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Abstract

Background: Therapy and outcome for elderly acute myeloid leukemia (AML) patients has not improved for many
years. Similarly, there remains a clinical need to improve response rates in advanced myelodysplastic syndrome
(MDS) patients treated with hypomethylating agents, and few combination regimens have shown clinical benefit.
We conducted a 5-azacytidine (5-Aza) RNA-interference (RNAi) sensitizer screen to identify gene targets within the
commonly deleted regions (CDRs) of chromosomes 5 and 7, whose silencing enhances the activity of 5-Aza.

Methods and results: An RNAi silencing screen of 270 genes from the CDRs of chromosomes 5 and 7 was
performed in combination with 5-Aza treatment in four AML cell lines (TF-1, THP-1, MDS-L, and HEL). Several genes
within the hedgehog pathway (HhP), specifically SHH, SMO, and GLI3, were identified as 5-Aza sensitizing hits. The
smoothened (SMO) inhibitors LDE225 (erismodegib) and GDC0449 (vismodegib) showed moderate single-agent
activity in AML cell lines. Further studies with erismodegib in combination with 5-Aza demonstrated synergistic
activity with combination index (CI) values of 0.48 to 0.71 in seven AML lines. Clonogenic growth of primary patient
samples was inhibited to a greater extent in the combination than with single-agent erismodegib or 5-Aza in 55 %
(6 of 11) primary patient samples examined. There was no association of the 5-Aza/erismodegib sensitization
potential to clinical-cytogenetic features or common myeloid mutations. Activation of the HhP, as determined by
greater expression of HhP-related genes, showed less responsiveness to single-agent SMO inhibition, while synergy
between both agents was similar regardless of HhP gene expression. In vitro experiments suggested that
concurrent dosing showed stronger synergy than sequential dosing.

Conclusions: Inhibition of the HhP with SMO inhibitors in combination with the hypomethylating agent 5-Aza
demonstrates synergy in vitro and inhibits long-term repopulation capacity ex vivo in AML and MDS. A clinical trial
combining 5-Aza with LDE225 (erismodegib) in MDS and AML is ongoing based on these results as well as
additional publications suggesting a role for HhP signaling in myeloid disease.
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Background
Therapeutic options for patients with acute myeloid
leukemia (AML), myelodysplastic syndrome (MDS), or
advanced myeloproliferative neoplasms (MPNs) are still
limited, and novel molecularly targeted therapies are
needed. 5-Azacytidine (5-Aza) is a hypomethylating
agent (HMA) [1] commonly used as a lower intensity
regimen in MDS, AML, and MPNs [2, 3]. While 5-Aza
has shown clinically meaningful responses and disease
control [2, 3], there remains a need to develop more
effective and well-tolerated novel rational combinations
[4, 5]. Deletions or monosomies of chromosomes 5 and
7 are frequent in MDS and AML and portend a worse
prognosis [2, 3]. Genes on these chromosomal regions
regulate tumor suppressor networks suggesting that
these genes or chromosomal regions are involved in dis-
ease pathogenesis, which consequently would make
them therapeutic targets either alone or with 5-Aza [6].
Thus, silencing of relevant target genes would enhance
5-Aza activity and consequently make drugs targeting
such genes candidates for combination with 5-Aza. Fur-
ther, a haploinsufficient therapeutic context for patients
with chromosome 5/7 aberrations can be discovered, if
silencing of a specific gene within these commonly de-
leted regions (CDRs) can be effectively inhibited and
sensitizes to 5-Aza. To identify such novel target genes
and molecular vulnerabilities in AML, MDS, and MPNs,
we performed an RNA-interference (RNAi) screen of
270 genes located within the CDRs of chromosomes 5
and 7, in combination with 5-Aza treatment. Several
genes within the Hedgehog pathway (HhP) were identi-
fied as potential sensitizers to 5-Aza. Based on these and
other pre-clinical observations of a potential role of the
HhP in myeloid disease as highlighted below, a clinical
phase 1/1b trial of 5-Aza with the smoothened (SMO)
inhibitor LDE225 (erismodegib) in AML, MDS, and
MPN patients was initiated and is currently accruing
patients.
The HhP is highly evolutionarily conserved and plays

