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Abstract

Background: Endometrial carcinoma (EC) is one of the most common malignancies of the female reproductive
system. Migration and invasion inhibitory protein (MIIP) gene was recently discovered candidate tumor suppress
gene which located at chromosome 1p36.22. 1p36 deletion was found in many types of tumor including EC. In the
present study, we will determine the role and mechanism of MIIP in EC metastasis.

Methods: Immunohistochemistry was used to measure MIIP expression in normal and EC tissue. Both gain-of-
function (infection) and loss-of-function (siRNA) assays were used to alter MIIP expression levels. The effect of MIIP
on cell migration and invasion was measured by transwell assay. F-actin immunofluorescence staining was used to
observe the cell morphology. The activation of GTP-loaded Rac1 was evaluated by Rac activity assay kit.
Immunoprecipitation/WB was used to measure the interaction between MIIP and PAK1.

Results: We demonstrate that MIIP expression was significantly decreased in EC patients comparing to the
normal ones, and decreased MIIP expression in EC tissues is associated with deep myometrial invasion,
advanced stage, and the presence of lymph node metastasis. Using both gain-of-function (infection) and loss-
of-function (siRNA) assays, we show that MIIP markedly blocked EC cell migration, whereas loss of MIIP led to
increase in EC cell migration. We demonstrate that elevated expression of MIIP resulted in cytoskeleton
reorganization with decreased formation of lamellipodia. We also provide evidence that MIIP is a key
molecule in directing Rac1 signaling cascades in EC. Ectopically expressed MIIP consistently competed with
Rac1-GTP for binding with the PAK1 p21-binding domain. Our data show that MIIP and PAK1 bind each other
and that a C-terminal polyproline domain of MIIP is required for PAK1 binding. Deletion of the PAK1-binding
domain of MIIP reduced cell migration-inhibiting activity.

Conclusions: MIIP may function as a tumor suppressor gene for endometrial carcinoma. MIIP attenuates Rac]
signaling through a protein interaction network, and loss of this regulator may contribute to EC metastasis.
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Background

Endometrial cancer (EC) is the second most common gy-
necologic cancer worldwide [1]. The American Cancer
Society reports that the number of newly diagnosed EC
cases increased from 35,000 to 60,050 in the USA alone
between 1987 and 2016; the number of deaths rose from
2900 to 10,470, a 261 % increase [2]. The 5-year survival
rate for early stage EC is close to 70 %, but the median
survival rate drops to 1 year for patients with advanced
stage. Even among patients with apparent early-stage dis-
ease, some will go on to develop localized recurrent and
distant metastases [3]. However, there has been very little
gain in therapeutic efficacy during the past 30 years [4, 5].

Understanding the molecular mechanisms underlying
EC migration is among the most important goals of EC
research. The molecular mechanisms that account for
local or distant metastasis are not well understood. The
migration and invasion inhibitory protein, which is
encoded by the recently discovered MIIP (also termed
IIp45) gene, located on chromosome 1p36.22 and span-
ning 12.6 kb of genomic DNA, inhibits migration and
invasion of human glioma cells [6]. The MIIP-contain-
ing chromosome 1p36 region has been shown to be
deleted in a wide spectrum of human cancers, including
EC [7-9], which suggests that MIIP may also be a nega-
tive regulator of EC progression. Previous studies have
shown that MIIP inhibits glioma cell migration and
invasion through two mechanisms: (1) attenuating
insulin-like growth factor-binding protein 2 (IGFBP2)-
mediated cell migration [10] and (2) blocking HDAC6
activity and increasing acetylated a-tubulin, which sta-
bilizes microtubules [11]. Like microtubules, the actin
cytoskeleton is a major mechanism for cell migration.
In migrating cells, growing microtubules that reach into
the leading edge promote Rac activation and the forma-
tion of short, branched F-actin for lamellipodia formation.
c¢DNA microarray gene expression profiling identified a
group of motility-associated genes whose expression was
downregulated in MIIP-expressing cells, including Rho
GTPase family members, the transcription factor NF-xB
and its downstream target genes [10]. Racl is a member
of the Rho family of GTPases that induces formation of
lamellipodia protrusions and membrane ruffles through
interaction with its specific effector, p21-activating kinase
(PAK) [12]. The activation of Racl and its downstream
effectors has been associated with tumor cell migration,
invasion, and/or metastasis in breast, ovarian, lung, colo-
rectal, bladder, and ECs [13-19]. However, it is not clear
how MIIP modulates the Rho GTPase family members.

