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with PT/Cy.

In haploidentical stem cell transplantations (haplo-SCT), nearly all patients have more than one donor. A key issue in
the haplo-SCT setting is the search for the best donor, because donor selection can significantly impact the
incidences of acute and chronic graft-versus-host disease, transplant-related mortality, and relapse, in addition to
overall survival. In this review, we focused on factors associated with transplant outcomes following unmanipulated
haplo-SCT with anti-thymocyte globulin (ATG) or after T-cell-replete haplo-SCT with post-transplantation
cyclophosphamide (PT/Cy). We summarized the effects of the primary factors, including donor-specific antibodies
against human leukocyte antigens (HLA); donor age and gender; killer immunoglobulin-like receptor-ligand
mismatches; and non-inherited maternal antigen mismatches. We also offered some expert recommendations and
proposed an algorithm for selecting donors for unmanipulated haplo-SCT with ATG and for T-cell-replete haplo-SCT
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Background

Allogeneic hematopoietic cell transplantation (SCT) re-
mains the only curative therapy for a majority of malig-
nant hematologic diseases [1-7]. Currently, for patients
that require transplantation, but have no related or unre-
lated donors with matching human leukocyte antigen
(HLA), the HLA-haploidentical SCT (haplo-SCT) ap-
proach is an attractive option. Haplo-SCT is widely
available, and immediate access is possible with donor-
derived cellular therapies [1, 5, 6, 8—39]. Many haplo-
SCT protocols have been successfully established, with
promising clinical outcomes, due to improved under-
standing of the mechanisms underlying the HLA bar-
riers and how to cross them [1, 8, 16, 24, 26, 40—44].
Approaches for T-cell depletion (TCD) transplantation,
including “megadose” CD34-selection and TCRaf
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depletion, are designed to preserve y0 T cells, natural
killer (NK) cells, and antigen-presenting cells. Alterna-
tively, several approaches are also available for T-cell-
replete (TCR) transplantation, including anti-thymocyte
globulin (ATG)-based protocols or post-transplantation
cyclophosphamide (PT/Cy). Haplo-SCT has become eas-
ier to perform than in the past, thanks to the shift from
T-depleted grafts to grafts composed of unmanipulated
marrow and/or peripheral blood stem cells [5, 6, 10, 19,
21, 30, 31, 34, 45, 46]. In particular, the “GIAC” protocol
for haplo-SCT with ATG is a procedure that includes
“G”: treating donors with granulocyte colony-stimulating
factor (G-CSF), to induce donor immune tolerance [47-51];
“I”: intensified immunologic suppression in the recipi-
ent, to promote engraftment and prevent GVHD; “A”:
anti-thymocyte globulin administration for prophylaxis
of graft-versus-host disease (GVHD) and graft rejec-
tion; and “C”: combining G-CSE-primed bone marrow
cells (G-BM) and G-CSF-mobilized peripheral blood
stem cells (G-PB) harvested from donors to provide a
pooled source of stem cells for grafting [1, 52-55].
Results from two additional trials from Lee et al. in
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Korea [56] and Di Bartolomeo et al. [57] from Italy
largely reproduced the data from us; the effectiveness
of the “GIAC” protocol was verified by these two ex-
ternal trials. As a result of these trends, the number of
treatments that applied unmanipulated haplo-SCT
with ATG or PT/Cy [1, 36, 58, 59] has increased sig-
nificantly every year in China, the USA, and Europe
(Table 1) [36-38, 60—66]. Some experienced centers,
such as Peking University and Johns Hopkins University,
have adopted haplo-SCT as the main source of alter-
native donors, based on outcomes that compared fa-
vorably with HLA-matched sibling or unrelated
donor transplantations (MUDT) [17, 22, 62, 67].
With the advancement of haplo-SCT, particularly un-
manipulated haplo-SCT, parents, children, siblings,
and second-degree relatives, have all become poten-
tial donor candidates. Because most patients have
more than one potential haplo donor, this raises an
important question [68]: Who is the best donor for
TCR haplo-SCT? Indeed, haplo donor selection may
have a significant impact on the incidence of acute
and chronic GVHD, transplant-related mortality
(TRM), and relapse, in addition to overall survival
(0S) [9-13, 19, 34, 36, 69-72]. In this review, we
discuss the effects of HLA mismatching on trans-
plant outcomes in patients treated with unmanipu-
lated haplo-SCT with ATG [1, 52-55] or with PT/
Cy [1, 36, 58, 59]. We also summarize donor-related
variables that are associated with clinical outcomes, and
we provide a rationale for using a personalized algo-
rithm for donor selection in unmanipulated haplo-
SCT with ATG [1, 52-55] or PT/Cy [1, 36, 58, 59].