critical roles in embryonic development, such as regulat-
ing patterning and limb formation, and is involved in the
homeostasis of many human organs and tissues includ-
ing in the hematopoietic system [7]. HhP genetic alter-
ations in the HhP are linked to the development of
several human tumors such as basal cell carcinoma
(BCC), medulloblastoma (MB), and rhabdomyosarcoma.
Aberrant HhP signaling without evidence of genetic de-
fects has also been linked to disease pathogenesis of
many other tumors. The HhP can be activated by extra-
cellular ligands, such as Sonic or Indian Hedgehog
(SHH, IHH), that bind the transmembrane receptor
Patched (PTCH) [7]. PTCH, when active, constitutively
inhibits SMO and thus downstream transcription factors
like GLI-1, GLI-2, GLI-3, as well as other genes involved
in cell proliferation or survival (e.g., BCL-2, BCL-XL) [7].
Activated HhP signaling, for example, by inhibitory mu-
tations in PTCH in BCC (i.e., the PTCH “brake” is re-
moved) [8] or by overexpression or activation of SMO,
contributes to malignant transformation via the afore-
mentioned transcription factors and anti-apoptotic
genes. Currently developed drugs, including erismode-
gib, mostly target/inhibit SMO as an essential intermedi-
ate gene within the HhP that is activated and mediates
intracellular signaling.
A rationale for inhibiting HhP signaling in myeloid

malignancies has been described in the literature based
on observations that HhP signaling regulates erythroid
progenitor cell proliferation and differentiation [9] and is
thought to be essential for the maintenance of myeloid
cancer stem cells [10]. For example, SHH activates
downstream transcription factor GLI-1 in several
hematological malignancies, with prevalent expression
observed in AML and acute promyelocytic leukemia
(APL) patients [11]. HhP genes SHH, SMO, and GLI-1
are upregulated in chronic myeloid leukemia (CML)
patients and are further elevated in blast crisis as com-
pared to chronic-phase CML [12]. It is further hypothe-
sized that developmental pathways such as the HhP play
a role in the expansion of BCR-ABL-positive leukemic
stem cells (LSCs) and may be responsible for residual
disease after BCR-ABL targeted therapies [12]. Similarly,
there seems to be a role for the HhP in LSCs of acute
leukemias [10] and other neoplastic myeloid diseases
such as MPNs [13], including polycythemia vera (PV),
essential thrombocytopenia (ET), and primary myelofi-
brosis (PMF). Although the HhP plays a role in normal
hematopoiesis and morphogenesis, the pathway is
mostly silenced in normal adult tissue but re-activated
in an oncogenic state. This rather selective tumor tissue
expression best explains the good tolerance of SMO in-
hibitors in the clinic, with many patients being treated
for several years [14, 15].
Preliminary clinical activity of single-agent SMO inhib-

itors in AML, MDS, and MPNs, including myelofibrosis
(MF), has been demonstrated [16]. Herein, we report
pre-clinical data of the novel combination of 5-Aza
and the SMO inhibitor LDE225 in myeloid malignan-
cies as a possible novel combination in advanced mye-
loid malignancies.

