.) form a complex with CRM1/XPO1. This complex is exported through the nuclear pore complex (NPC) to the
cytoplasm. CRM1 is then recycled back to the nucleus for another round of export. Selective inhibitors of nuclear export (SINE) binds to
CRM1/XPO1 and blocks the protein export, and therefore the cargo proteins are retained in the nucleus, leading to growth inhibition.
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KPT-185 is the most studied compound in vitro with most
potency. However, its use in vivo is limited by poor
pharmacokinetics [23-25]. KPT-330 is nearly as potent as
KPT-185 and has acceptable oral bioavailability. KPT-251
and KPT-176 are not as potent as KPT-185 but are bio-
available orally [23-25]. These agents are currently under-
going clinical trials for several solid and hematologic
malignancies including breast, colon, pancreas, renal, mul-
tiple myeloma (MM), mantle cell leukemia (MCL),
chronic lymphocytic leukemia (CLL), and acute myeloid
leukemia (AML).

SINE in pancreatic cancer
KPT-127, KPT-185, KPT- 205, and KPT-227 were stud-
ied in pancreatic cancer cell lines [26]. Prostate apop-
tosis response-4 (PAR-4) is a proapoptotic protein in the
nuclear and cytoplasmic compartments. PAR-4 translo-
cates to the nucleus via XPO1 in external stress condi-
tions to cause apoptosis [27]. PAR-4 is downregulated in
pancreatic cancers. Downregulation of PAR-4 directly cor-
relates to worsening outcomes in pancreatic cancer [28].
KPT-185 was shown to increase intranuclear PAR-4 with-
out interfering with its import from the cytoplasm. It also
induced PAR-4 phosphorylation, thus activating it and
leading to apoptosis. Active SINEs had a median inhibitory
concentration (IC50) of 150 nmol/L and inhibited pancre-
atic cancer cell lines while sparing normal human
pancreatic ductal epithelial cells. The in vivo effects
were noted using KPT-330 (selinexor) in subcutaneous
and orthoptic pancreatic cancer models in mice. Oral
administration of KPT-330 led to significant tumor
growth inhibition when compared with control or gem-
citabine treatment [26]. KPT-330 treated mice had dras-
tic reductions in tumor size as compared with controls.
Thus, pre-clinical studies of CRM1 inhibition using
SINE compounds revealed an attractive novel treatment
of pancreatic cancer.

SINE in triple-negative breast cancer (TNBC)
(ER−, PR−, Her2−)
Overexpression of survivin is associated with poor prog-
nosis in breast cancer [29]. Survivin inhibits apoptosis
by stabilizing X linked inhibitor of apoptosis (XIAP) in
the cytoplasm [30]. Survivin expression is also directly
affected by STAT3, a member of Janus-activated kinase
(JAK)/STAT [31], which is increased in several malig-
nancies including TNBC [32]. Cytoplasmic localization
is required for survivin to inhibit apoptosis [30]. XPO1
mediates transport of survivin and STAT3 to the cyto-
plasm, and inhibits apoptosis [33,34]. Inhibition of
XPO1 blocked STAT3 binding to survivin promoter and
decreased survivin expression. In the meanwhile, it was
shown that survivin was cleaved by caspase-3, therefore
leading to overall decrease of survivin level [4]. In the
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study, it was shown that KPT-185, KPT-251 and KPT-
276 inhibited tumor cell growth and enhanced apop-
tosis in vitro in 3 different cell lines. KPT-185cis had the
lowest IC50. KPT-330 had profound effects on tumor
cell growth inhibition and apoptosis with an IC50 ran-
ging from 5 to 21 nmol/L. The data suggested that twice
weekly dosing of KPT-330 at 25 mg/kg for 42 days sig-
nificantly reduced tumor growth when compared to
control or standard treatment with 5-fluorouracil (P =
0.011). It was determined that XPO1 inhibition caused
nuclear retention of survivin which was then degraded
by caspase-3 [4]. Survivin transcription was also shown
to be repressed by inhibition of CREB binding protein
(CBP) mediated STAT3 transactivation.
This study expands the role of SINEs in treatment of