Effects of the locus of HLA-mismatch on haplo-SCT
outcomes

Before the year 2000, patients that received haplo-SCT
had relatively poor transplant outcomes, due to the use
of conditioning and GVHD prophylaxis regimens that
were similar to those used for transplantations from
HLA-matched donors [73, 74]. Anasetti et al. [73] found
that the degree of recipient HLA incompatibility was as-
sociated with the incidence of severe acute GVHD. In-
deed, survival decreased as the degree of HLA disparity
increased. Szydlo et al. [74] showed that, among patients
with early leukemia that received transplantations, the
relative risks of treatment failure were 2.43 and 3.79,
when related donors had one and two mismatched HLA
loci, respectively, compared to when donors were HLA-
matched siblings (the reference group). Among patients
with more advanced leukemia that received transplanta-
tions, differences in treatment failure were less striking;
the relative risks of treatment failure were 1.22 and 1.81,
when related donors had one and two HLA antigen mis-
matches, respectively, compared to the reference group.
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These data suggested that clinical outcomes depend on
the degree of HLA mismatching in the early stages of
haplo-SCT, because of little knowledge on immune toler-
ance and less approaches to overcome the HLA barriers.

Over the last 10 years, haplo-SCT outcomes have sub-
stantially improved, due to the development of novel
GVHD prophylaxis strategies, improved supportive care
strategies, and application of new strategies for relapse
prophylaxis and treatment (Table 1) [18, 19, 28, 36, 42,
62, 75-77]. In 2006, a group at the University of Peking
reported that the cumulative incidences of acute and
chronic GVHD were comparable among patients with
one-, two-, or three-locus mismatches, when treated
with unmanipulated haploidentical blood and marrow
transplantations and an ATG conditioning regimen [52].
They also demonstrated that HLA mismatching had no
effect on other transplantation outcomes, including re-
lapse, leukemia-free survival (LFS), and OS [52]. These
results were confirmed by researchers from Peking Uni-
versity [9-12] and other transplantation centers in China
[14, 35, 78]. Kasamon et al. [59] confirmed the findings
by Huang et al., when they showed that greater HLA
disparity did not appear to worsen the overall outcome
after non-myeloablative haploidentical bone marrow
transplantation with a high-dose PT/Cy. In a prospect-
ive, multicenter phase I/II study on unmanipulated
haplo-SCTs performed in five institutions in Japan, Ike-
game et al. [77] reported that HLA disparity was not as-
sociated with GVHD, TRM, relapse, or survival. Similar
results were observed in recent updated reports on
haplo-SCT with TCD or TCR [34, 35, 62, 72].

In an unmanipulated haplo-SCT protocol, Huang et al.
[79] found that the HLA-B + DR combination mismatch
was an independent risk factor for grades II-III and III—-
IV acute GVHD in patients with chronic myeloid
leukemia (CML). Huo et al. [80] demonstrated that the
HLA-B mismatch was also an independent risk factor
for acute GVHD and TRM in patients with
hematological diseases. However, SCT is not a first-line
treatment option for patients with CML; therefore, asso-
ciations between specific HLA-locus mismatches and
haplo-SCT outcomes should be prospectively investi-
gated in other hematological diseases.

In summary, studies on unmanipulated haplo-SCT
with ATG [1, 52-55] or with PT/Cy [1, 36, 58, 59]
showed that HLA disparity did not impact outcome.
However, for donor selection, some specific HLA-loci
profiles remain to be explored. Nevertheless, more atten-
tion has been focused on how donor-related, non-HLA
variables affect clinical outcomes.

Donor selection based on non-HLA variables
Because the impact of HLA disparity on transplantation
outcome has diminished, researchers are currently



Table 1 Recent informative trials and results of T-cell-replete haploidentical stem cell transplantation