In the study presented here, we demonstrate that de-
creased expression of MIIP was significantly associated
with deep myometrial invasion, advanced stage, and the
presence of lymph node metastasis in EC. We also show
that knockdown of MIIP increased EC cell migration,
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while restoration of MIIP inhibited EC cell migration.
MIIP expression had a marked impact on lamellipodia
formation. Furthermore, we demonstrate that MIIP
inhibited EC cell migration through blocking of the Racl
signal transduction pathway by directly binding to its
downstream effector PAK1, and a C-terminal polypro-
line domain of MIIP is required for PAK1 binding.

Results

Decreased MIIP expression is associated with
tumorigenesis and progression of EC

To investigate MIIP’s role in EC tumorigenesis and
progression, we first evaluated MIIP protein expression
in normal endometrium (NE), atypical hyperplasia endo-
metrium (AHE), and EC using an immunohistochemical
analysis on tissue microarrays (TMAs). Among the 384
cases available for the analysis on TMA, MIIP expression
was highest in NE (51.72 %, 116 cases), lower in AHE
(42.85 %, 63 cases), and lowest in EC (25.85 %, 205 cases,
Fig. 1a, b). Detailed clinical correlation analyses revealed
that among the 205 EC patients, a low level of MIIP
expression was associated with deep myometrial invasion,
lymph node metastasis, and advanced FIGO stage
(Fig. 1c and Table 1).

MIIP inhibits EC cell migration and invasion

The TMA analyses described above demonstrate that
MIIP is inactivated in EC which is related to lymph node
metastasis of EC. This supports our hypothesis that the
MIIP gene functions as a migration inhibitor in EC cells,
similar to what has been observed in glioma cells [10,
20]. Western blot analysis of five widely used EC cell
lines showed that MIIP protein expression was relatively
high in HEC1A cells but very low in AN3CA and
HECIB cells (Additional file 1: Figure S1). We examined
the effects of increasing or decreasing MIIP expression
on cell migration and invasion using transwell chamber
assays. An adenovirus-based expression system (Ad-
MIIP) was used to uniformly elevate MIIP expression in
AN3CA and HECI1B cells, and two small-interfering
RNAs (siRNA) knockdown was used to inhibit MIIP ex-
pression in HEC1A cells (Fig. 2a).

The transwell cell migration assay was done within
24 h of seeding to avoid interference of cell growth in in-
terpretation of cell migration results. Results show that
the number of migrated MIIP-knockdown HEC1A cells
was significantly greater than that of cells transfected
with the control vector (71.17 + 3.82 and 68.86 + 5.23 vs.
30.12 + 1.94, P<0.01). The number of migrated cells was
significantly decreased in MIIP-overexpressing cells rela-
tive to negative controls for both HEC1B (21.83 + 2.04
vs. 89.83 £5.56, P<0.01) and AN3CA (26.67 +1.86 vs.
69.83 +2.93, P <0.01) cells (Fig. 2b, c).
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Fig. 1 Expression of MIIP is reduced in human EC specimens. a MIIP expression was evaluated by immunohistochemical staining on TMAs. The
respective images in the same TMAs showed that MIIP expression was lower in EC than those in NE and AHE. b Statistical analysis revealed that
MIIP expression was highest in NE, lower in AHE, and lowest in EC. ¢ Loss expression of MIIP was related to lymph node metastasis in EC. Left
panel: Shown are representative images of MIIP expression in EC tissues with or without lymph node metastasis. Right panel: Statistical analysis
revealed that low MIIP expression was correlated with lymph node metastasis in EC patients. Asterisk indicates P < 0.05. See also Table 1

