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Abstract

Background: Acute myeloid leukemia (AML) is a heterogeneous clonal disorder presenting with accumulation

of proliferating undifferentiated blasts. Xenograft transplantation studies have demonstrated a rare population of
leukemia-initiating cells called leukemic stem cells (LSCs) capable of propagating leukemia that are enriched in
the CD34+/CD38~- fraction. LSCs are quiescent, resistant to chemotherapy and likely responsible for relapse and
therefore represent an ideal target for effective therapy. LSCs are reported to overexpress the alpha subunit of the
IL-3 receptor (CD123) compared to normal CD34+/CD38— hematopoietic stem cells. It has not been demonstrated
whether CD123-positive (CD34+4/CD38-) subpopulation is enriched for any clonal markers of AML or any LSC
properties. The aims of this study were to investigate whether FMS-like tyrosine kinase (FLT3)/internal tandem
duplication (ITD) mutations are present at LSC level and whether FLT3/ITD mutation is confined to LSC as defined
by CD34+/CD38—/CD123+ and not CD34+/CD38—/CD123—.

Methods: Thirty-four AML cases were analyzed by five-color flow cytometry and sequential gating strategy to
characterize of CD34+/CD38—/CD123+ cells. These cells were sorted, analyzed by PCR, and sequenced for FLT3/ITD.

Results: In this study, we confirm significant expression of CD123 in 32/34 cases in the total blast population
(median expression =86 %). CD123 was also expressed in the CD34+/CD38— cells (96 + 2 % positive) from
28/32 for CD123+ AML. CD123 was not expressed/low in normal bone marrow CD34+/CD38— cells (median
expression =0 %, range (0-.004 %). AML samples were tested for FLT3/ITD (10 positive/25). FLT3/ITD+ AML
cases were sorted into two putative LSC populations according to the expression of CD123 and analyzed for
FLT3/ITD again in the stem cell fractions CD34+/CD38—/CD123+ and CD34+/CD38—/CD123—. Interestingly,
FLT3/ITD was only detected in CD34+4/CD38—/CD123+ (7/7) and not in CD34+/CD38—-/CD123— subpopulation
(6/7).

Conclusions: This finding shows that FLT3/ITD are present at LSC level and may be a primary and not secondary event
in leukemogenesis, and the oncogenic events of FLT3/ITD happen at a cell stage possessing CD123. It shows that CD123
immunoprofiling provides further delineation of FLT3+ LSC clone. This novel finding provides a rationale for treatment
involving CD123-targeting antibodies with intracellular FLT3 inhibitors directed against CD344/CD38—/CD123+. This may
result in more effective anti-LSC eradication.

Keywords: Acute myeloid leukemia, FLT3/ITD, Leukemic stem cells, CD34+/CD38—/CD123+, Flow cytometry

* Correspondence: adhra.almawali@gmail.com; adhra.almawali@imvs.sa.gov.au
'Division of Human Immunology and Haematology, SA Pathology, Hanson
Institute, Frome Road, Adelaide, SA 5000, Australia

“Centre of Studies and Research, Ministry of Health, Muscat, Sultanate of
Oman

) - © 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
() B|°Med Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13045-016-0292-z&domain=pdf
mailto:<?A3B2 twb=.27w?><?A3B2 tlsb=-.19pt?>adhra.almawali@gmail.com
mailto:adhra.almawali@imvs.sa.gov.au
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Al-Mawali et al. Journal of Hematology & Oncology (2016) 9:61

Background

Acute myeloid leukemia (AML) represents a group of
clonal hematopoietic stem cell disorders in which both
failure to differentiate and increased proliferation potential
in the stem cell compartment result in accumulation of
non-functional cells termed myeloblasts. While the major-
ity of patients with AML achieve a complete remission
(CR) with induction therapy, more than half of these
subsequently relapse and eventually die of the disease [1].
Relapse is thought to occur because of the failure of
chemotherapy to eradicate non-proliferating but self-
renewing leukemia stem cells [2]. Human AML stem cells,
the so-called leukemic stem cells (LSCs), have been de-
fined as CD34+/CD38- cells with severe combined immu-
nodeficient (SCID) mouse-repopulating ability, which is a
reflection of their capacity to self-renew [3, 4].