breast cancer and other solid tumors. KPT-330 is cur-
rently undergoing phase I clinical trial in advanced solid
tumors [35]. In this early trial, KPT-330 was adminis-
tered orally for 8–10 doses in a 28-day cycles to 103 pa-
tients (59/44 M/F; median age 61 years) across 12 dose
levels. Dose limiting toxicites (DLT) (fatigue, dehydra-
tion, nausea) were noted. Dosing at 65 mg/m2 BIW is
ongoing since maximal tolerated dosage (MTD) was not
reached yet at the time of the report. There were 87 eva-
luable patients (pts) for response. Among them, there
were 3 PR in colorectal cancer (KRAS mutant), melan-
oma (BRAFwt) and ovarian adenocarcinoma pts. Stable
disease (SD) was seen in 39 pts, with 12 pts lasting over
6 months. All 5 evaluable pts with hormone and chemo-
therapy refractory prostate cancer (HRPC) achieved SD;
Nine of 13 evaluable pts with squamous head and neck
cancer had SD diseases. Further evaluations are ongoing.

SINE in non-small cell lung cancer (NSCLC)
Epidermal growth factor receptor-tyrosine kinase inhibi-
tors (EGFR-TKI) are main treatment for patients with
advanced NSCLC with EGFR exon 19 deletion or exon
21 substitution [36,37]. EGFR overexpression and p53
mutations are associated with poor outcomes in NSCLC
[38,39]. As mentioned earlier, nuclear export of p53 is
mediated by XPO1 [40]. Sun et al. studied the antitumor
activity of KPT-330 against NSCLC in vitro and in vivo,
and concluded that the antitumor activity of KPT-330
against NSCLC was independent of p53 mutational sta-
tus [41]. The antitumor activity of KPT-330 against
NSCLC was likely related to p73. p73 shares structural
and functional similarities with p53 and cooperates with
p53 to induce apoptosis [42]. In cells with mutant p53,
p73 is shown to cause apoptosis via activation of p53-
inducible genes [42]. KPT-330 caused dose-dependent
growth inhibition of NSCLC with correlating decrease in
XPO1 levels [41]. Moreover, KPT-330 can inhibit NSCLC
cell growth even in EGFR-TKI resistant cancer cells. Com-
bination of KPT-330 and cisplatin displayed synergistic
in vitro antiproliferative activity. In vivo treatment of mice
with a dose of 10 mg/kg, thrice weekly for 4 weeks showed
significant tumor growth inhibition with minimal toxic-
ities. Another independent study confirmed the above
findings using KPT-185 in vitro and its oral clinical
equivalent KPT-276 on NSCLC cells in vivo using mouse
xenografts [43].

SINE in renal cell carcinoma (RCC)
Despite several approved drugs for metastatic RCC, the
progression free survival remains only 1 to 2 years [44].
KPT-185 was studied in vitro in RCC cell lines [45].
XPO1 is overexpressed in high grade RCC. KPT-185 and
its oral equivalent KPT-251 decreased XPO1 levels. They
also compared SINE with sorafinib and found greater in-
hibition of tumor growth with KPT-251 at a higher dose
of 75 mg/kg in mouse xenografts (p = 0.07) without any
adverse effects. KPT-185 increased nuclear localization of
p53 and its downstream protein p21 to cause cell cycle ar-
rest. Also, cytosol p21 reduction leads to apoptosis. KPT-
251 showed increased p53 and p21 nuclear levels in vivo.
Sorafinib, on the other hand, decreased nuclear and cyto-
plasmic p21, thereby causing apoptosis [46]. These find-
ings warrant further clinical studies using SINE as a
treatment choice in RCC.