Reference, year, ref, and Patients  Diagnosis Graft ANC median PLT median GVHD TRM Relapse LFS oS
median age (No) (range) (range) Acute IV Chronic
Unmanipulated haplo-SCT with ATG
Di Bartolomeo P, et al. [57] (37) 80 HM G-BM 21 (12-38) 28 (14-185) 24 % 17 % at2yr 36%at3yr 219%atTyr 38%at3yr 45%at3yr
Wang Y, et al. [10] (25) 1210 HM G-BM + G-PB 13 (8-49) 16 (5-100) 40 % 50 % 17 % at 3 yr 17 % at3yr 67 %at3yr 70%at3yr
Luo Y, et al. [14] (25) 99 HM G-PB 12 (8-24) 15 (6-53) 424 % 414 % at2yr 305 % at5yr 142 % at5yr 583 % at5yr 608 % at 5 yr
Gao L, et al. [66] (254) 26 SAA G-PB+ G-BM 13 (11-19) 13 (10-21) 80 % 40 % 154 % at 2 yr NA NA 84.6 % at 2 yr
Peccatori J, et al. [19] (48) 121 HM G-PB 17 (11-61) 19 (7-154)  35% 47 % at2yr 31 %at3yr 48% at3yr 20%at3yr 25 %at3yr
Shin SH, et al. [29] (48) 60 MDS G-PB 12 (8-23) 15 (6-132) 367 % 483 % 233 % at 2 yr 348 % at2yr 419%at2yr 466 % at 2 yr
Yahng SA, et al. [120] (41) 80 AML G-PB 1 10 47.5 % 45 % 122 % at 2 yr 266 % at2yr 611 % at2yr 66 % at 2 yr
Lin X, et al. [78] (23) 105 HM G-PB 14 (10-25) 16 (9-38) 219 % 241 % at 2yr 3059% at 3 yr 219% at3yr 41.1 % at3yr 506 % at 3 yr
TCR haplo-SCT with PT/Cy
Raiola AM, et al. [38] (45) 92 HM SS-BM (92) 18 (11-32) 32 (5-83) 14 % 15 % 18 % at 1000 days 35 % 43 % at4yr 52%at4yr
McCurdy SR, et al. [36] (55) 372 HM SS-BM 90 %° 88 %° 32%at6m 13%at2yr  11%at1yr 46 % at3yr 40%at3yr 50%at3yr
Bacigalupo A, et al. [37] (47) 148 HM SS-BM 17 (13-32) NA 18 % 20%at2yr 14 %at4yr 27 % at4yr  NA 77 % for CR1
49 % for CR2
38 % for AD
Solomon SR, et al. [61] (46) 30 HM G-PB 16 (NA) 25 (NA) 43 % 56 % 3%at 2 yr 24%at2yr  73%at2yr 78%at2yr
Cieri N, et al. [64] (55) 40 HM G-PB 18 (13-45) 16 (9-100) 15 % 20%atTyr 17%at1yr 35%atTyr 48%atlyr 56%at1yr
Esteves |, et al. [65] (17) 16 SAA SS-BM (13) G-PB (3) 19 (16-29) 21 (20-29) 13 % 20 % 329 % at 1 yr NA NA 67.1% at 1 yr
Ciurea SO, et al. [62] (NA) 104° AML SS-BM (85) G-PB (19) 90 % 88 % 16 % 30%at3yr  14%at3yr 44 % at3yr  NA 45 % at 3 yr
8g¢ AML SS-BM (77) G-PB (11) 93 % 88 % 19 % 34%at3yr 9%at3yr 58%at3yr NA 46 % at 3 yr
Kasamon YL, et al. [59] (61) 271 HM SS-BM 88-93 % 84-89 % 3B3%at6m 12%atlyr 10%at1yr 46 % at3yr  37%at3yr 46 %at3yr

Published between 2013 and 2015

Ref reference, Pts patients, No. number, ANC absolute neutrophil count, PLT platelet, GVHD graft-versus-host disease, TRM transplant-related mortality, LFS leukemia-free survival, OS overall survival, haplo-SCT haploidentical
stem cell transplantation, ATG anti-thymocyte globulin, HM hematological malignancies, G-BM granulocyte colony-stimulating factor (G-CSF)-primed bone marrow, yr year, G-PB G-CSF-mobilized peripheral blood stem cell
grafts, UCB umbilical cord blood, NA not available, AL acute leukemia, SAA severe aplastic anemia, MDS myelodysplastic syndrome, AML acute myeloid leukemia, PT/Cy posttransplant cyclophosphamide, SS-BM steady-state
bone marrow, m months, AD advanced disease
“Indicates the probability of neutrophil recovery by day 30

PIndicates the probability of platelet recovery >20,000/uL by day 60
“Indicates that patients received myeloablative conditioning regimens
9Indicates that patients received reduced intensity conditioning regimens
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investigating the effects of other variables on survival
after unmanipulated haplo-SCT with ATG [1, 52-55] or
with PT/Cy [1, 36, 58, 59]. A number of donor-related fac-
tors should be considered in donor selection for haplo-
SCT, including donor-specific anti-HLA antibodies (DSA)
[12, 81, 82], donor age and gender [10, 83], ABO compati-
bility, natural killer (NK) cell alloreactivity [23, 84-86],
and non-inherited maternal antigen (NIMA) mismatches
(Table 2) [87-90].

