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Abstract

Bruton tyrosine kinase (BTK) is a critical effector molecule for B cell development and plays a major role in lymphoma
genesis. Ibrutinib is the first-generation BTK inhibitor. Ibrutinib has off-target effects on EGFR, ITK, and Tec family kinases,
which explains the untoward effects of ibrutinib. Resistance to ibrutinib was also reported. The C481S mutation in the
BTK kinase domain was reported to be a major mechanism of resistance to ibrutinib. This review summarizes the
clinical development of novel BTK inhibitors, ACP-196 (acalabrutinib), ONO/GS-4059, and BGB-3111.

Abbreviations: AE, adverse event; BTK, Bruton tyrosine kinase; CR, complete response; ORR, overall response rate;
PR, partial response; SD, stable disease; DLT, dose-limiting toxicity; MTD, maximal tolerated dose

Background
Bruton tyrosine kinase
Bruton tyrosine kinase (BTK) was initially implicated in
the pathogenesis of X-linked agammaglobulinemia [1–4].
The gene encoding the BTK molecule was isolated in
1993 and was named independently at the time as B cell
progenitor kinase and agammaglobulinemia tyrosine kin-
ase [5, 6]. The BTK gene is located on the X chromosome
in the region Xq21.3-22.1. The gene contains 19 exons
and the open reading frame has 1977 nucleotides. BTK is
a 76-kDa polypeptide with 659 amino acid residues.

BTK functions
BTK is expressed in the cells of all hematopoietic line-
ages except for T and plasma cells [7]. It is a cytoplasmic
tyrosine kinase in the Tec family [8]. Like other Tec
family members, BTK has a PH (pleckstrin-homology)
domain, SH3 and SH2 (src-homology) domains, and a
carboxyl kinase domain (Fig. 1). This tyrosine kinase lies
downstream of the B cell antigen receptor (BCR) [9].
Upon activation of BCR, BTK becomes activated
through interacting with the partner molecules through
the PH and SH domains [10, 11]. This in turn leads to
calcium release [8, 12]. BTK is a critical effector mol-
ecule and is involved in all aspects of B cell

development, including proliferation, maturation, differ-
entiation, apoptosis, and cell migration [13]. When the
BTK gene was knocked out in a mouse model, a reduced
number of mature B cells along with severe IgM and
IgG3 deficiency were observed [14]. BTK is critical in
the initiation, survival, and progression of B cell lympho-
proliferative disorders [15–17].

Ibrutinib: the first-generation BTK inhibitor
Targeting novel biomarkers that are driver molecules
regulating cancer cell growth and differentiation has
revolutionized drug development for cancer therapy
[18–24]. Novel agents targeting biomarker molecules in
lymphocytes are revolutionizing treatment of lymphoid
malignancies [25–33]. Since BTK is a critical effector
molecule for B cell development and plays a major role
in lymphomagenesis, BTK inhibitors have been investi-
gated as potential treatments [11, 34–37]. To date, ibru-
tinib remains the only BTK inhibitor approved for
several lymphoproliferative malignancies [38–40].
Ibrutinib is the first-in-class, highly potent small mol-

ecule inhibitor that selectively binds to cysteine 481 resi-
due in the allosteric inhibitory segment of BTK kinase
domain. The compound irreversibly abrogates the full
activation of BTK by inhibiting its autophosphorylation at
tyrosine residue 223 [41]. Ibrutinib (imbruvica) has been
approved for the treatment of chronic lymphocytic
leukemia (CLL), mantle cell lymphoma (MCL), and Wal-
denstrom’s macroglobulinemia [11, 35, 36, 38–40, 42–46].
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However, untoward effects, such as bleeding, rash,
diarrhea and atrial fibrillation have been observed and
attributed in part to its off-target effects on the epi-
dermal growth factor receptor and the Tec family
proteins other than BTK [8, 43, 44, 47–53]. In
addition, resistance to ibrutinib has been observed
[54, 55]. As a result, second-generation BTK inhibi-
tors are being developed.