Table 1 Correlation between MIIP protein expression and
pathological parameters of EC

Pathological No.  MIIP expression, n (%) XZ P
characteristic Low High
Histologic subtype
Endometrioid 183 126 (6885) 57 (31.15) 1827 0.176
Non-endometrioid 22 12 (54.55) 10 (45.45)
Histopathological grade
1 82 58 (70.73) 24.(29.27) 0204 0903
2 77 55(7143) 22 (28.57)
3 24 16 (66.67) 8(2233)
FIGO stage
land Il 166 109 (65.77) 57 (3433) 6930 0008
IIhand IV 39 34(87.298) 5(12.82)
Myometrial invasion
<1/2 141 90 (63.83) 51(36.17) 7519  0.006
21/2 64 53 (82.01) 11(17.19)
Lymph node status
Negative 179 110 (6145) 69 (3855 5312 0021
Positive 26 22(8462)  4(1538)

We also used a transwell assay to investigate whether
MIIP has the same effect on invasion of HEC1A and
HECIB cells. As in the migration assay, knockdown of
MIIP in HEC1A cells significantly increased cell invasion
compared to the control cells transfected with negative
control siRNA (101.34 + 1.86 and 96.33 + 2.64 vs 25.83 +
1.47, Fig. 2d). While overexpression of MIIP inhibited
HECIB cell invasion significantly compared to cells
transfected with negative control vector (18.33 + 2.33 vs.
43.17 +4.07, Fig. 2e).

MIIP reduces formation of lamellipodia, affects Rac1
location and inhibits Rac1 activity

Lamellipodia, broad sheet-like protrusions containing
a network of branching actin filaments, are found at
the front of migrating cells and drive cell migration.
To gain insight into the molecular basis for the effect
of MIIP on cell migration, we evaluated structural
changes in the actin cytoskeleton by staining F-actin
in HEC1A cells before and after MIIP knockdown.
MIIP-knockdown cells had extensive lamellipodia at
their leading edges compared to the controls (Fig. 3a).
In MIIP-overexpressing HECIB cells, lamellipodia
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Fig. 2 MIIP inhibits EC cell migration and invasion. a Western blot shows that MIIP was knocked down by two different siRNAs against MIIP when
compared to control at 24 and 48 h. And MIIP expression was forced in HEC1B and AN3CA cells by infection with an adenovirus containing MiIP
(Ad-MIIP) or control adenovirus (Ad-Ev) at 24, 48, or 72 h. b, ¢ Modulation of EC cell migration by MIIP in a transwell migration chamber. b
Representative photographs revealed knockdown of MiIP enhanced HECTA cell migration and overexpression of MIIP inhibited HEC1B and AN3CA
cell migration (magnification x200). ¢ Data are expressed as means + SD of cells per 10 high-power fields from three separate experiments. d, e
Modulation of EC cell invasion by MIIP in a transwell invasion chamber. d Left: Representative images of cells on the filter surface of HECTA (x200
magnification). Right: Quantitative measurement of invaded HECTA cells. Data are represented by the mean + SD of cells per 10 high-power fields
from three separate experiments. e Left: Representative images of cells on the filter surface of HEC1B (x200 magnification). Right: Quantitative
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formation was consistently reduced significantly com-
pared to that in control cells (Fig. 3b).

Because Racl is a well-known molecule in regulation of
lamellipodia structure, we performed immunofluorescence
staining of Racl. We observed large lamellipodia with
Racl concentrated on the leading edge in MIIP-knock-
down HECIA cells, whereas lamellipodia were rarely
observed in control HEC1A cells and Racl was concen-
trated mainly at the cell-cell borders (Fig. 3c). Consistent
with this finding was the observation of large lamellipodia
with Racl concentrated on the leading edge in the control
HECIB cells, but lamellipodia were observed only rarely in
MIIP-overexpressing HEC1B cells and Racl was concen-
trated mainly at the cell-cell borders (Fig. 3d).