Previous studies suggest that LSCs are biologically
distinct from more mature leukemic blasts and may not be
responsive to conventional chemotherapeutic regimens
[5-7]. One potential difference between normal and
leukemic cells lies in their response to hematopoietic
growth factors. It could be speculated that differential sensi-
tivity to cytokines may also exist at the stem cell level [8]. A
potential unique marker of LSCs is interleukin-3 receptor
alpha chain (CD123) which has been shown to be highly
expressed on leukemic but not normal CD34+/CD38-
hematopoietic cells, with a negative impact on the outcome
and prognosis in AML patients [8—10] (Table 1).

FMS-like tyrosine kinase (FLT3), which belongs to a
group of class III receptor tyrosine kinases, is preferen-
tially expressed on hematopoietic stem/progenitor cells
and plays a role in both differentiation and proliferation
[11, 12]. FLT3 is also expressed on the leukemic blasts in
the majority of cases of acute leukemia, even in CD34-
negative cases [13—15]. Internal tandem duplications (ITDs)
of varying length in the juxta-membrane (JM) region occur
due to constitutive activation of the FLT3 receptor and are
correlated with poor prognosis in AML patients [16—18].

The aim of this study was to investigate whether or not
FLT3/ITD mutations are present at LSC level. We explore
whether or not FLT3/ITD mutation is confined to the
population of LSC as defined by CD34+/CD38-/CD123+.

Therefore, we explored the issue of whether or not FLT3/
ITD mutations are present at LSC level as defined by the
phenotype CD34+/CD38-/CD123+. Seven primary AML
samples harboring FLT3/ITD mutations were sorted into
stem cell-enriched fractions CD34+/CD38-/CD123+ and
stem cell-enriched fractions lacking CD123, and FLT3/ITD
were then analyzed in the two-sorted fractions. Our data
provide the first definitive evidence that FLT3/ITD mutations
occur at LSC level at a stage of cells that possess interleukin-
3 (IL-3) a receptor (CD123). It is speculated that FLT3/ITD
mutation could make the LSCs more capable of expanding
in the environment and development of leukemia [19].
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Table 1 Clinical characteristics of AML patients according to
FLT3/ITD status

Patient characteristics AML pos for AML neg for
FLT3/ITD FLT3/ITD

No. of patients 12 27
Male/female 8/4 17/10
Age at diagnosis, median, (range) 62 (23-73) 69 (23-88)
WBC count at diagnosis x 10%/L, 6.6 (0.9-179) 6.3 (0.7-227)
median (range)
BM blasts % by morphology, 72 (26-85) 35 (20-87)
median (range)
AML de novo/secondary n (%) 9 (75)/3 (25) 23 (85)/4 (15)
FAB classification, n (%)

Mo 00 0(0)

M1 6 (50) 2(7)

M2 1(8) 10 (37)

M3 2(17) 2(7)

M4 1(8) 3(11)

M5 1(8) 4(15)

M6 0 0(0)

M7 0(0) 00

Not classified 18) 6 (22)
Cytogenetic risk group, n (%)
Favorable 2(17) 4 (15)

Intermediate 10 (83) 13 (48)

Poor 0(0) 9(33)

Insufficient sample 0 (0) 14
Induction therapy response, n (%)

CR 7 (70) 15 (88)

Failure 3 (30) 2(12)
Methods
Patients

The clinical characteristics of AML patients with
FLT3/ITD mutation and FLT3/ITD wild type and cor-
relation with different FAB subtypes are demonstrated
in Table 1.

Thirty-four consecutive, unselected, newly diagnosed,
and untreated AML adult patients were analyzed at
diagnosis for the expression of CD123 in the total
blast population and at stem cell level as defined by
CD34+/CD38-. Diagnoses were established according to
criteria proposed by the French-American-British (FAB)
study group [20]. The patients’ characteristics are shown
in Table 2.