SINE in melanoma
BRAF kinase activation is present in about 50% of melano-
mas [47-52]. Treatment with BRAF and MEK inhibitors
has been very successful, but the eventual development of
resistance to these kinase inhibitors calls for more agents
[51,53-60]. XPO1 expression is found to be increased in
metastatic melanoma more than primary melanoma or
nevi [61]. Hence, SINE can be a potential treatment for
metastatic melanoma. Salas Fragomeni et al. conducted
in vitro and in vivo studies in metastatic melanoma using
SINE and BRAF inhibitors [62]. They concluded that
BRAF inhibition by PLX-432 led to inhibition of cell prolif-
eration in BRAF-mutant cell lines, but BRAF wild-type
(WT) melanoma cell lines were relatively resistant [53,54].
However, SINEs inhibited cell proliferation and caused
cytotoxicity across all cell lines, regardless of BRAF status.
They also showed synergistic activity between SINE and
PLX-432 in BRAF mutant melanoma. Furthermore, SINE
and MEK inhibitors were also able to synergize with the
three-way treatment (SINE/MEK/BRAF), achieving an
even lower IC50. SINE also caused G1/S phase cell cycle ar-
rest, another effect synergized with concomitant BRAF in-
hibition in BRAF mutant cell lines. SINE also increased
nuclear p53, retinoblastoma (Rb). An increase in ERK
phosphorylation in the nucleus was also noticed. ERK
phosphorylation has been linked to increased cellular pro-
liferation and development of chemoresistance [61,63,64].
However, this SINE- induced ERK phosphorylation was
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prevented in the presence of BRAF inhibition, possibly
explaining the synergy between these two compounds. In
vivo mouse model showed complete tumor regression
using the combination regimen [62].

SINE in acute leukemia
SINE compounds have been studied as a novel antican-
cer strategy in multiple preclinical trials of hematologic
malignancies. Higher levels of XPO1 are associated with
poor prognosis in acute leukemia [65]. Earlier preclinical
work demonstrated that KPT-185 inhibited proliferation
and induced G1 phase cell cycle arrest in AML cell lines
and primary AML blasts in vitro [25]. Nucleophosmin 1
(NPM1) is a nucleolar TSP that shuttles between the nu-
cleolus and cytoplasm via the XPO1-RanGTP pathway
and regulates p53 dependent cell death [66]. NPM1 mu-
tations in AML cells were seen in 25% to 35% cases [67].
These mutations cause increased XPO1 binding and
localization of NPM1 in the cytoplasm [68]. SINEs block
this export of mutant NPM1 and induce antileukemic
effects in AML cell lines and primary AML blasts. AML
blasts with NPM1 mutations were very responsive to
KPT-185 and had an IC50 of 100 nmol/L. However, wild
type (WT) NPM1 in AML cells were also sensitive to
SINEs, indicating that other TSPs like p53 also have a role
in the antileukemic effects of SINE. Kojima et al. further
established that p53 is a major determinant in SINE in-
duced cytotoxicity in AML, independent of NPM1. Mu-
tant p53 samples were less sensitive to KPT-185 [65].
XPO1 inhibition by SINE also resulted in blast differenti-
ation, likely due to upregulation by p53 and CEBPA [69], a
protein essential for myeloid granulocytic differentiation
via activation of several necessary genes [70,71]. SINEs
were also shown to downregulate FLT3 and cKIT tyrosine
kinase proteins [25]. FLT3 gene mutation may coexist with
NPM1 mutations [72]. SINE downregulated FLT3 and
NPM1. Thus, SINEs can potentially target 2 critical path-
ways. cKIT mutations or overexpression also confer a
worse prognosis in AML [73,74]. Kojima et al. demon-
strated synergistic activity using the combination of SINE
with MDM2 inhibitor Nutlin-3a. MDM2, frequently over-
expressed in AML, is a p53-specific ligase, promoting p53
degradation [75]. Nutlin-3a is a selective MDM2 inhibitor,
shown to increase nuclear and cytoplasmic p53 and in-
duces p53 mediated apoptosis [75]. The addition of SINE
to Nutlin-3a led to higher p53 nuclear level than by using
either agent alone in vitro [65]. This combination strategy
can be potentially effective not only in AML but in several
other malignancies. Furthermore, SINEs are not shown to
induce apoptosis in normal hematopoietic cells [23,65,76].
T cell-acute lymphoblastic leukemia (T-ALL) is fatal in