We next evaluated whether MIIP modulated Racl activ-
ity in the EC cells. We performed a Rac activity assay to
evaluate the levels of activated Racl by using pull-down
Racl-GTP with the PAK1 p21-binding domain (PBD).
The level of GTP-bound activated Racl was significantly
higher in MIIP-knockdown HEC1A cells than in control
cells (Fig. 3e). Moreover, the level of GTP-bound activated
Racl in MIIP-overexpressing HEC1B cells was consist-
ently lower than that in the controls (Fig. 3f).

MIIP blocks Rac1 signaling by directly binding to its
downstream effector PAK1

To understand whether MIIP’s modulation of Racl-GTP
level is mediated by blocking its binding to the PAK1

PBD, we loaded GTPyYS (which would form activated
GTP-Racl) to lysates of untreated HECI1B cells and
GDP (which would convert Rac1-GTP to Racl-GDP) to
lysates of MIIP-overexpressing HEC1B cells and, using a
Racl activation assay kit, carried out a competition bind-
ing assay in which MIIP concentration was increased
gradually while GTP-Racl protein input remained con-
stant. The original cell lysate with GTPyS or GDP
loading was used as a positive or negative control, re-
spectively. The results showed that increasing MIIP
level gradually blocked GTP-Racl binding to the PAK1
PBD, suggesting that MIIP competed with Racl for
binding to the PAK1 PBD (Fig. 4a).

To further confirm that MIIP binds to PAK1 in EC cells,
we performed co-immunoprecipitation analysis (co-IP) by
using MIIP antibody with total proteins extracted from
MIIP-overexpressing HEC1B cells. The results show that
PAKI1 protein was pulled down by MIIP (Fig. 4b). We also
performed reverse co-IP by using PAK1 antibody with
total proteins extracted from HECIA cells. The results
show that endogenous MIIP protein was pulled down by
PAK1 (Fig. 4c). Our co-immunofluorescence assay data
showed that MIIP and PAK1 are co-localized in HEC1B
cells (Fig. 4d). To further characterize the binding do-
mains of MIIP that interact with PAKI, hemagglutinin
(HA)-tagged expression vector with wild-type MIIP, or
with one of four truncated MIIPs, was transfected into
HECI1B cells for 24 h followed by co-IP to examine the
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Fig. 3 MIIP reduces formation of lamellipodia, affects Rac1 location, and inhibits Rac1 activity. a HECTA cells were transfected with si-control or
si-MIIP(#1and #2) for 72 h and then stained with phalloidin. Arrow: lamellipodia. b HEC1B cells were infected with Ad-MiIIP or control adenoviral vector
(Ad-Ev) at 10 muiltiplicity of infection (MOI) for 48 h and then stained with phalloidin (red). Arrow: lamellipodia. ¢ HEC1A cells were transfected with
si-control or si-MIIP (#1and #2) for 72 h and then stained with Rac1. Arrow in the upper panel: Racl location. Arrow in the middle and lower panels:
Lamellipodia and Rac1 location. d HEC1B cells were infected with Ad-MIIP or Ad-Ev at 10 MOI for 48 h and then stained for Rac1(red). Arrow in the upper
panel: Lamellipodia and Rac1 location. Arrow in the lower panels: Rac1 location. All images were taken by ZEISS HEO 100 microscope at a magnification
of x630. DNA was stained by DAPI (blue). Scale bar 10 pm. e Rac1 activity assay was based on the level of Rac1-GTP pulled down by the PAKT PBD. HECTA
cells were transfected with MIIP siRNA or scramble control siRNA. GTP-Rac1 immunoprecipitated by GST-PAK1 PBD was detected by western blotting with
an anti-Rac1-specific antibody. The left bar chart shows relative levels of MIIP, and the right bar chart shows relative levels of Rac1-GTP. Rac1 activity is
presented as percentage of GTP-Rac1 compared to total Rac1 (as 100 %). Data are shown as means + SD from three independent experiments; *P < 0.01