Controls

For control purposes, we examined normal bone marrow
(BM) cells obtained from five healthy volunteers. All con-
trols were treated in the same manner as patient samples.
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Table 2 Patient characteristics Table 3 Specification of monoclonal antibodies

Patient characteristics Total (%) Antibody  Clone Isotype Conjugate Source

No. of patients 34 CcD13 L138 IgG1 PE Beckton Dickinson

Male/female 24/10 CD33 P67.6 lgG1 PE Beckton Dickinson

Age at diagnosis, mean (range) 63 (23-86) CD33 P676 lgG1 FITC Beckton Dickinson

% blasts at diagnosis (morphology), mean (range) 415 (20-96) CD34 8G12 IgG1 FITC Beckton Dickinson

% blasts at diagnosis (flow), mean (range) 425 (9-86) CD34 581 IgG1 PC5 ImmunoTech

WBC count at diagnosis, 10%/L, median (range) 45 (0.71-179) CD38 [.S198-4-3 lgG1 PE Beckman Coulter

De novo/secondary AML 27 (79)/7 (21) CD45 Immu19.2 lgG1 PC5 ImmunoTech

FAB classification, n (%) CD45 J33 lgG1 ECD ImmunoTech
Mo 0(0) cb117 104D2D1 IgG1 PE ImmunoTech
M, 8 (24) cD117 104D2D1 IgG1 pC7 Beckman Coulter
M, 10 (29) CcD123 9F5 IgG1 PE Beckton Dickinson
Ms 1(3) HLA-DR 1243 lgG2a FITC BioDesign
My 2 (6) CD38 T16 IgG1 FITC Beckman Coulter
Ms 4(12)

Me 1) Five-color multiparameter flow cytometry and
My 00 characterization of CD34+/CD38-/CD123+ cells
Not classified 8 (24) Heparinized bone marrow cells (~106/tube) were incubated

Cytogenetic risk group, n (%) with combinations of MoAbs at room temperature for
Favorable 2(6) 15 min. Erythrocytes were then lysed in 2 mL FACSTM lys-
Intermediate 19 (56) ing solution (Becton Dickinson, San Diego, CA, USA). Cells
boor 1239 were consequently washed and anal.yzed on a Cytomic§®

FC500 flow cytometer and CytomicsTM CXP Analysis
No metaphases 16) Version 1 Software (Beckman Coulter, USA).

FLT3/ITD, n (%) Leukemic progenitors were defined by their phenotype
Present 10 (29) (CD34+, CD45+, CD38-, CD123+) using CD45 gating
Absent 15 (44) strategy [21] and CD34 and/or CD117 backgating strategy
Not analyzed 9 26) to better define the blast population as previously de-

D123, 1 (36 §cribed by our group [22]. Cogtrol tubgs stained inth an

isotype-matched control were included in all experiments
Present 32 (94 %) and were used to define the cutoff point for positive/nega-
Absent 2 (6 %)

Study conduct

All patients and controls gave their informed consent for
participation in the current evaluation after having been ad-
vised about the purpose and investigational nature of the
study as well as potential risks. The study design was ap-
proved by the Research Ethics Committee of the Royal
Adelaide Hospital, South Australia prior to its initiation.

Monoclonal antibodies

A number of commercial monoclonal antibodies (MoAbs)
(against CD13, CD33, CD38, CD123, CD45, CD34, CD117,
and HLA-DR) were used to characterize and isolate
leukemic stem cells. A list of MoAbs is shown in Table 3.
To determine expression of CD antigens on blasts and
leukemic stem cells, combinations of CD13/CD33/CD38/
CD123/CD45/CD34/CD117/HLA-DR were applied.

tive staining.

The gating strategy in newly diagnosed AML to identify
CD34+/CD38-/CD123+ cells is as shown in Fig. 2. After
labeling of AML cells with the appropriate antibody combi-
nations, the CD34+/CD38- cells were identified by a CD45
dim/SS low strategy based on CD34 backgating (Fig. 2a),
gating on blasts characterized by CD45 dim/low side scatter
(SSC) (Fig. 2b), and gating of the blasts within the gate
defined by forward scatter (FSC) and SSC to identify a
population that is roughly homogeneous for scatter proper-
ties (Fig. 2c). The CD38-, CD34+ and CD123+ population
were defined using isotype matching as a negative control
(Fig. 2d, e). Cells from the FSC/SSC plot defined in Fig. 2c
are shown in Fig. 2g, h in a plot defined by CD34 and
CD38 expression. The CD34+/CD38- population defined
in Fig. 2g, h is gated in a FSC/SSC plot to identify a
CD34+/CD38- population with homogeneous scatter
properties (Fig. 2i). The frequency of this determined
CD34+/CD38- population was used in this study. Cells
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from the FSC/SSC plot defined in Fig. 2i are shown in
Fig. 2j, k in a plot defined by CD34 and CD123 expres-
sion. The CD34+/CD38-/CD123+ population defined
in Fig. 2j, k is gated in a FSC/SSC plot to identify a
CD34+/CD38-/CD123+ population with homogeneous
scatter properties Fig. 21