DSA

The contribution of DSAs to the pathophysiology of
graft failure (GF) has been confirmed in MUDT and in
umbilical cord blood transplantation (UCBT) [91, 92]. In
TCD haplo-SCT settings, Ciurea et al. [82] reported that
three of four patients (75 %) that tested positive for pre-
transplant DSA (mean fluorescence intensity, MFI >
1500) failed to engraft, compared to 1 out of 20 patients
(5 %) that tested DSA negative (P =0.008), among 24
consecutive patients. In a study of 296 candidates for
unmanipulated haplo-SCT with PT/Cy, the overall inci-
dence of DSA was 15 %. Gladstone et al. [93] also found
that DSA was associated with an increased risk of graft
failure after transplantation. More recently, Chang et al.
[12] reported that DSAs (MFI > 10,000) were correlated
to primary graft rejection (GR, P<0.001) and that DSAs
(MFI =2000) were strongly associated with poor graft
function (PGF) in patients that received unmanipulated
haplo-SCT with ATG. They also showed that primary
GE including GR and PGE, was associated with a
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significant increase in the incidence of TRM and with
reduced DFS and OS [12, 20]. For patients with DSA, it
is necessary to select a different donor. However, there is
no generally accepted cutoff value for the mean fluores-
cence intensity of DSA in unmanipulated haplo-SCT
with ATG [1, 52-55] or with PT/Cy [1, 36, 58, 59].
Overall, the association between DSA and graft failure
was confirmed, both in TCD and in TCR haplo-SCT set-
tings [12, 81, 82]. When a patient is positive for DSA
(for example, DSA MFI = 2000 in the Peking University
Institute of Hematology), but the donor cannot be chan-
ged, a therapy must be given to target the DSA.

Currently in HSCT settings, desensitization methods
have been applied, including plasma exchange, intraven-
ous immunoglobulin, rituximab, and bortezomib [94, 95].
However, the efficacy of these strategies remains uncer-
tain, due to the overall small number of patients treated
and to the overall poor understanding of the mechanisms
underlying DSA-mediated GF and PGF. Further eluci-
dation of these mechanisms is essential to obtain critical
insights into how desensitization approaches can be modi-
fied and what immuno-modifying therapies can be ap-
plied. That information will facilitate improvements in
haplo-SCT outcomes.

In summary, DSA must be incorporated into the algo-
rithm for haploidentical donor selection in unmanipu-
lated haplo-SCT, with either the ATG or the PT/Cy
modality. Therapies that target DSA might improve clin-
ical outcomes for patients that are DSA positive and
have only one haploidentical donor.

Table 2 Variables considered for best donor selection in unmanipulated haplo-SCT with ATG or TCR haplo-SCT with PT/Cy

Variables Unmanipulated haplo-SCT with ATG Ref TCR haplo-SCT with PT/Cy Ref

DSA DSA was associated with primary graft failure, [12] DSA was associated with an increased risk [93]
including GR and PGF. of graft failure.

Donor age Young donor age (<30) was associated with decreased  [10] No effect of donor age on clinical outcomes [59]
2-4 acute GVHD, NRM, and superior survival. was found.

Donor gender F-M (versus others) correlated with higher incidence [10, 14] Male donors were associated with less NRM [36, 102]
of 2-4 acute GVHD. and better survival.

NK alloreactivity KIR-ligand mismatch was associated with inferior [23] A survival benefit associated with donor-recipient  [59]
survival. mismatches of inhibitory KIR and KIR haplotype

B donors.
NIMA mismatch NIMA-mismatched was associated with a lower [10] -

incidence of acute GVHD in unmanipulated haplo-SCT.

(10] -

Type of donor  Children Children donors were associated with less acute
GVHD than sibling donors.
Mather Maternal donors were associated with more acute
GVHD, chronic GYHD, and NRM.
Older sister  Older sister donors were inferior to father donors -
in NRM and survival.
Father Father donors were associated with less acute GVHD, -

less NRM, and better survival than mother donors.

Haplo-SCT haploidentical stem cell transplantation, ATG anti-thymocyte globulin, TCR T-cell replete, PT/Cy posttransplant cyclophosphamide, Ref reference, DSA donor-specific
anti-human leukocyte antibody, GR graft rejection, PGF poor graft function, NK natural killer, KIR inhibitory killer cell immunoglobulin-like receptor, NIMA
non-inherited maternal antigen, GVHD graft-versus-host disease, NRM non-relapse mortality, F female, M male