about 50-70% of adult patients [77-79]. SINE has shown
striking activity in preclinical study for treatment of T-
ALL. KPT-185 and KPT-330 showed rapid apoptosis
induction in T-ALL cell lines in vitro with acceptable
IC50 [76]. In vivo treatment showed minimal gastrointes-
tinal adverse effects.
Philadelphia chromosome positive ALL remains a chal-

lenge even with availability of multiple tyrosine kinase in-
hibitors [80,81]. Walker et al. demonstrated successful use
of KPT-185 in vitro and KPT-330 in vivo in Philadelphia
chromosome positive ALL (Ph +ALL) and chronic mye-
loid leukemia blast crisis (CML-BC). Combination with
imatinib led to synergistic effects [82]. SINE treatment
was associated with significant reduction in BCR-ABL +
cells in mice, likely by reactivation of the tumor suppres-
sor proteins PP2A, p53, p21 and FOXO3a [82].
The preliminary results of an ongoing phase I trial using

KPT-330 in relapsed/refractory AML were presented Yee
et al. recently. They showed that KPT-330 treatment given
to heavily pretreated, refractory/relapsed AML patients
had no DLT. Out of the 32 evaluable patients, 4 (12%)
showed complete response (CR) with hematological recov-
ery, 1 (3%) showed marrow CR (mCR), mCR without
hematological recovery was seen in 1 (3%) patient. Partial
response (PR) was seen in 2 patients (6%). Eleven patients
(34%) showed progression while 12 (37%) experienced
stable disease after 30 days [83].

SINE in chronic leukemia
Even though more options are available now for chronic
lymphocytic leukemia (CLL) therapy, p53 positive CLL
still has poor prognosis [84-91]. Preclinical study by
Lapalombella et al. using KPT-185 in vitro and KPT-251
in vivo showed promising results in chronic lymphocytic
leukemia (CLL) cells [24]. KPT-185 induced nuclear re-
tention of IκB. IκB is an endogenous inhibitor of the in-
flammatory antiapoptotic transcription factor NFκB,
which is involved in the upregulation of MCL1, the most
significant antiapoptotic protein associated with CLL
[92,93]. KPT-185 induced MCL1 depletion, likely due to
inactivation of NFκB by nuclear retention of IκB. Murine
xenografts treated with KPT-251 showed significant im-
provement in survival when compared with fludarabine
[24]. In a 37 year old patient with CML-AP resistant to
multiple treatment options (TKIs, interferon, omacetax-
ine and azacitidine), a trial of selinexor (KPT-330) on a
compassionate use protocol showed significant reduc-
tion in bone pain, spleen size, white blood cell count,
and lactate dehydrogenase (LDH) level. Peripheral blood
smears showed a dramatic reduction in immature mye-
loid blasts [82].

SINE in multiple myeloma (MM)
SINE was shown to induce cytotoxicity and inhibits os-
teoclastogenesis in multiple myeloma in vitro and
in vivo [12]. High CRM1 expression was found to be as-
sociated with lytic bone disease (P = 0.008) and shorter
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survival (P = 0.024). CRM1 levels are higher in bortezo-
mib resistant MM cells. SINEs caused nuclear accumula-
tion of multiple TSPs including p53, FOXO3a, IκB, p21
and PP2A. SINE also caused anti-MM effects in the
bone marrow microenvironment by activating caspase
cascade and causing PARP cleavage, and showed a syner-
gistic effect when combined with bortezomib, without
affecting bone marrow stromal cells. Another study,
however, observed no synergy with KPT-276 in combin-
ation with dexamethasone, bortezomib, or melphalan
[94]. Osteoclastogenesis is controlled by NFκB activation
through cytokine RANKL and NFAT1c. Both KTP-185
and KPT-330 blocked RANKL mediated activation of
NFκB in osteoclast (OC) precursor cells, and also
blocked NKFAT1c, which is also essential for osteoclast
function [12,94]. Surprisingly, SINE reduced the expres-
sion of oncogene c-myc, despite the fact that CRM1
does not mediate c-myc export [95]. C-myc activation is
associated with poor prognosis and shorter survival in
monoclonal gammopathy of undetermined significance
(MGUS) and MM [96]. A study done in 2012 indicated
that p53 activation is responsible for inhibiting CRM1
and c-myc genes [97]. BRD4, another gene downregu-
lated by SINE, regulates DNA replication, promotes c-
myc transcription and is associated with MM disease
progression [98,99]. BRD4 knockdown causes cell cycle
arrest and subsequent apoptosis [98]. JQ1, a small
molecule inhibitor of BRD4 gene causes decreased tran-
scription of c-myc, an effect that was synergistic with
KPT-276 [98]. This result can be utilized for further
cytotoxic treatment of tumor cells in MM. Lastly, 2 week
in vivo treatment with KPT-276 had a comparable effect
on M-spike reduction with melphalan and bortezomib,
the two potent anti-MM drugs [94].
Table 1 Selinexor (KPT-330) in clinical trials