The gating strategy in normal BM to identify
CD34+/CD38-/CD123+ is as shown in Fig. 3; after
labeling of normal BM cells with the appropriate
antibody combinations, the CD34+ cells were identified
by a CD45 dim/SS low and CD34+ backgating strategy
(Fig. 3a—c). Gating on CD34+ cells and blasts character-
ized by CD45 dim/low SSC showing in red (Fig. 3c). The
CD38+ and CD123+ population were defined using iso-
type matching as a negative control and backgating of the
positive cells for CD123 (Fig. 3d, e) and CD38 (Fig. 3g, h)
in total population. The positive cells for CD123 are show-
ing in blue (Fig. 3f) and in pink (Fig. 3i) for CD38 in
CD45/SSlog dot plot. Cells from the plot defined in Fig. 3b
are shown in Fig. 3j in a plot defined by CD34 and CD38
expression. The frequency of the CD34+/CD38- cells
determined CD34+/CD38- population was used in this
study. The frequency CD34+/CD38-/CD123+ and
CD34+/CD38-/CD123- population was defined in
Fig. 3k in a plot defined by CD34 and CD123.

Isolation of CD34+ cells

The isolation of CD34+ cells was performed on mono-
nuclear cells (MNC) from the BM of 34 AML patients.
MNC were washed twice with MACS CD34+ buffer, and
CD34+ progenitor cells were purified using a MACS
CD34+ progenitor cell selection isolation kit (Miltenlyi
Biotech, Germany) according to the manufacturer’s
instructions. The purity of CD34+ cells following the
isolation procedure was calculated by staining with an
anti-CD34-PC5.

Sorting of leukemic stem cells CD34+/CD38-/CD123+

We sorted the CD34+/CD38- population into the putative
LSC population CD34+/CD38-/CD123+ and the putative
normal hematopoietic stem cell (HSC) population
CD34+/CD38-/CD123- using BD FACSARIA™ Cell
Sorter (BD Biosciences, San Jose, CA 95,131, USA).
Cells were incubated with a phycoerythrin (PE)-conju-
gated CDI123 MoAb, a fluorescein isothiocyanate
(FITC) CD38 MoAb, and a phycoerythrin-Cy5 (PC5)-
conjugated CD34 MoAb in AB serum at room
temperature for 15 min. Then, cells were washed, and
the CD34+/CD38-/CD123+ fraction of cells isolated in
a BD FACSARIATM Cell Sorter. Pools of cells expressing
similar level of CD34+/CD38-/CD123+ and CD34
+/CD38-/CD123- were collected. After sorting, the purity
of CD34+/CD38-/CD123+ AML cells was >95 %.

Page 4 of 12

Polymerase chain reaction for FLT3

We isolated genomic deoxyribonucleic acid (DNA) from
the purified sorted population using a QlAamp Mini Kit
(QIAGEN) and polymerase chain reaction (PCR) was
performed using primers flanking the (JM) coding
region: 11F (GCAATTTAGGTATGAAAGCCAGC) and
12R (CTTTCAGCATTTTGACGGCAACC) previously
described by Nakao et al. [16]. The amplification was per-
formed on DNA Thermal Cycler (Eppendorf Mastercycler)
and entailed an initial denaturation of 94 °C for 7 min,
followed by 35 cycles of denaturation at 94 °C for 1 min,
annealing at 62 °C for 1 min, and extension at 72 °C for
1 min, with a final extension at 72 °C for 7 min. PCR prod-
ucts were resolved on 2 % agarose gels and visualized under
ultraviolet light after ethidium bromide staining. The char-
acteristic doublet of the FTL3/ITD mutation is easily visu-
alized after electrophoresis. Genomic DNA from known
positive and negative cases was used as controls.