(t test). f Rac1 activity assay was performed on HEC1B cells overexpressing MIIP. HEC1B cells were infected with Ad-MIIP or control adenoviral vector
(Ad-Ev). GTP-RacT immunoprecipitated by GST PAKT PBD domain was detected by western blotting with Rac1 antibody. MIIP was also pulled down by
PAK1. The bar chart shows relative Rac1 activity. Data are shown as means + SD from three independent experiments; *P < 0.01 (t test)
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PAK1. Asterisk indicates IgG heavy chain. d Co-localization of MIIP and PAK1 in HEC1B cells. HEC1B cells were transfected with HA-tagged MIIP for 48 h
and then stained with HA (green) and PAKT (red). All images were taken by ZEISS HEO 100 microscope at a magnification of x630. Scale bar 10 pm.
Arrow: lamellipodia. Arrow head: MIIP and PAK1 co-localization. e Immunoprecipitation assays used rabbit anti-HA in HEC1B cells transfected with
wild-type MIIP or one of the four truncated MIIP constructs. Input: immunoblot of a steady level of MIIP, Rac1, or PAK1 in HEC1B cell lysates (30 % of
the amount of the same cell lysate sample used for immunoprecipitation). IgG H indicates IgG heavy chain. C, 1, 2, 3,4, and 5 indicate control,
wild-type MIIP, MIIP (155-388), MIIP (1-360), MIIP (1-313), and MIIP (1-283), respectively. f, g The effects of different truncated MIIPs on cell migration. f
Representative photographs of different truncated MIIPs on cell migration by transwell migration assay (magnification x200). g Data are expressed as
means + SD of cells per 10 high-power fields (magnification x200) from three separate experiments
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binding with PAK1. An HA antibody was used to im-
munoprecipitate PAK1 protein, and an anti-HA anti-
body was used to detect MIIP protein in the
immunoprecipitated complexes. As shown in Fig. 4e,
the wild-type MIIP could bind to PAK1. MIIP with an
N-terminal deletion (153-388) exhibited strong binding
to PAK1, whereas MIIP with a C-terminal deletion (1-
360, 1-313, or 1-283) showed no detectable binding to
PAK1. Thus, the C-terminal region of MIIP (360
ASPMQMLPPTPTWSVPQVPR PHVPRQKP 388), con-
taining a polyproline domain, is required for binding to
PAK1. We further evaluated the effect of the PAK1-
binding domain of MIIP on cell migration, and the data
show that loss of PAK1-binding domain reduced inhib-
ition of HEC1B cell migration (Fig. 4f and g).

Discussion
In this study, we investigated the biological function and
clinical significance of MIIP in EC progression through a
TMA MIIP expression. The results of our studies pro-
vide evidence that MIIP inhibited EC migration through
resulting in cytoskeleton reorganization with markedly
decreased formation of lamellipodia. MIIP may block
Racl signaling pathway through competing binding to
Racl’s downstream effector PAK1, which resulted in
decreasing formation of lamellipodia and then inhibiting
EC cell migration (Fig. 5). Specifically, we demonstrated
that a C-terminal polyproline domain of MIIP is required
for PAK1 binding.

This newly recognized TSG has obvious clinical sig-
nificance in EC patients. We found that MIIP expression