- indicates no data available
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Donor age
In haplo-SCT with TCD, no effects of donor age were
observed on transplant outcomes. In unmanipulated
haplo-SCT, Wang et al. [10] found that transplants from
younger donors (age <30 years) showed less non-relapse
mortality (NRM) and better survival than those from
older donors. In previous studies, we found that a high
dose of CD34" cells in haplo-allografts could promote
platelet engraftment, and that CD3"CD4 CD8™ T cells
might contribute to a lower incidence of acute GVHD
[96, 97]. More recently, researchers from Peking University
also demonstrated that a young donor age (<30 years)
was associated with a higher count of CD34" cells, CD3"
CD47CD8™ T cells, and monocytes in G-BM, G-PB, and
mixed allografts of G-BM and G-PB [56]. The impact of
donor age was also confirmed by researchers from Korea
in unmanipulated haplo-SCT with ATG [98]. They found
that donor age (>40 years) was associated with a higher
incidence of grades II-IV acute GVHD. More recently,
Jaiswal et al. [99] reported that age-related clonal
hematopoiesis was commonly associated with increases in
hematologic cancer risk and all-cause mortality. Those
findings strongly argued for the benefit of selecting
younger donors to minimize transfers of clonal
hematopoiesis [100].

In summary, younger donors are preferred in unma-
nipulated haplo-SCT, with ATG or PT/Cy.

Donor gender
For female donors, in general, age is correlated with
parity. Older multiparous women may be the least-
preferred donors for male recipients, due to the higher
incidence of GVHD and the lower OS reported in some
studies that focused on unrelated donor transplantations
[101, 102]. Donor gender (female versus male) had ad-
verse effects on the incidence of grades II-IV acute
GVHD, both in unmanipulated haplo-SCT with PT/Cy
and in TCR haplo-SCT with an ATG-based conditioning
regimen [14, 36, 103]. Interestingly, in the largest study,
the Peking University group showed that transplants
from male donors were associated with significantly less
NRM and better survival [10].

In summary, a male donor is preferred in unmanipu-
lated haplo-SCT with ATG or with PT/Cy, due to the
potential for superior survival.

ABO compatibility

In both HLA-matched and HLA-mismatched settings,
allogeneic SCT that involves a major ABO incompatibil-
ity requires mononuclear cell separation to prevent a
hemolytic reaction. This procedure reduces the trans-
planted cell dose and may increase the likelihood of graft
failure [104, 105]. When possible, transplant donors
should not be selected when they have major ABO
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incompatibilities, to avoid graft manipulations that
might reduce the nucleated cell dose, particularly the
CD34" cell dose [97]. Our experience at Peking Univer-
sity showed that a low number of CD34" cells (less than
2.19 x 10°/kg) in the allograft was a critical factor associ-
ated with delayed platelet engraftment after unmanipu-
lated haploidentical transplantation, in either adult or
pediatric patients [97]. Those results suggested that,
when no ABO-compatible donor was available, a donor
with a minor ABO mismatch was preferable to a donor
with a major mismatch, because the former was less
likely to affect the number of hematopoietic stem cells
infused. Thus, ensuring an adequate CD34" cell dose in
the allograft is the first step in promoting engraftment
and decreasing the incidence of graft failure.

In summary, ABO compatibility should be considered
when selecting the best donor in haplo-SCT with TCR;
the order of selection should be ABO compatible, a
minor ABO mismatch, and a major ABO mismatch.

Killer immunoglobulin-like receptor mismatches and NK
cell alloreactivity
Biology of NK cells
NK cells play a central role in viral immunity and tumor
immune surveillance. The activity of NK cells is regu-
lated by a balance between activating and inhibiting
killer immunoglobulin-like receptors (KIRs) [106]. KIRs
are inherited as one of two basic KIR haplotypes, termed
group A and group B. Group A haplotypes have a fixed
number of genes that encode inhibitory receptors (with
the exception of the activating receptor, KIR2DS4).
Group B haplotypes have a variable number of genes, in-
cluding additional activating receptor genes [84, 85].
Because KIR and HLA class I genes segregate to differ-
ent chromosomes, a tolerance mechanism is required to
prohibit the development of autoreactive NK cells. Only
NK cells that express inhibitory receptors for self-HLA
class I can acquire full functional competence, a process
referred to as “education” or “licensing” [23]. In contrast,
potentially autoreactive NK cells remain in a hypo-
responsive state. Thus, NK cells that are “licensed” or
“educated” (highly responsive to non-self cells) express
inhibitory KIRs that specifically recognize self-HLA li-
gands [107, 108]. Examples of inhibitory KIRs include
the well-defined KIR2DL2/3, specific for the HLA-Cw
group-1 epitope; KIR2DL1, specific for the HLA-Cw
group-2 epitope, and KIR3DL1, specific for the HLA-
Bw4 epitope [84]. Thus, when educated NK cells con-
front an allogeneic target, their KIR does not recognize
the allogeneic HLA as an inhibitory self-HLA ligand; the
lack of the inhibitory ligand mediates NK “alloreactivity”
(they attack cells that lack self-recognition molecules)
[109-112]. In fact, alloreactive NK cells must only ex-
press KIRs that do not engage with any HLA class 1
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molecules present on allogeneic target cells. More-
over, for effective alloreactivity, NK cells must also
lack expression of CD94/NKG2A, because its inhibi-
tory ligand, HLA-E, is present on all HLA class I-
positive cells [87, 113, 114].