Optimization of the PCR technique for low DNA
concentrations

To optimize the PCR method for very low DNA concen-
trations obtained from very few numbers of cells, a study
was conducted using different DNA amounts 50, 25, and
12.5 ng with 15 pl PCR reaction mix, in a total volume
of 25 pl in duplicate from an AML patient positive for
FLT3/ITD. The results of this experiment revealed that
FLT3/ITD could be detected at 5, 2.5, and 1.25 ng/pl
DNA as shown in Fig. 1a. Thus, we used 12.5 ng DNA
in sorting experiments for PCR.

Sequencing

Two of the ITD mutations identified during the assay
validation were cycle sequenced in the forward and reverse
direction to verify the results. PCR products were purified
using QIAQuick columns (QIAGEN) and cycle sequenced
using Big Dye, Version 2 (Applied Biosystems) according to
the manufacturer’s protocol. For sequencing the ITD, PCR
primers 11F (5'-GCAATTTAGGTATGAAAGCCAGC-3’)
and 12R (5'-CTTTCAGCATTTTGACGGCAACC-3') of
exons 14 and 15 were used. Sequences were aligned and
examined using Mutation SurveyorTM software.

Results
Expression of CD123 (IL-3 a receptor) in AML blast cells
Thirty-four AML patients at diagnosis were tested for
the expression of CD123 in the total blast population
and at the stem cell level as defined by CD34+/CD38-.
CD123 was expressed in 32 of 34 (94 %) AML
patients. The median expression in the whole blast
population was 86 % (range, 20-99 %). In 24 (75 %)
patients, the majority of blasts (560 %) expressed
CD123 and in the remaining 8 (25 %) patients, only a
subset of blasts expressed CD123 (Table 2).
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Fig. 1 Optimization of PCR technique using FLT3/ITD-positive and FLT3/ITD-negative patient. a Using three different DNA concentrations 5, 2.5, and

1.25 ng/ul in FLT3/ITD-positive AML patient. Lane 1 FLT3/ITD detected with 50 ng DNA added, lane 2 FLT3/ITD detected with 25 ng DNA added, lane 3
FLT3/ITD detected with 125 ng DNA added, lane 4 no DNA added, and M pUC19 molecular marker. The solid line points to FLT3/ITD bp inserted while the
dotted arrow points to the WT FLT3 gene. b Using DNA obtained from different number of cells (2 x 10°, 150, 1606 cells in duplicates) on WT FLT3 AML
patient based on the number of cells obtained from the first sorted sample (sample no.1 in Table 4). Lanes 1 and 2 (duplicate) DNA obtained from 2 x 100
cells, FLT3 WT detected; lanes 3 and 4 (duplicate) DNA obtained from 150 cells, FLT3 WT detected; lanes 5 and 6 (duplicate) DNA obtained from 1606 cells,
FLT3 WT detected; lane 7, no DNA, so the PCR was specific; lanes 8 and 9 are the negative and positive controls and M was pUC19 marker.

c DNA fragments (bp) of the molecular marker puC19

Expression of CD123 (IL-3 a receptor) in AML stem cells
CD34+/CD38-

The expression of CD123 on the stem cell fraction as
defined by CD34+/CD38- was tested using CD45 and
CD34 backgating strategy outlined in Fig. 2. Four
patients were CD34 negative, and therefore, the estima-
tion of CD123 expression in the CD34+/CD38- com-
partment was not possible. Two of these patients were
Mb5a (generally most of M5a patients are CD34 negative),
one M1 and one M3 (in most cases, M3 are also CD34
negative) FAB classification. CD123 was strongly
expressed in the CD34+/CD38- cells (96 + 2 % positive)
from 28 (87.5 %) of 32 primary specimens.

Expression of CD123 (IL-3 a receptor) in normal BM
CD34+/CD38- fraction

Five normal BMs were tested for the expression of CD123
on CD34+/CD38- cells, and they were all CD123 negative.
The median level of CD123 in normal CD34+/CD38- stem
cells (0.119 %), range (0.004—1.43 %) in the five normal
BMs (Fig. 3).