Wang et al. Journal of Hematology & Oncology (2016) 9:112

 PAKI1 Racl-GTP
= - MIIP
=T
PAK1
| e

Lamellipodia Oi}
E F ormalmn
aa a Cell migration
03

Fig. 5 MIIP competing with Rac1-GTP to bind the PAK1-binding
domain. The results of our studies provide evidence that MIIP
inhibited EC migration through reducing the formation of
lamellipodia. MIIP may block Rac1 signaling pathway through
competing binding to Rac1’s downstream effector PAK1, which
resulted in decreasing formation of lamellipodia and then inhibiting
EC cell migration

is deceased in EC tissues, especially in patients with deep
myometrial invasion, advanced stage, and lymph node
metastasis which is consistent with a previous study
reporting decreased MIIP in advanced gliomas [11]. MIIP
inactivation was also reported in breast, esophageal, and
lung cancer [19, 21, 22]. Thus, MIIP was considered to
play a major role in inhibiting epithelial tumor metastasis,
which includes EC, and the inactivation of the MIIP gene
in EC prompted us to further investigate its tumor
suppressor functions.

Highly augmented cell motility is a fundamental aspect
of increased metastasis in cancer, a process well recog-
nized as the primary killer of cancer patients. Our previ-
ous studies showed that MIIP binds and inhibits
HDACS6, which leads to acetylation of alpha tubulin and
stabilization of microtubules, slowing cell migration [11].
When we modulated MIIP levels in EC cells, however,
we were surprised that we did not detect significant
changes in tubulin acetylation even though the effect on
cell migration was evident. Moreover, we observed
remarkable changes in lamellipodia in these cells when
MIIP expression was modulated. Coordinations between
the actin cytoskeleton and microtubules are crucial for
cell polarization, shape changes, and migration. During
cell migration, the actin cytoskeleton is thought to pro-
vide the driving force. At the leading edge of the cell,
actin is organized in a dense meshwork which forms
lamellipodia and promotes forward movement. In most
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cell types, migration is altered by interactions between
the microtubule and actin cytoskeleton. However, migra-
tion of fish keratocytes is unaffected by microtubule
disassembly, and neutrophil motility is even increased in
the absence of microtubules [23]. Our previous work
showed that MIIP could inhibit cancer cell migration in
several types of cancer cells. Our results revealed similar
function of MIIP in EC cells and that actin cytoskeleton
reorganization and decreased formation of lamellipodia
were associated with over-abundant MIIP, which likely
lead to inhibition of metastasis.

Various regulators of the actin cytoskeleton are involved
in the invasive and metastatic phenotypes. Rho GTPases
are master regulators of actin structures and dynamics
[12, 24]. Our previous study indicated that Rho GTPase
family members were downregulated in MIIP-expressing
cells [10]. Racl, one of the best known small GTPases,
integrates the upstream signals from extracellular stimuli,
including integrins, hormones, growth factors, and cyto-
kines [25], relays signals to downstream kinase PAK [26],
and then promotes lamellipodia formation and cell migra-
tion. This led us to investigate the effect of MIIP on Racl
signaling pathway. The increased motility is an energy-
costing process that is clearly in high gear in metastatic
EC [27]. Understanding how this engine is fired up and
what can be done to block this key step is of fundamental
importance for understanding cancer progression and for
developing effective therapeutic strategies. In this study,
we demonstrate that the recently identified MIIP is a key
player, controlling the Racl signaling pathway at the crit-
ical junction where GTP-Racl interacts with its down-
stream effector proteins PAK1. PAK1 plays an important
role in remodeling of the cytoskeleton and promoting
increased cell motility [28]. In the present study, we ob-
served that the PAK1-binding fraction of Racl, Racl-GTP,
was reduced when MIIP expression was elevated. Specific-
ally, we provided evidence that MIIP directly binds to
PAKI1, and this binding attenuates interaction of its medi-
ated proteins with its upstream GTPase Racl and blocks
Racl/PAK1 signaling, inhibiting EC cell migration.