Resistance mechanisms for ibrutinib
The estimated progression-free survival (PFS) rate
among relapsed/refractory CLL patients treated with
ibrutinib was reported to be 75 % at 26 months [38].
The mechanisms of acquired resistance to ibrutinib are
under active investigation [54–56].
In one case report, a CLL patient developed resistance

after 21 months on ibrutinib at a dose as high as 840 mg
daily [55]. Through sequencing RNA from pre- and
post-treatment samples, a thymidine-to-adenine muta-
tion at nucleotide 1634 of the BTK complementary
DNA (cDNA) was discovered. This led to a substitution
of serine for cysteine at residue 481 (C481S) (Fig. 1).
Ibrutinib forms a covalent bond with the sulfhydryl
group of C481 of BTK and irreversibly inhibits the kin-
ase activity of BTK [41]. The new amino acid residue
S481 prevents ibrutinib from covalently binding to the
BTK mutants, converting irreversible inhibition of the
BTK to reversible inhibition. When the phosphorylation
at tyrosine residue 223 was studied, the IC50 (half-max-
imal inhibitory concentration) of ibrutinib changed to
1006 nM on C481S mutant BTK from 2.2 nM on non-
mutant BTK [55]. The C481S mutation was below the
detectable level in ibrutinib-naïve patients, suggesting
that this mutant clone was selected out through BTK in-
hibition by ibrutinib [57]. The same C481S BTK muta-
tion was also found to be responsible for acquired
resistance to ibrutinib in MCL [56, 58].
In addition to the C481S mutation, three distinct mu-

tations in PLCγ2 were found in two CLL patients who
became resistant to ibrutinib [54]. Two mutations in
PLCγ2, R665W and L845F, could lead to a gain-of-
function. Since PLCγ2 lies immediately downstream of
BTK, these mutants could therefore bypass the inactive

BTK and allow autonomous B cell receptor activity des-
pite the inactive BTK. In an update, two of six patients
with Richter transformation after ibrutinib therapy had
the BTK C481S mutation, while 100 % patients (10/10)
with progression but no Richter transformation had ei-
ther one or both BTK C481S and PLCγ2 mutations [54].
None of the mutations were present in any of the pa-
tients with prolonged lymphocytosis on ibrutinib
therapy.
Approximately 32 % of MCL patients had primary

resistance to ibrutinib since the response rate of MCL
to ibrutinib was 68 % [40]. This suggests that add-
itional mechanisms of resistance exist. It was demon-
strated that inhibition of ERK1/2 and AKT correlated
with cellular response to BTK inhibition in vitro and
in primary tumor samples [58]. Taken together, pri-
mary ibrutinib resistance in MCL is not mainly
caused by ineffective ibrutinib inhibition of BTK but
rather involves PI3K-AKT activation. In addition,
transcriptome sequencing displayed recurrent muta-
tions in TRAF2 or BIRC3 in 15 % of the 165 patient
samples [59]. These genetic lesions in the alternative
NF-kB pathway exposed another mechanism of pri-
mary ibrutinib resistance in MCL.
In patients with Waldenstrom’s macroglobulinemia

(WM), MYD88 and CXCR4 mutations have been
shown to be associated with clinical response to ibru-
tinib [46, 60, 61]. The effect of MYD88 and CXCR4
mutations on outcomes of ibrutinib in 63 patients
with WM was reported [39, 46]. Results indicate that
patients with MYD88L265PCXCR4WT have the highest
response rate (100 % overall response rate). BCL2 can
protect against ibrutinib triggered apoptosis regardless
of CXCR4WHIM mutation status [60, 62], supporting
the use of BCL2 inhibitor in refractory B cell malig-
nancies [19].
There is, however, no relationship between MYD88

mutation status and ibrutinib response in patients with
diffuse large B cell lymphoma (DLBCL), particularly the
ABC subtype. Instead, mutations that affect the signaling
of B cell and T cell receptors, such as CD79A/B and
CARD11 may be responsible for lower response to ibru-
tinib [39, 63, 64].

PH SH3 SH2 Kinase

C481S
Fig. 1 The structure of Bruton tyrosine kinase (BTK). BTK has a pleckstrin-homology (PH) domain, SH3 and SH2 (src-homology) domains, and a
kinase domain. The BTK polypeptide has 659 amino acid residues with an approximate molecular weight of 76 kDa. The C481S mutation in the
kinase domain mediates resistance to ibrutinib
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Second-generation BTK inhibitors
The emerging resistance to and off-target side effects of
ibrutinib have led to active development of second-
generation and more specific BTK inhibitors, such as
ACP-196, ONO/GS-4059, and BGB-3111.