Role of NK cell alloreactivity in haplo-SCT

Ruggeri et al. [110] showed that alloreactive NK cells in
a mouse model provided the following benefits: (1) elim-
ination of recipient acute myeloid leukemia (AML) cells;
(2) destruction of recipient T cells, which permitted a
conditioning regimen with reduced toxicity; and (3) ab-
lation of recipient dendritic cells that trigger GVHD,
which protected the recipient from GVHD. In this study,
the authors also found that increased NK cell alloreactiv-
ity in humans, based on the “missing self” model, was
associated with a decreased rate of relapse and improved
survival in patients with AML but not in patients with
ALL. However, Symons et al. [115] failed to demonstrate
a positive effect of alloreactive NK cells in patients that
received haplo-SCT with PT/Cy. In contrast, Huang et
al. [11] showed that a high relapse rate following haplo-
SCT was associated with missing self molecules or miss-
ing ligands in the hosts.

The discordant results mentioned above may reflect
differences in NK functional recovery, determined by the
licensing process under different haplo-SCT settings,
and/or differences in the presence of T cells in the stem
cell graft. More interestingly, the researchers in Huang’s
group demonstrated that the host MHC class I could de-
termine NK cell responses, following unmanipulated
haplo-SCT with ATG [11, 23]. The functional recovery
of donor-derived NK cells was higher in recipients that
expressed ligands for donor inhibitory KIRs, and high
functional NK recovery correlated with better relapse
control. Those results were consistent with previous
studies, which suggested that T cells may influence NK
cell function via presentation of MHC. Although it re-
mains to be determined by what mechanism(s) the pres-
ence of T cells in the allograft influence NK cell
licensing, they appear to be clinically relevant. Moreover,
NK licensing was observed to have extremely relevant
clinical implications, such as relapse and survival.

Symons et al. [115] showed that, in haplo-SCT with
PT/Cy, patients with the KIR AA haplotype exhibited
significantly higher OS and EFS, when the donor had a
KIR Bx haplotype (mismatched) rather than the KIR AA
haplotype (matched). In haplo-SCT with negative deple-
tion of CD3/CD19 in allografts, the relapse incidence
was significantly reduced in patients with a haplotype B
donor, both in adults with hematological malignancies
[116] and in children with ALL [117]. However, this
phenomenon was not observed in the Perugia or the
Peking University protocols, which suggested that the
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benefit of using donors with KIR B haplotypes was only
observed with specific haplo-SCT modalities; however,
the mechanisms underlying this phenomenon warrant
further study.

In summary, NK cell alloreactivity and KIR haplotype
should be considered when choosing the best donor. For
patients that receive unmanipulated haplo-SCT with
ATG, the best donor will have matching KIR expression.
For patients that receive TCR haplo-SCT with PT/Cy,
the best donor should have at least one KIR B haplotype.

NIMA mismatching

When a donor and recipient share inheritance of the pa-
ternal HLA haplotype, they are said to be mismatched for
non-inherited maternal HLA antigens or NIMA (For
more details, please see Fig. 1 in [86]). When a donor and
recipient share inheritance of the maternal HLA haplo-
type, they are mismatched for non-inherited paternal
HLA antigens or NIPA [88, 90, 118, 119]. Cells from
NIMA-mismatched donors are expected to be less im-
munogenic than cells from NIPA-mismatched donors, be-
cause the contact between the immune systems of the
mother and child during pregnancy diminishes the im-
mune response of the child against NIMA. Using a mouse
model, Aoyama et al. [87] demonstrated that the tolero-
genic NIMA effect could be partly dependent on CD4*
CD25"% regulatory T cells (Tregs). In TCR haplo-SCT,
Wang et al. [10] and other researchers [88, 90, 120]
showed that patients that received transplants from a
NIMA-mismatched donor had a significantly lower inci-
dence of acute GVHD than those that received transplants
from a NIPA-mismatched donor. The Peking University
group also found that immune recovery of naive Tregs
was more rapid when patients received allografts from
NIMA-mismatched donors than when they received allo-
grafts from NIPA-mismatched donors (unpublished data).
That finding suggested that naive Tregs may play an im-
portant role in the tolerogenic NIMA effect. In addition,
Kanda et al. [121] showed that a substantial proportion of
long-term survivors after NIMA-mismatched haplo-SCT
could discontinue the administration of immunosuppres-
sive agents, despite the frequent occurrence of moderate
to severe chronic GVHD. However, further studies are
warranted to compare late sequelae between haplo-SCTs
performed with NIMA- or NIPA-mismatched donors in a
large, multicenter, prospective cohort.