Sorting AML stem cells

We analyzed FLT3 mutation status in 25 of 32 (78 %)
patients who expressed CD123, 10 were FLT3/ITD posi-
tive and 15 were wild type (WT).
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Fig. 2 Gating strategy in newly diagnosed AML to identify CD34+/CD38—/CD123+ cells

To determine the expression of FLT3/ITD in AML stem
cells, highly purified (purity >95 %) CD34+/CD38-/CD123
+ and CD34+/CD38-/CD123- cells were examined for
FLT3/ITD mutation in seven patients with FLT3/ITD-posi-
tive AML as demonstrated in Fig. 4. We were unable to
perform analysis in the remaining three FLT3/ITD-positive
patients because of insufficient material. The numbers
of CD34+/CD38-/CD123+ cells sorted ranged from
150 to 300,000 cells, and 16 to 148,396 cells for
CD34+/CD38-/CD123- cells (Table 4). Immunomag-
netic cell selection (MACS) was used to enrich CD34
cells from patient no. 4, as CD34 in this patient was
only 2.3 % (Table 4).

All of CD34+/CD38-/CD123+ fractions amounted
to less than 1 % of the total cells except sample
number 6. In addition, with the exception of sample
number 3, all of CD34+/CD38-/CD123- fractions
also amounted to less than 1 % of the total cells
(Table 4).

Detection of FLT3/ITD in the sorted AML stem cells
Genomic DNA from unsorted and sorted cells was isolated
and PCR was performed using primers flanking exons 14

and 15 of the FLT3 gene [23, 24]. In the seven positive
FLT3/ITD samples analyzed, the mutation was detected in
the LSC-enriched fraction CD34+/CD38-/CD123+ (Fig. 4a).
In six patients, CD34+/CD38-/CD123- cells were
FLT3/ITD negative. In the remaining patient, it is
possible that no true CD123- cells were obtained as
CD123 was expressed on 99.2 % of CD34+/CD38-
cells and very low numbers of cells were collected in
CD34+/CD38-/CD123- fraction (69 cells only).

In sample 1, the mutation in LSC-enriched fraction
CD34+/CD38-/CD123+ was most likely present in homo-
zygous form, as less than 1 % of the PCR product repre-
sented the WT FLT3 gene. In samples 2, 3, 4, 5, 6, and 7,
the mutations were present in heterozygous form, as ap-
proximately 50 % of the PCR product represented the WT
FLT3 gene, demonstrated by thickness of the band (Fig. 4a).

Sequencing the FLT3/ITD

The FLT3/ITD mutations in the CD34+/CD38-/CD123+
cells were sequenced in two patients (patients 3 and 4)
(Fig. 4b) to confirm that they represented the identical
mutations present in the sorted and unsorted original sam-
ples. In one patient, 33 base pairs (bp) inserted, and the
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.

other one was 78 bp inserted. The fact that this expanded
population of LSCs contained the identical FLT3/ITD mu-
tation as was observed in the original unsorted samples
constitutes evidence that the FLT3/ITD mutations were
present in LSCs.

Discussion

In this study, we hypothesized that the FLT3/ITD mutation
occurs at a stage of stem cells defined by CD34+/CD38-
and IL-3 « receptor in AML patients, and FLT3/ITD may
be a primary and not a secondary event in leukemogenesis.

We have identified that expression of CD123 is found
on virtually almost all (94 %) AML specimens examined
similar to previously published data [8, 25, 26]. The high
levels of expression observed could simply be indicative
of some other conserved event in leukemogenesis. Fur-
thermore, CD123 expression was also demonstrated on
the primitive subpopulation of CD34+/CD38- cells (28
of 32 specimens).

The presence of CD123 on AML CD34+/CD38- cells
has a potential significance. It demonstrates that LSCs
are biologically distinct from their normal stem cell
counterparts. In addition, because CD123 is not found
on normal HSCs, it provides a unique marker that can

be used to identify the malignant clone. This feature
may be very useful in minimal residual disease studies as
a single and standardized marker [27-29]. Furthermore,
the CD123 epitope represents a target to which thera-
peutic strategies may be directed [8, 25, 26, 30-32].