Results
RNAi screens of genes from commonly deleted regions of
chromosomes 5/7 with 5-azacytidine
To identify rational combinations with 5-Aza, a custom
collection of small interfering RNA (siRNA) targeting
270 genes selected from the CDRs of chromosomes 5
and 7 was evaluated together with 5-Aza in RNAi
sensitizer screens. Using four human myeloid leukemia
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cell lines (TF-1, HEL, THP-1, and MDS-L), several HhP
genes were found to enhance 5-Aza activity. Specifically,
three HhP genes emerge as sensitizers to 5-Aza when si-
lenced by siRNA in three of four cell lines examined
(Fig. 1). SHH silencing sensitized to 5-Aza in both TF-1
and THP-1 cells, while SMO and GLI-3 silencing sensi-
tized in HEL and THP-1 cells, respectively. The RNAi
screen performance was robust with high transfection
efficacy (TF-1, 74–95 %; HEL, 58–86 %; THP-1, 89–
96 %; MDS-L, 49–91 %), and except for THP-1, little
non-specific toxicity (i.e., the non-targeting siRNA tox-
icity; for TF-1, 0–11 %; HEL, 0–20 %; THP-1, 34–70 %;
MDS-L, 3–18 %). These performance characteristics are
comparable with other RNAi screens in myeloid cells as
we have reported previously [17, 18]. The effective con-
centration (EC) values (i.e., the percent reduction in
relative cell number) for 5-Aza ranged between ~EC5

and EC55 (Fig. 1 and Additional file 1: Table S1 A–D).
Fig. 1 RNAi screening hits in four AML cell lines (TF-1, HEL, THP-1, MDS-L).
definition/selection is described in the “Methods” section. ****3 of 3 siRNA
stdev; *2 or 3 siRNA >1 stdev. EC effective concentration of 5-azacytidine a
SMO inhibitors combined with 5-azacytidine in AML cells
Next, we examined the effect of two clinically developed
SMO inhibitors, GDC-0449 (vismodegib), the first and
only in-class approved SMO inhibitor [19], and LDE225,
which is in clinical development and currently used
in a combination trial with 5-Aza (clincialtrials.gov:
NCT02129101). EC50 values for LDE225 ranged from
3.8 to 15.2 μM, and EC50 values for vismodegib
ranged from 12 to 83 μM (Table 1). Synergy between
5-Aza and LDE225, as calculated by the Chou-Talalay
method, was observed in seven molecularly heteroge-
neous AML cell lines with combination index (CI)
values from 0.48 to 0.71 (Table 2). Importantly, syn-
ergy is observed at 5-Aza concentrations of 0.8–
2.5 μM (Additional file 2: Table S2), comparable to
clinically achievable 5-Aza concentrations in humans.
LDE225 concentrations corresponding to optimal syn-
ergy were mostly in the range of 4–8 μM, although
Venn diagrams show the gene hits per screen and cell line. Hit
>2 stdev; ***2 of 3 siRNA >2 stdev; **1 siRNA >2 stdev and 1 siRNA >1
t which screen was performed



Table 1 Single-agent activity of SMO inhibitor in AML.
Micromolar (μM) EC50 values of SMO inhibitors LDE225
(erismodegib) and GDC0449 (vismodegib) in AML cell lines

Cell line LDE225 GDC0449

EC50 [μM] EC50 [μM]

MDS-L 15.2 62

TF-1 FLT3-ITD 13.6 –

UKE-1 11.9 –

HEL 11.9 83

ML-2 11.0 12

K562 10.3 32

SET-2 9.7 52

THP-1 9.4 41

OCI-AML3 9.0 38

OCI-AML2 6.9 –

MV4-11 5.4 –

M07e 5.2 –

HL-60 4.3 15

TF-1 3.8 45
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both higher and lower LDE225 dose outliers are ob-
served, as low as 0.25–0.5 μM.
To determine if transcript expression of relevant HhP

genes correlated with single-agent activity or synergy, we
assessed HhP signaling genes (e.g., SMO, SHH), HhP
transcription factors (GLI-1, GLI-2, and GLI-3), and
representative transcriptional target genes (e.g., anti-
apoptotic BCL-2 and BCL-XL [BCL2L1] and CDK1) for
their expression in the four AML cell lines used in RNAi
screening experiments (TF-1, HEL, MDS-L, and THP-
1), and enriched the dataset with an additional cell line
(MV4-11) for which RNA sequencing (RNAseq) data
and drug treatment data was available. Overall, there
was no specific distinguishing expression signature; how-
ever, general HhP activation (i.e., HEL and MDS-L) was
associated with reduced sensitivity to single-agent SMO
Table 2 Synergy between 5-azacytidine and erismodegib in
AML. Sensitization and synergy between LDE225 (erismodegib)
and 5-azacytidine (5-Aza). EC50 values in micromolar (μM) and
synergy presented as combination index (CI) values