Results from this and our previous studies have
shown that MIIP is a key inhibitor of cell migration and
regulates multiple related steps. We showed previously
that MIIP binds to IGFBP2 and inhibits IGFBP2-
mediated cell migration [10], which requires the inter-
action of IGFBP2 with integrin a5, which activates
Racl [29, 30]. This suggests that MIIP negatively regu-
lates the integrin-cytoskeleton pathway at least two
junctions (one upstream and one downstream). We also
showed that MIIP blocks HDAC6-mediated cell migra-
tion [11]. Interestingly, the F-actin-binding protein
cortactin was recently shown to be a substrate for
HDACS6 [31]. Further, it has been reported that micro-
tubule growth and shortening can activate Racl and
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RhoA signaling to control actin dynamics [32]. There-
fore, inhibition of HDAC6 can lead to attenuation of
the actin cytoskeleton-mediated cell migration signaling
pathway, either directly or through the microtubule-
mediated cytoskeleton pathway [33]. Thus, it is con-
ceivable that a main target for MIIP regulation is the
actin cytoskeleton system, at least in EC cells.

Our findings suggest that restoration of MIIP may
have critical importance for effective treatment of ECs.
We found that MIIP expression is decreased in ECs,
especially in deep myometrial invasion, or advanced
stage cases and those with lymph node metastasis. High-
grade EC has a greater tendency to be myometrial invasion
and associated with lymphatic metastasis than low-grade
tumors and is associated with poor responsiveness to radi-
ation, chemotherapy, and hormone therapy [34-36].
Along this line, the fact that we found the C-terminal
polyproline-rich region of 28 amino acids to be responsible
for binding to PAK1 may provide a starting point for
evaluating peptide-based inhibitors that block the Racl
signaling pathway in endometrial and possibly other types
of cancers.

Although the present study reported a novel mechan-
ism which MIIP inhibits EC cell motility through block-
ing of the Racl signal transduction pathway by directly
binding to its downstream effector PAKI, there are still
some questions. First, except for Racl, RhoA and
CDC42 are required for actin cytoskeleton remodeling
too. The GTPase cross-talks in cell migration is com-
plex, so it will be interesting to figure out when and
where MIIP plays its role in Rho GTPases’ signaling
pathway. Second, it will be important to determine pre-
ciously how MIIP coordinates the crosslink between
actin and microtubules cytoskeleton organization to pro-
mote cell migration. Finally, our experiments showed
that MIIP could reduce MMP9 (Additional file 2: Figure
S2), which is consistent with the recent report of Racl/
Pak1/p38/MMP axis in ovarian cancer oncogenesis [37].
All of these deserved further study in the future.

Conclusions

In summary, the identification of MIIP as an inhibitor of
Racl signaling by competitive binding to its downstream
effector protein PAK1 has expanded our understanding
of these pathways and shed light on how the cell migra-
tion pathways can be activated in cancer. This investiga-
tion also provides a foundation for further research into
cancer therapeutics exploring the MIIP protein and its
mechanism of action.

Methods

(Selected materials and methods are described here. The
detailed procedures for all related experiments are can
be found in Additional file 3).
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Antibodies, plasmids, and reagents

We used a rabbit anti-human MIIP polyclonal antibody
raised against MIIP epitope (46 NSETPSTPETSSTSL 60)
as described elsewhere [10]. The polyclonal antibody
against GAPDH antibody and the anti-aPAK antibody-
coupled agarose beads were purchased from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). Monoclonal anti-
HA-agarose beads were obtained from Sigma-Aldrich
(St. Louis, MO, USA). Antibodies for Racl and PAK1
were purchased from Cell Signaling Technology (Boston,
MA, USA). The Alexa Fluor 488 goat anti-mouse IgG
(H + L) (cat# A11029) and the Alexa Fluor 594 goat
anti-rabbit IgG (H + L) (cat# A11037) were obtained
from Invitrogen (Carlsbad, CA, USA). Transfection was
performed with Lipofectamine 2000 (Invitrogen) by fol-
lowing the manufacturer’s instructions. SiRNA for MIIP
(ID: #1-123298 and #2-127111) and for the nontargeting
control were obtained from Ambion (Austin, TX, USA).