Recently, Araki et al. [122] demonstrated that the
number of cells that produced interferon-y (IFN-y) was
significantly lower in a NIMA-exposed tolerance group
than in a sensitization group, according to an MLR-
ELISPOT assay in a murine model. That study raised the
possibility that assays for measuring IFN-y production in
response to NIMA might be used clinically to predict
the benefit of using NIMA-mismatched donors.
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Haploidentical donor candidates
i

Detection of donor specific anti-HLA antibodies (DSA)
! \ 1
DSA Negative

DSA Positive
1
{ 1
Changing a donor with DSA negative No alternative donor

i
Treating allosensitization of recipients
(Rituximab, IVIg, Plasma exchange)

]

¥
ABO compatibility between donor and recipient preferred, mononuclear cell
separation is required for major ABO mismatch
I

! 1
Unmanipulated haplo-SCT with ATG TCR haplo-SCT with post cyclophosphamide
| i
Male, younger donor preferred Matched CMV IgG serologic status between donor and recipient
4 i
Donor-recipient relationship consideration Use an ABO compatible donor over a minor ABO matched donor
(Children>sibling>father>mother or collateral relatives) i

1 Other donor charactersitics(in no order of priority)
NIMA-mismatch preferred * Donor age >18 preferred over donor <18
! * Among donors age >18, prefer younger donors

KIR-ligand match preferred
}
Matched CMV IgG serologic status between
donor and recipient preferred

* For male recipients, male donors are preferred than female
i

Donor expressed at least one KIR B haplotype

should be choosen
Fig. 1 Algorithm for haploidentical donor selection in unmanipulated haplo-SCT with ATG and haplo-SCT with PT/Cy. Abbreviations: haplo-SCT
haploidentical stem cell transplantation; ATG anti-thymocyte globulin; PT/Cy posttransplant cyclophosphamide; TCR T-cell replete; Vg intravenous
immunoglobulin; CMV cytomegalovirus; NIMA non-inherited maternal antigen; KIR inhibitory killer cell immunoglobulin-like receptor

In summary, NIMA mismatching should be incorpo-
rated into the algorithm for selecting donors in unma-
nipulated haplo-SCT with ATG. The order of donor
eligibility is first, NIMA mismatches, and second, NIPA
mismatches.

Family relationship or type of donor

Given the fact that parents, children, siblings, and
collateral relatives are all potential haploidentical donors
[9, 16, 19, 22], the effects of these variables on clinical
outcomes were investigated by several groups [1, 10, 70].
In unmanipulated haplo-SCT with ATG, results from
Huang et al’s group in Beijing demonstrated that trans-
plants donated by fathers were associated with less
NRM, less acute GVHD, and better survival compared
to those donated by mothers [10]. Transplants donated
by children were associated with less acute GVHD than
those donated by siblings. Transplants donated by older
sisters were inferior to those donated by fathers, with re-
gard to NRM and survival. Moreover, transplants do-
nated by mothers were associated with significantly
more acute and chronic GVHD and TRM than NIMA-
mismatched, but not NIPA-mismatched, transplants
donated by siblings [10]. However, Stern et al. [70] ob-
served a survival advantage in patients with ALL or
AML that received TCD-allografts from haploidentical
maternal donors. The above-mentioned opposite results
in the two studies may be related to differences in the
conditioning regimens, GVHD prophylaxis, and allo-
grafts between the two groups [10, 70]. Zhang et al. [60]
found that, when haplo-SCT was performed with
collateral-related haploidentical donors (CRDs) or with

immediate-related donors (IRDs), the 3-year probability
of OS and LFS was similar, but the 2-year incidence of
extensive chronic GVHD was significantly higher with
CRDs than with IRDs (36.7 % versus 20.2 %, P =0.03)
[60]. The effects of donor-recipient relationships (par-
ents or siblings) on TRM and LFS were also confirmed
in patients with AML that received haplo-SCT with
TCD [69].

In summary, the family relationship of a donor should
be incorporated in the algorithm for selecting the best
donor in unmanipulated haplo-SCT with ATG. The
order of donor eligibility among relatives should be
child, younger brother, older sister, father, mother, and a
collateral relative [10].