Diseases Trial

Relapsed ALL and AML Phase I

Unresectable melanoma Phase I

Gynaecologic malignancies Phase II

Advanced/metastatic solid tumors Phase I

Soft-tissue or bone sarcoma Phase Ib

Advanced/metastatic solid tumors Phase I

Metastatic resistant prostate cancer Phase II

Advanced hematological malignancies Phase I

Recurrent glioblastoma Phase II

Relapsed/refractory AML Phase II

Refractory/relapsed CLL Phase II

Acute myeloid leukemia Phase I

Locally advanced rectal cancer Phase I

Note: details of all NCT trials can be found on www.clinicaltrials.gov.
SINE in lymphoma
Novel agents and regimens for lymphoma are moving
rapidly from bench to bedside [89,100-104]. KPT drugs
have been studied preclinically for the treatment of re-
sistant mantle cell lymphoma (MCL). Yoshimura et al.
conducted an in vitro study of KPT-185 in MCL and
showed that SINE increases MCL cell apoptosis primar-
ily by increasing nuclear p53 levels [105]. They verified
that KPT-185 downregulated c-myc and NFκB, thus tar-
geting multiple pathways of apoptosis. Zhang et al. studied
the in vivo effects of KPT-276 in mice and showed marked
activity with minimal weight loss, gastrointestinal side ef-
fects, or myelosuppression [106]. London et al. studied
SINEs in vivo in a phase I clinical trial in spontaneous ca-
nine NHL, osterosarcoma or mast cell tumor. They used
KPT-335 at a dose of 1 mg/kg to 1.75 mg/kg two times a
week and showed significant response without develop-
ment of serious side effects [107]. Gutierrez et al. pre-
sented the findings of their phase I study with KPT-330 in
32 pretreated refractory lymphoma patients. The optimal
dosing of KPT-330 is at least 45 mg/m2 and durable activ-
ity of KPT-330 was observed in those NHL patients [108].
These data further validated the activity of SINEs in hu-
man malignancies.

Future directions
More and more targeted small molecule inhibitors are en-
tering clinical application quickly [53,84,85,109-113]. Se-
lective inhibitors of nuclear export (SINE) show activity
in a wide variety of cancers, both hematologic and solid
tumors [114,115]. Currently, they are being studied in
early phase clinical trials (Table 1). Their low toxicity
profile and synergistic effects in combination with other
antineoplastic agents support further development in
Recruting status NCT number

Recruiting NCT02091245

Not yet Recruiting NCT02120222

Recruiting NCT02025985

Recruiting NCT02078349

Recruiting NCT01896505

Recruiting NCT01607905

Recruiting NCT02146833

Recruiting NCT01607892

Recruiting NCT01986348

Rectruiting NCT02088541

Recruiting NCT02138786

Recruiting NCT02093403

Not yet Recruiting NCT02137356

http://www.clinicaltrials.gov
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combination regimens against a wide range of malig-
nancies. SINEs represent a unique, novel class of
targeted agents for various malignancies.
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