Cell line EC505-Aza
alone [μM]

EC505-Aza + LDE225
[μM]

CI EC50LDE225
alone [μM]

TF-1 2.7 1.8 0.55 3.8

MDS-L 7.2 4.8 0.71 15.2

HL-60 1.0 0.5 0.68 4.3

MV4-11 2.2 1.1 0.68 5.4

ML-2 1.5 1.0 0.52 11

OCI-AML3 4.3 2.0 0.48 9

THP-1 21 10 0.57 10
inhibition. The synergistic effects (CI values), however,
were independent of HhP gene activation (Additional file
3: Figure S1), possibly suggesting that inhibiting SMO
expression is more relevant in combination with 5-Aza.
These gene expression experiments also indicate that
different myeloid cells activate the HhP via modulation
of distinct components of the HhP. For example, MDS-
L displayed highest expression of IHH, PTCHD 1/2/4,
and GLI1/2, whereas HEL preferentially expressed SMO
and GLI2, THP-1 SHH, and SMO and GLI3. Expression
levels of genes are also consistent with RNAi hits in the
respective cell lines (i.e., SMO in HEL, GLI3 and SHH
in THP-1). Potential differences in HhP signaling will be
examined in samples from patients on trial using RNA-
seq as part of the biomarker analysis (clincialtrials.gov:
NCT02129101).

Hedgehog pathway inhibition in combination with 5-
azacytidine in clonogenic assays
Strong sensitization with greatly reduced colony count is
observed with combined LDE225 and 5-Aza as com-
pared to either single agent in several primary MDS and
AML samples in clonogenic assays (Fig. 2, i.e.,
AMML#2, MDS#7, PV+MPN#1). However, some sam-
ples showed a neutral response to the combination com-
pared to one or both single agent (i.e., AML#1, AML#2,
MDS#3), while a few samples do not show added benefit
over the combination, and may even exhibit slight antag-
onism with combination treatment compared to either
single agent (i.e., MDS#4, MDS#5). The greatest degree
of sensitization is seen at 2–4 μM of LDE225, at a 5-Aza
dose kept constant at 1 and 2 μM to reflect clinically
achievable concentrations of 5-Aza. Interestingly, one
sample (MDS#3) assessed at the time of MDS diagnosis
showed little benefit from the combination, yet a sample
from this same patient drawn and assayed at the time of
progression to AML (AML#2) showed increased benefit
from both single-agent LDE225 and the LDE225/5-Aza
combination. The clinical data and molecular character-
istics of patient samples examined in ex vivo clonogenic
assays are shown in Table 3. There was no correlation
in this dataset to any obvious clinical molecular-
cytogenetic characteristics or to targeted sequencing of
mutations in myeloid-associated genes performed on a
number of samples.

Sequencing schedules of combined 5-azacytidine and
SMO inhibitors and specificity to HMA
As the optimal sequence of SMO inhibition with 5-Aza
is not determined, drug sequencing experiments using
high, middle, and low LDE225 concentrations were per-
formed on standard doses of 5-Aza in vitro. As shown
in Table 4, concurrent treatment at higher doses of 8
and 32 μM LDE225 showed greatest sensitization by



Fig. 2 Clonogenic growth inhibition of primary MDS and AML specimens. LDE225 (erismodegib) and 5-azacytidine in primary patient samples. UT
untreated. Dose of 5-Aza and LDE225 given in micromolar at y-axis. Percent growth at x-axis
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fold-shift in EC50 values of 5-Aza, while sequential dos-
ing showed a trend towards antagonism, at least in
vitro.
A comparison of the synergistic potential of erismode-

gib with 5-Aza versus cytarabine (Ara-C), the most com-
monly used AML cytotoxic drug, shows that while
sensitization is observed with 5-Aza, antagonism is ob-
served when combined with Ara-C, demonstrated by a
rightward curve shift to a higher EC50 value (Additional
file 4: Figure S2).