Donor and recipient serum CMV status
The effects of donor and recipient serum CMYV status on
clinical outcomes were demonstrated in HLA-matched
transplantation settings [123]. Considering the effects of
CMV status on outcomes [19, 69, 123], a group from
Johns Hopkins [124] suggested that donors should have a
CMV IgG serologic status similar to that of recipients.
However, Wang et al. [9, 10] found that donor-recipient
CMYV serostatus matching was not associated with trans-
plant outcomes. This discrepancy may be related to the
higher incidence of CMV infections in Chinese compared
to Western populations. Therefore, the effects of donor
and recipient CMV status on haplo-SCT outcomes should
be evaluated in a prospective, multicenter study.

In summary, donor and recipient CMV serostatus
should be considered when choosing the best donor in
unmanipulated haplo-SCT, particularly when patients
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receive haplo-SCT with PT/Cy; however, further study is
needed to confirm the findings.

Recommendations

Presently, a number of donor-related factors have been
identified that affect haplo-SCT outcomes. These factors
should be considered when selecting the best donor.
Here, we have listed some expert opinions, based on
available data from original literature:

e HLA matching: The effects of HLA disparity on
transplantation outcomes has vanished, due to the
improved approaches of unmanipulated haplo-SCT
with ATG and haplo-SCT with PT/Cy.

e Donor-specific antibodies: DSA must be
incorporated in the algorithm for haploidentical
donor selection, both in unmanipulated haplo-SCT
with ATG and in haplo-SCT with PT/Cy. Procedures
to reduce DSA prior to transplantation should be
considered for patients that have DSA against
potential haploidentical donors.

e ABO compatibility: ABO compatibility should be
considered in both unmanipulated haplo-SCT with
ATG and haplo-SCT with PT/Cy.

e Serum CMYV status: Among haploidentical donors,
donor and recipient CMV serostatus should be
considered, in both unmanipulated haplo-SCT with
ATG and haplo-SCT with PT/Cy.

e Donor age: Among haploidentical donors, young
males should be considered optimal, in both
unmanipulated haplo-SCT with ATG and haplo-
SCT with PT/Cy.

e Family relationship: Family relationships should be
considered in unmanipulated haplo-SCT with ATG-
based conditioning, with the following order of
donor preference: child, younger brother, older sister
or father, older sibling, mother, and collateral
relatives.

e NIMA mismatches: NIMA mismatching should be
incorporated into the algorithm for donor selection
in unmanipulated haplo-SCT with the ATG protocol.
The order of donor eligibility should be NIMA
mismatches, followed by NIPA mismatches.

e NK cell alloreactivity: NK cell alloreactivity should
be considered in choosing a donor for both
unmanipulated haplo-SCT with ATG and haplo-
SCT with PT/Cy.

According to these recommendations, we have pro-
posed an algorithm for haploidentical donor selection
(Fig. 1). When choosing the best haploidentical donor, one
should keep the following caveats in mind. First, there is
not a generally accepted haplo-SCT protocol that can be
used in all transplant centers; therefore, a single variable
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(such as NK alloreactivity) may have different effects on
clinical outcomes in patients that receive different haplo-
SCT protocols [10, 19, 34, 36, 59, 70, 72, 77, 100, 125].
Second, with improvements in haplo-SCT modalities, the
impact of some variables (such as HLA-locus mismatches)
on transplant outcomes may vanish. Third, with increas-
ing numbers of haplo-SCT cases, and with updated ana-
lyses of donor-related variables associated with transplant
outcomes, some new factors may emerge [126, 127].

Conclusions

Presently, TCR haplo-SCT modalities, particularly unma-
nipulated haplo-SCT with ATG or haplo-SCT with PT/
Cy, have been widely accepted as a viable alternative for
patients with no HLA-identical donor [1, 5, 6, 9, 10, 34—
36, 72, 77, 128, 129]. Despite the challenges in promoting
hematopoietic engraftment, in enhancing GVL effects,
and in the lack of one universal haplo-SCT modality for
most transplant centers, current evidence has indicated
that selecting a best donor can improve transplant out-
comes [10, 36, 59, 77, 81, 82, 115, 116, 130]. Therefore,
employment of the currently available factors, including
DSA, donor age, KIR-ligand mismatching, and NIMA
mismatching, for guiding treatment is an accepted option
in most centers [10, 36, 59, 77, 82, 100, 115, 116, 130].
Many recent excellent studies have advocated that donor
selection should be incorporated into clinical trials. Al-
though much work remains to be done, such as who is
the best donor in subgroup patients (for example, high-
risk AML), we believe that the best donor should be
selected according to currently available knowledge, in
combination with individualized conditioning regimens
[46], optimal allografts [57], and stratification-directed
GVHD prophylaxis, relapse prophylaxis, and treatment
[131, 132]. This selection strategy will improve transplant
outcomes, both in unmanipulated haplo-SCT with ATG
and haplo-SCT with PT/Cy.
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