ACP-196
ACP-196, also known as acalabrutinib, is a novel irrevers-
ible second-generation BTK inhibitor [34, 37]. It is more
potent and selective than ibrutinib with reduced off-target
side effects. As shown through IC50 determinations on
nine kinases with a cysteine residue in the same position
as BTK, ACP-196 had virtually no inhibition on kinase ac-
tivities of EGFR, ITK, TEC, etc. [37, 65, 66].
A phase 1/2, multicenter, open-label, and dose-

escalation clinical trial on ACP-196 (NCT02029443) has
been underway in relapsed and refractory CLL patients. In
the last update, 61 patients with relapsed CLL were en-
rolled [37]. In the phase 1 portion of this study, patients
were treated with ACP-196 at an increasing dose of 100 to
400 mg once daily, while in the phase 2 expansion portion,
100 mg twice daily was given. The median follow-up time
was 14.3 months (range 0.5–20), the overall response rate
(ORR) was 95 %, with 85 % partial response (PR), 10 %
PR, and 5 % SD (stable disease). Among them, patients
with chromosome 17p13.1 deletion had 100 % ORR. The
most common adverse events were headache, diarrhea,
and weight gain, without dose-limiting toxicities, and no
cases of atrial fibrillation and Richter’s transformation.
Currently, a phase 3 study (NCT02477696) directly

comparing ACP-196 with ibrutinib in high-risk patients
with relapsed CLL has commenced. In addition, multiple
trials of ACP-196 on other hematological malignancies
and solid tumors are underway [34].

ONO/GS-4059
ONO/GS-4059 is another highly potent and more spe-
cific BTK inhibitor. Its anti-tumor activities were studied
in preclinical models [67] and in the clinical trials for
the treatment of B cell malignancies [68–73].
In an ABC-DLBCL cell line (TMD-8) xenograft model,

the effects of ONO/GS-4059 on gene transcription
in vivo were analyzed [67]. The results indicated that
ONO/GS-4059 affects a core set of genes that contain
nine down-regulated and eight up-regulated genes in a
dose-dependent manner. Among these, CXCL-10 is the
most down-regulated gene by ONO/GS-4059 and is in-
volved in the pathological processes of human disorders,
such as infectious diseases and inflammatory and auto-
immune diseases as well as cancer. This study confirmed
the profound anti-proliferative activity of ONO/GS-4059
by inhibiting BTK in the TMD-8 model.
The first-in-human phase I study of ONO/GS-4059 was

on relapsed/refractory B cell malignancies (NCT01659255)

[70]. The efficacy and safety data on 90 evaluable patients
(CLL n = 28, MCL n = 16, DLBCL n = 35, FL n = 5,
WM n = 3, MZL n = 2, and SLL n = 1) were reported
[68–70, 72]. The dose-escalating 3 + 3 cohorts ranged
from 20 mg to 600 mg once daily, and twice-daily
regimens had doses of 240 mg and 300 mg. In the
CLL group, 96 % (24/25) of patients had objective re-
sponses within the first 3 months of therapy. Rapid
responses in the lymph nodes were noted with con-
current lymphocytosis [72]. In the MCL group, 92 % (11/
12) of patients responded to ONO/GS-4059 (six PR and
five complete responses (CRs)/Cru). In non-germinal cen-
ter DLBCL, 35 % (11/31) of patients responded with 2 con-
firmed CR, 1 CRu, and 8 PR. In contrast to CLL and MCL,
responses of DLBCL were much less durable. Notably, CLL
and MCL patients with a chromosome 17p deletion and/or
TP53 mutation as well as those following allogeneic stem
cell transplantation responded rapidly. The pharmacokinet-
ics of ONO/GS-4059 showed rapid absorption and elimin-
ation with a half-life of 6.5 to 8 h. The BTK occupancy in
the peripheral blood was maintained for at least 24 h across
all dose levels. Most importantly, ONO/GS-4059 was found
to be well tolerated in all groups. There was no maximal
tolerated dose (MTD) reached in the CLL group. In the
lymphoma cohort, 480 mg once daily was the MTD. Drug-
related hematoma was reported in one patient. Atrial
fibrillation was observed, but it was reported to be not
drug-related [72]. In the kinomescan study, ONO/GS-4059
was found to have significantly weaker activity on TEC kin-
ase [72]. Therefore, ONO/GS-4059 has a favorable safety
profile along with preliminary efficacy in patients with re-
lapsed/refractory B cell malignancies.
Further investigations of ONO/GS-4059 are ongoing to