Somatic mutation of FLT3 involving ITDs of the JM do-
main have been identified in approximately 17-34 % of
AML cases [16, 17, 33—-37]. Two studies demonstrated the
presence of FLT3 mutations at LSC level [37, 38]. Levis et
al. [38] sorted primary AML samples harboring FLT3/ITD
mutations into stem cell-enriched CD34+/CD38- fractions
and then analyzed the sorted and unsorted cells for the
FLT3 mutant-WT ratio. In each case, the FLT3 mutant-WT
ratio was not changed by selection of CD34+/CD38- cells,
implying that the mutations occurred in the LSCs. The
stem cell-enriched fraction engrafted non-obese diabetic-
severe combined immunodeficient (NOD/SCID) mice, and
the FLT3/ITD mutation was present in the resultant
engrafted marrow. In addition, the finding that BM cells
from patients with AML harboring FLT3/ITD mutations
had a greater capacity to engraft NOD/SCID mice than cells
from patients lacking such mutations also supports the hy-
pothesis that FLT3/ITD is present at LSC level and hence
more likely to engraft the NOD/SCID mice [39, 40].
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Fig. 4 FLT3/ITD mutations in the BM cells of 7 AML patients. a CD34+/CD38-/CD123+ and CD34+/CD38-/CD123~ cells from different patient
samples were isolated by sorting (sorting results displayed in Table 4). For each of the seven samples, genomic DNA was isolated from the (7)
CD34+/CD38-/CD123—, (2) CD34+4/CD38-/CD123+ cells, and (3) unsorted cells at diagnosis (a vertical line was inserted to indicate that diagnosis
samples were done on separate gels). b The sequences of the FLT3/ITD mutations from the two samples (patients 3 and 4) are shown. These
sequences, obtained from the DNA of CD34+/CD38—-/CD123+ cells, matched the sequences of the mutations present in the pre-sorted samples.
bp indicates base pair. Boldface sequence refers to the inserted, duplicated material

Patient 4

FLT3ITD

FLTYWT

We demonstrate that FLT3/ITD mutations are
found in a primitive fraction of cells as defined by
CD34+/CD38-/CD123+. In addition, our data show
that the FLT3/ITD mutations were present within
purified enriched LSCs defined by CD123 and absent
within stem cells without CD123. The specimens were de-
rived from several different FAB subtypes M1, M2, M4, and
Mb5a, and therefore, represent a broad cross section of com-
monly detected AML types.

The sorted cells in most of the samples comprised
less than 1 % of the total population before sorting. If
CD34+/CD38-/CD123+ subset contains a significant
fraction of LSCs, then the FLT3/ITD imply that most of
these mutations are in cells capable of self-renewal
[19]. Ideally, these enriched leukemic cells should be
injected into NOD/SCID mice but this was technically
challenging as an appropriate AML model was not
available in the country.

In sample 1, after sorting of the CD34+/CD38-/CD123+
fraction, no WT signal was detectable, probably as a result
of eliminating the small percent of normal hematopoietic
cells in the sample. In all other six cases, the FLT3/ITD was

very similar between sorted and unsorted fractions as
shown in Fig. 4. In no case was the mutant allele depleted
or enhanced by sorting for LSCs. It is interesting to note
that the six samples were heterozygous for FLT3/ITD, even
in the stem cell-sorted fractions. It is possible that this
reflects a PCR bias for the shorter WT molecule and that
this ratio actually represents 100 % of cells with a het-
erozygous mutation. Alternately, these ratios may sug-
gest the presence of either additional sub clones of
leukemic CD34+/CD38-/CD123+ cells that lacked the
mutation within these samples.

FLT3-ITD mutation may occur in the early phase of
leukemia pathogenesis, even blast cell with FLT3-ITD
mutation are eliminated by chemotherapy, the aberrant
mutation that pre-existed in LSC could still play an in-
dispensable role in the relapse of the leukemia [41-43],
and our data provided new insights into the pathogen-
esis of LSC.

Several lines of evidence have previously suggested
that these mutations can occur relatively late in the de-
velopment of leukemia. Few studies have demonstrated
that in a small proportion of cases, FLT3/ITD mutations



Table 4 Summary of results from sorting and immunomagnetic cell selection MACS

Sample no. Age Total unsorted % CD34 unsorted % CD123 unsorted  Total CD34+/CD38—/  Total CD34+/CD38-/ WBC count  FAB-subtype Cytogenetics % blast %  Sequencing

cells cells cells CD123+ cells from CD123- cells from X107/L diagnosis  FLT3/ITD
the sorter the sorter
1 46 10% 10° 96 86 150 1606 56 M1 Normal 80 ND
2 60 18x10° 89 99 76,000 418 45 M1 Normal 62 ND
3 69 12 10° 91 86 12,674 148,396 144 M2 Normal 22 78 bp
4 53 27 x10° 73° 93 1839 16 179 M5a Normal 82 33 bp
5 62 30% 10° 10 64 559 164 145 M4 Normal 40 ND
6 65 17 10° 15 99 300,000 69 6.11 M2 Normal 73 ND
7 72 40x10° 79 68 640 3602 092 M1 Normal 26 ND