Conclusions
RNAi screening of AML and MDS relevant genes
located on chromosomes 5 and 7 in combination with
5-Aza yielded potential targetable molecular vulnerabil-
ities. Several of the 5-Aza sensitizing gene hits are
situated within the HhP. Experiments with SMO inhibi-
tors in vitro and ex vivo pharmacologically validate the
idea that the HhP could serve as a therapeutic target
with HMAs in myeloid malignancies. This is of immedi-
ate translational relevance as several well-tolerated SMO
inhibitors are clinically developed. Trials of SMO inhibi-
tors and HMAs, either 5-Aza or decitabine (DAC), are
currently ongoing in patients with AML, MDS, and
MPNs. To our knowledge, this is the first report show-
ing synergy between an SMO inhibitor and a HMA in
primary AML and MDS samples, as well as in AML cell
lines.
The HhP is highly complex and difficult to examine

in vitro and even in vivo. Thus, detailed molecular ana-
lyses of potential underlying mechanisms for the
sensitization effects were not performed in this study.
Because clinical development is proceeding so rapidly,
future biology will be best explored using actual samples
from patients treated on study. To that end, we are pro-
spectively collecting sequential samples from patients on



Table 3 Clinical and molecular patient characteristics

Patient Age Gender Disease Counts Treatment status Cytogenetics (Standard)
molecular tests

Targeted sequencing

WBC %
Blasts

Hb (g/
dL)

Platelets CG FISH

MDS#1 75 M MDS/MPN 100 0–1 10–11 15 Naïve (except prior HU) 46 xy Not done JAK2 pos. MPL
neg.

Not done

AMML#2 65 M CMML->AMML 6 17–21 8.8 107 Naïve 46 xy Normal JAK/MPL/BCR-
ABL all neg.

Not done

MDS#3a 65 M RCMD/RAEB-1 1.7 4 7–8 56 Lenalidomide, azacitidine
decitabine (off >4 months)

del(5) (q13q33),
del(20) (q11.2q13.3)

5q-(85 %), del20q (64 %) None NF1, TET2, RUNX1, BCOR,
EZH2, SF3B1

AML#2a 65 M MDS->AML 2.1 52 8.4 25 Lenalidomide, azacitidine
decitabine (off >8 months
at AML progression)

del(5) (q13q33),
del(20) (q11.2q13.3)

5q-(85 %), 20q- (11.5 %) None NF1, TET2, RUNX1, BCOR,
EZH2, SF3B1

MDS#4 70 M RCMD 1.7 1 11.3 80 2-CDA for HCL 8 years prior del 20q (q11.2q13.3) 20q- (38.5 %) +8 (7.5 %) Not done Not done

MDS#5 73 M MDS->AML 0.8 5 9.7 11 Progressed after CR
azacitidine, minimal/no
response to decitabine

46 xy Normal FLT3 neg. NRAS, NF-1, MLL-PTD,
DNMT3A, BCOR, U2AF1

MDS#6 73 M RAEB-2->AML 2.7 12 10.3 11 No response to oral
azacitidine

46 xy Normal FLT3 neg. NPM1
neg.

No mutation detected

MDS#7 77 M RCMD 12.5 1 435 435 2-CDA for MM 3 years
prior

Complex [del1p,
5q22del translocation
6; 7, +8]

5q- (28.5 %) +8 (20.5 %)
+3q21, +3q26.2 (both 54 %)

Not done Not done

AML#1 72 M AML (de novo) – – – – Naïve del(9) (q13q22) -y Normal FLT neg. NPM
pos.