ascertain its advantages in combination therapies. Com-
bination of idelalisib and ONO/GS-4059 synergistically
inhibited the growth of a subset of DLBCL and MCL cell
lines [71]. This combination led to more significant
growth inhibition of the A20 mutant TMD8 cells than sin-
gle agent idelalisib. This suggested that the combination
therapy may overcome some mechanisms of resistance in
the BTK signaling pathway. In addition, Jones et al. inves-
tigated the potential activity of combinations of the B cell
receptor pathway inhibitors, entospletinib, ONO/GS-
4059, and idelalisib, with the BCL2 inhibitor ABT-199 in
primary CLL cells [73–76]. Results showed that their com-
bination synergistically increased the apoptosis in these
primary CLL cells and achieved the maximal levels of
apoptosis. These data support clinical investigation of
these combinations in patients with CLL.

BGB-3111
BGB-3111 is another more selective BTK inhibitor with
superior oral bioavailability, higher BTK specificity than
ibrutinib [24, 77].
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In preclinical studies, BGB-3111 showed more re-
stricted off-target activities against a panel of kinases,
including ITK. Due to the weaker activity on ITK, BGB-
3111 was at least 10 times weaker than ibrutinib in inhi-
biting rituximab-induced ADCC activity. Both in the
REC-1 MCL and ABC subtype DLBCL (TMD-8) xeno-
graft models, BGB-3111 induced dose-dependent anti-
tumor effects and demonstrated superior efficacy in
comparison with ibrutinib. Toxicity study in rats indi-
cated that BGB-3111 was very well tolerated, and the
MTD was not reached when it was dosed up to 250 mg/
kg/day [77]. These preclinical data showed that BGB-
3111 is a highly selective and potent BTK inhibitor.
The first-in-human, open-label phase 1 trial of BGB-

3111 is ongoing as a modified 3 + 3 dose-escalation
design (40, 80, 160, 320 mg PO QD; 160 mg PO BID) in
patients with advanced B cell malignancies [24]. The
pharmacokinetics, efficacy and safety of BGB-3111 were
assessed in this study. At the last update from the 2015
ASH annual meeting, 25 patients were enrolled in five
cohorts: 40 mg (n = 4), 80 mg (n = 5), 160 mg (n = 6),
320 mg (n = 6) QD, and 160 mg BID (n = 4). Sixty-four
percent (16/25) of patients had objective responses,
including 1 CR and 6 SD. There were no drug-related
adverse events (AEs), no dose-limited toxicities (DLT)
reported yet, and the MTD was not reached. The pre-
liminary phase 1 results suggested that the selective BTK
inhibitor BGB-3111 is clinically active and tolerable.
However, the study report was preliminary, and its
toxicity profile and clinical efficacy remain to be
determined.

Conclusions
Second-generation and more selective BTK inhibitors,
ACP-196, ONO/GS-4059, and BGB-3111, are being
evaluated clinically. These compounds have fewer off-
target effects and are more potent than ibrutinib
(Table 1). Ibrutinib has been shown to be well tolerated
and effective in combinations with chemotherapy regi-
mens [78, 79]. The more selective ACP-196 and ONO/
GS-4059 are being investigated in combinations with

active agents in lymphoma therapy. With the advances
in bispecific antibodies [80–83], antibody drug conju-
gates [84, 85], immune checkpoint blockers [86, 87], and
CAR-T for cancer immunotherapies [88–90], further in-
vestigation of combinations with these agents will lead
to less toxic and more targeted therapeutic regimens for
B cell malignancies.
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