Total unsorted cells represents the starting sample size, whereas total CD34+CD38-CD123+ and CD34+CD38-CD123- cells refers to the total number of CD34+/CD38-/CD123+/- cells obtained from a given sample
after sorting. Genomic DNA was sequenced for FLT3/ITD for sample nos. 3 and 4. ND indicates not done
2After CD34+ selection by MACS, the total yield of CD34+=2.4x 107 cells
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are lost at relapse [44—48]. This suggests that, in these
few cases, the mutations occurred in a subclone that was
eliminated by treatment. Until now, the observation of
an increased outgrowth of FLT3/ITD AML in NOD/
SCID mice suggests that in a large part of the FLT3/
ITD-positive leukemia, the mutation is present at the
level of the malignant stem cell [19, 49]. Nevertheless,
it is not clear if the observed outgrowth is solely
dependent on the transplanted LSCs or that also other,
more committed, cells are able to expand in this model.
The occurrence of an enhanced survival of FLT3/ITD
AML cells is further supported by the observations of
Schnitgger et al. [33] and Kottaridis et al. [45] who ob-
served that FLT3/ITD patients who relapsed for the
greater part showed an increased mutant to WT ratio
at relapse.

Our results are not consistent with the previous find-
ings of occasional loss of FLT3/ITD mutations at relapse.
However, our results do not exclude that at least a sub-
set of AML, the FLT3/ITD mutations are present only in
subclones derived from the original LSC, subclones that
lack the capacity for self-renewal. It may be that our sample
size was simply not large enough to uncover such cases.
These may represent the cases in which the mutation arose
as a relatively late hit in leukemogenesis and may be the
cases in which the mutation is lost at relapse. Alternately,
FLT3 mutations could always be present in LSCs, but occa-
sionally chemotherapy succeeds in eradicating the FLT3/
ITD samples, whereas other LSCs that lack the mutation
are resistant.

In the study of Masao et al. [50], they identified target
genes of the FLT3/ITD by microarray expression profil-
ing. ITD mutations induced transcriptional programs
that partially mimicked IL-3 activity with many genes
being specifically regulated by the mutations but not by
ligand-activated WT FLT3. They also have shown that
FLT3/ITD mutations induce a transcriptional program
that is fundamentally different from the program in-
duced by FLT3-WT.

The sorting strategy used in this study imple-
mented stringent criteria for scoring, as the purity of
sorting was >95 % in all the seven AML patients.
We also optimized the PCR for very small number
of cells and were able to demonstrate the presence
of FLT3/ITD in CD34+/CD38-/CD123+ fraction and
not CD34+/CD38-/CD123-. This confirms that the PCR
technique was robust (with the exception of one patient)
which gives evidence that the technique is working on
small number of cells.

Targeting of CD123/IL-3 alpha receptor may be a
novel promising treatment approach in patients with
CD123+ AML [8, 25, 27, 51-53]. This concept is based
on the notion that in most patients with AML, myelo-
blasts express CD123 as shown in our study.
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Conclusions

In conclusion, these novel findings show that FLT3/ITD
mutations are present at the leukemic stem cell level
and may be a primary and not secondary event in
leukemogenesis. There is also evidence to suggest
that FLT3/ITD mutations were present within puri-
fied enriched leukemic stem cells defined by CD123
(CD34+CD38-CD123+) and absent within stem cells
without CD123 (CD34+CD38-CD123-). Furthermore, the
study shows that the oncogenic events of FLT3/ITD
happen at a cell stage possessing the alpha chain of the IL-3
receptor (CD123). These novel findings provide a rationale
for treatment involving CD123-trageting antibodies
with intracellular FLT3 inhibitors directed against AML
stem cells.

In the future, it would be of great interest to study the
frequency of CD34+/CD38-CD123+ cells post induction
and consolidation chemotherapy as these cells may rep-
resent the highly resistant cells to chemotherapy and
might be the cells that cause regrowth of leukemia and
thus relapse of the disease.
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