Not done

CMML#1 84 F CMML-1 20 1 9 169 Azacitidine + SAHA (off
4 months)

46 xx Normal None TET2, NRAS, MLL-PTD,
RUNX1, ASXL1, EZH2, WT1

aSame patient analyzed at time of MDS and at later stage after AML evolution
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Table 4 Sequential versus concurrent 5-azacytidine/LDE225 treatment

Cell line LDE225 dose and sequence of drug dosing

32 μM LDE225 8 μM LDE225 2 μM LDE225

5-Aza + LDE225 LDE225→5-Aza 5-Aza→LDE225 5-Aza + LDE225 LDE225→5-Aza 5-Aza→LDE225 5-Aza + LDE225 LDE225→5-Aza 5-Aza→LDE225

TF-1 1.3 −1.5 1 1.2 −1.6 −1.2 1.3 −1.1 −1.1

OCI-AML3 2.6 −2 −1.5 2 −1.8 −1.7 1.3 −1.3 −1.2

MDS-L 1.5 −1.6 −1.2 1.5 −1.1 −1.2 1.1 −1.2 −1.2

THP-1 2 −1 −1.1 2 −1.5 −1.3 1.1 −1.3 −1.2

Fold-shift of EC50 values at sequential (5-Aza first followed by LDE-225: 5-Aza→LDE225; LDE225 first followed by 5-Aza: LDE225→5-Aza) or concurrent (5-Aza + LDE225) treatment in four AML cell lines. Fold-shift is
calculated by comparing the 5-Aza EC50 value in the combination of 5-Aza + LDE225 to the EC50 value of 5-Aza alone
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an ongoing trial combining 5-Aza with erismodegib
(NCT02129101).
Foregoing an investigation of the complex HhP biology

pre-clinically, we will focus efforts on exploring the biol-
ogy of HhP and SMO inhibitors in situ with actual sam-
ples from patients on trial. We will perform global RNA
sequencing and complementary genomic assays on seri-
ally collected samples to assess baseline and transcrip-
tional changes associated with clinical response to SMO
inhibition in AML and MDS. We prefer this in situ ap-
proach, as the ultimate proof of effectiveness for a novel
combination can only be shown in the clinic, and novel
combinations are urgently needed for advanced MDS
and elderly AML patients. Consequently, the goal of the
present study was to provide preliminary evidence of the
sensitization and interaction between 5-Aza and SMO
inhibition in primary malignant myeloid cells ex vivo,
which has not been reported previously. Furthermore,
RNAi screens have inherent biases for both false posi-
tives and negatives (i.e., hits derived from off-target ac-
tivity and genes missed by insufficient silencing); thus,
there are possibly additional target genes on the CDRs
of chromosomes 5 and 7 that may sensitize to HMAs.
Despite these limitations, RNAi screens can serve as a
valuable assay to identify leads that can guide further
pre-clinical validation and translation into the clinic.
Several observations regarding the sensitization be-

tween 5-Aza and SMO inhibition are worth noting. First,
sensitization is at least partially independent of sur-
rounding stroma cells and cellular structures indicating
that HhP inhibition with SMO inhibitors in myeloid
cells is at least partially cell autonomous (i.e., autocrine)
or paracrine between malignant myeloid cells. Second,
not all specimens showed sensitization in ex vivo assays.
Sensitization was observed in approximately 30 to 50 %
of samples making biomarker studies with actual patient
samples even more important once outcome and clinical
response assessments are available. Within the clinical
characteristics of the patient samples examined ex vivo
in this study, there was no apparent feature differentiat-
ing responding (sensitized) samples, based on cytogen-
etics, disease subtype, or targeted mutation profiling,
from non-responding patient samples (Table 3). HhP
gene activation appears to associate with single-agent
sensitivity to SMO inhibitors (Additional file 3: Figure
S1), whereas there was no apparent association with
combination synergy. Limited pre-clinical in vitro data
showed that concurrent treatment of erismodegib to-
gether with 5-Aza may be effective, which has in-
formed trial design by adding a treatment arm with
concurrent dosing of 5-Aza and SMO inhibitors. Con-
current treatment may allow SMO inhibitors to be
further escalated to a dose that may otherwise not be
tolerated if given continuously. We are exploring this
concept in the ongoing trial (R. Tibes, personal
communication).
In conclusion, targeting the HhP by inhibiting SMO, in