Patient samples

Endometrial tissue samples from Tianjin Medical
University General Hospital (Tianjin, China) were col-
lected between 2003 and 2014 from 205 patients with
EC, 63 patients with atypical hyperplasia, and 116 pa-
tients with normal endometrium. All of the tissues were
collected from hysterectomy specimens. The patients
without EC in our study were admitted to our hospital
for uterine prolapse, cystocele, or urethrocele. The histo-
logical type and grade of the tumors were determined
based on a modified WHO classification system, and EC
staging was performed based on a modified 2009 FIGO
staging system. The protocol of the study was reviewed
and approved by the Ethics Committee of Tianjin
Medical University General Hospital.

Immunohistochemistry
Immunohistochemical analysis was performed for MIIP
on TMA using a previously described method [38].

Cell culture

The EC cell lines AN3CA, ECC-1, HEC1A, and HEC1B
were obtained from American Type Culture Collection
(Manassas, VA, USA). The Ishikawa cell line was kindly
provided by Dr Kim K Leslie (The University of New
Mexico Health Sciences Center, Albuquerque, NM,
USA). HEC1A was maintained in McCoy’s 5A medium,
while the other four cell lines were maintained in
Eagle’s minimum essential medium, both supplemented
with 10 % (v/v) fetal bovine serum (FBS), 100 U/ml peni-
cillin, and 100 pg/ml streptomycin. All cells were incu-
bated at 37 °C in a humidified atmosphere of 5 % CO,.
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Western blotting analysis

Cell extracts containing 40—80 pug of protein were resolved
by 10 % sodium dodecyl sulfate polyacrylamide gel elec-
trophoresis (SDS-PAGE), transferred to Hybond ECL
nitrocellulose membranes (Amersham Pharmacia Biotech,
Chicago, IL, USA), blocked in 5 % nonfat milk in 1x Tris-
buffered saline (pH 8.0) containing 0.05 % Tween-20, and
probed with the primary antibodies at concentrations
of 1:1000. The secondary antibodies were used at con-
centrations of 1:10,000 to 1:50,000. The proteins were visu-
alized using the SuperSignal West Pico Chemiluminescent
Substrate (Pierce Chemical, Rockford, IL, USA).

Transwell cell migration/invasion assays

Assays were performed on transwell culture slides with
uncoated porous filters (8.0-um pore size) (Corning Life
Sciences, Acton, MA, USA) and filters (8.0-um pore size)
precoated with Matrigel (Becton Dickinson Labware,
Franklin Lakes, NJ, USA) to examine cell migration and
invasion as described previously [39]. Briefly, the main
difference between migration and invasion examination
methods lied in whether the filters were coated with
Matrigel. In order for cell invasion to occur, the cells
have to secrete enzymes to digest the gelatinous protein
mixture in the Matrigel before moving to the other side
of the chamber.

Immunoprecipitation

The experiments were performed using 100 pul of Dyna-
beads M-280 sheep anti-rabbit IgG or sheep anti-mouse
IgG (Invitrogen, #112-03D or #112-01D), and the manu-
facturer’s instructions were followed.

Immunofluorescence staining
Assays were performed as described elsewhere [40].

Rac activity assay

Rac activity levels were measured by using the GST
PAK1/PBD pull-down assay (Cell Biolabs, Inc., San Diego,
CA, USA) according to the manufacturer’s instructions.

Statistical analysis

All data are shown as the mean + SD. Differences between
MIIP loss/gain and negative controls were analyzed by
using Student’s ¢ test. Clinical data were analyzed by using
chi-square or one-way ANOVA with least significant dif-
ference or Tamhane’s T2 post hoc test to assess differences
between experimental groups. The statistical software
used was SPSS, version 16.0 (SPSS Inc, Chicago, IL, USA).
P values of less than 0.05 were considered statistically
significant.
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Additional files

Additional file 1: Figure S1. The expression of MIIP in five widely used
EC cell lines. (DOC 38 kb)

Additional file 2: Figure S2. MIIP reduces MMP9 level. (DOC 137 kb)

Additional file 3: Supplemental methods. Supplemental information of
methods. (DOC 262 kb)
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