combination with the HMA 5-Aza, shows sensitization
in some, but not all, primary AML, MDS, and MPN
patient samples. The mechanism(s) of synergy remain
uncertain and require further investigation in future
studies. Given the overall good clinical tolerance of SMO
inhibitors, the activity of 5-Aza in MDS and AML, and
pre-clinical studies presented herein, the rational com-
bination of erismodegib and 5-Aza is being examined in
an ongoing clinical trial.
Methods
Cell lines, primary sample isolation, culture conditions,
and reagents
Human acute myeloid leukemia cell lines TF-1, THP-1,
HEL, and MDS-L [20] and primary patient samples were
cultured at 37 °C under 5 % CO2 atmosphere in culture
medium consisting of RPMI-1640 supplemented with
10 % fetal bovine serum, 2-mM L-glutamine, 100 IU/mL
penicillin, and 100 μg/mL streptomycin. Primary sam-
ples were collected from patients with informed consent
under Mayo Clinic IRB-approved research protocols and
handled according to Good Clinical Practice. Primary
cells were Ficoll-gradient separated and used as outlined
and previously [18, 21]. All reagents for cell culture were
obtained from Invitrogen (Carlsbad, CA, USA). Culture
media for TF-1 and MDS-L were supplemented with
10 ng/mL GM-CSF or IL-3 (Stem Cell Technologies,
Vancouver, BC, CA), respectively. 5-Aza was obtained
from Sigma-Aldrich (St. Louis, MI, USA), GDC0449
from SeleckChem (Houston, TX, USA), and LDE225
was obtained from Novartis as well as purchased from
SeleckChem.
RNA-interference screens
A custom siRNA library targeting 270 genes derived
from the commonly deleted regions (CDRs) of chromo-
somes 5/7 with 3× siRNA sequences per gene was
assembled (Qiagen, Valencia, CA, USA). Genes were si-
lenced by delivery of siRNA with cationic lipid-based
transfection reagents for 48 h followed by 5-Aza treat-
ment or treatment with culture medium for siRNA-only
control plates, for an additional 48 h, after which relative
cell number/cell viability was determined using CellTiter-
Glo (Promega, Madison, WI, USA). All RNAi screen
plates contained non-silencing siRNA and universal lethal
siRNA controls. Hits were selected as >2 standard devi-
ation changes in viability from the median log2 value of
the ratio [(siRNA + 5-Aza) / (siRNA only)]. RNAi screens
were performed in duplicate.
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Drug-dose response assays and CalcuSyn analysis
Combination drug-dose response assays were performed
similar to previous descriptions [18, 21]. In brief, 384-
well plates were used to assess nine doses of 5-Aza di-
luted threefold serially and six doses of LDE225 diluted
two- to fourfold serially, yielding possible 54 dose com-
bination readouts, each combination having quadrupli-
cate data points. Relative cell number/viability was
determined at 96 h using CellTiter-Glo (Promega) for all
drug-dose response assays. For experiments analyzing
sequential drug dosing, the second drug was adminis-
tered 48 h after the first drug. Prism Version 5.03 (Prism
Software Corporation, Irvine, CA, USA) was used for
calculating 5-Aza EC50 values. CI values were deter-
mined using CalcuSyn Version 2.1 (Biosoft, Cambridge,
UK) as developed by Chow and Talalay [22].

RNA sequencing
Sample preparation and sequencing
RNA libraries were prepared according to the manufac-
turer’s instructions for the TruSeq RNA Sample Prep Kit
v2 (Illumina, San Diego, CA). The liquid handling
Eppendorf (Hamburg, GER) EpMotion 5075 robot was
employed for TruSeq library construction. All AMPure
bead cleanup, messenger RNA (mRNA) isolation, end
repair, and A-tailing reactions were completed on the
5075 robot. Reverse transcription and adaptor ligation
steps were performed manually. Briefly, poly-A mRNA
was purified from total RNA using oligo dT magnetic
beads. The purified mRNA was fragmented at 95 °C for
8 min, eluted from the beads, and primed for first-strand
complementary DNA (cDNA) synthesis. The RNA frag-
ments were then copied into first-strand cDNA using
SuperScript III reverse transcriptase and random
primers (Invitrogen, Carlsbad, CA). Next, second-strand
cDNA synthesis was performed using DNA polymerase
I and RNase H. The double-stranded cDNA was purified
using a single AMPure XP bead (Agencourt, Danvers,
MA) cleanup step. The cDNA ends were repaired and
phosphorylated using Klenow, T4 polymerase, and T4
polynucleotide kinase followed by a single AMPure XP
bead cleanup. The blunt-ended cDNAs were modified to
include a single 3′ adenylate (A) residue using Klenow
exo- (3′ to 5′ exo minus). Paired-end DNA adaptors
(Illumina) with a single “T” base overhang at the 3′ end
were immediately ligated to the “A tailed” cDNA popu-
lation. Unique indexes, included in the standard TruSeq
Kits (12-Set A and 12-Set B) were incorporated at the
adaptor ligation step for multiplex sample loading on
the flow cells. The resulting constructs were purified by
two consecutive AMPure XP bead cleanup steps. The
adapter-modified DNA fragments were enriched by
12 cycles of PCR using primers included in the Illumina
Sample Prep Kit. The concentration and size distribution
of the libraries were determined on an Agilent Bioanalyzer
DNA 1000 chip (Santa Clara, CA). A final quantification,
using Qubit fluorometry (Invitrogen, Carlsbad, CA), was
done to confirm sample concentration.
Two RNAseq libraries per lane were loaded onto

paired-end flow cells at concentrations of 8–10 pM to
generate cluster densities of 700,000–800,000/mm2 fol-
lowing Illumina’s standard protocol using either the Illu-
mina cBot or HiSeq 2500 and TruSeq Rapid Paired-End
cluster kit version 1.
The flow cells were sequenced as 100 × 2 paired-end

reads on an Illumina HiSeq 2500 using TruSeq Rapid
SBS sequencing kit version 1 and HCS version 2.0.12.0
data collection software. Base-calling is performed using
Illumina’s RTA version 1.17.21.3.

RNA analysis
FastQC (v 0.10) and RSeQC (1) were used to monitor read
quality. RNA analysis was performed using an internally
developed pipeline called MAP-RSeq (2). Briefly, reads
were aligned to the human genome (hg19) and transcrip-
tome using Tophat2 (3) running Bowtie (v1) (4). Gene
and exon level read counts were generated using HtSeq
(5) and BedTools (6), respectively, and normalized using
RPKM normalization. Data analysis was conducted using
the R package and Qiagen’s Ingenuity® Pathway Analysis
(IPA®, Qiagen Redwood City, www.qiagen.com/ingenuity).

Clonogenic assays
Briefly, as previously described [4, 21], cells were
suspended in Methocult H4434 Classic (Stem Cell Tech-
nologies) and dosed with 5-Aza and/or LDE225. Duplicate
35-mm dishes were plated for each experimental treat-
ment and allowed to incubate for 11–14 days at 37 °C
under 5 % CO2 atmosphere before counting total colonies
on treatment blinded dishes. Treatment effect on colony
growth was determined by dividing the average colony
count of both dishes for each treatment by the average
colony count of both untreated control dishes.
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Additional file 2: Table S2. Detailed synergy between LDE225 and
5-Azacytidine in AML Cell Line.

Additional file 3: Figure S1. Top: Heatmap of 21 HhP genes clustered
by cell line. Bottom: Table with single-agent EC50 in μM and synergy
potential expressed as Combination Index (C.I.) values.

Additional file 4: Figure S2. 5-Azacytidine (5-Aza) showed curve shift
to lower EC50 values, whereas cytarabine (Ara-C) showed the opposite
trend in viability assays.
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