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Abstract

Background: Activated protein C/endothelial protein C receptor (APC/EPCR) axis is physiologically involved in
anticoagulant and cytoprotective activities in endothelial cells. Emerging evidence indicates that EPCR also plays a
role in breast stemness and human tumorigenesis. Yet, its contribution to breast cancer progression and metastasis
has not been elucidated.

Methods: Transcriptomic status of EPCR was examined in a cohort of 286 breast cancer patients. Cell growth
kinetics was evaluated in control and EPCR and SPARC/osteonectin, Cwcv, and kazal-like domains proteoglycan
(SPOCK1/testican 1) silenced breast cancer cells in 2D, 3D, and in co-culture conditions. Orthotopic tumor growth
and lung and osseous metastases were evaluated in several human and murine xenograft breast cancer models.
Tumor-stroma interactions were further studied in vivo by immunohistochemistry and flow cytometry. An EPCR-
induced gene signature was identified by microarray analysis.

Results: Analysis of a cohort of breast cancer patients revealed an association of high EPCR levels with adverse
clinical outcome. Interestingly, EPCR knockdown did not affect cell growth kinetics in 2D but significantly reduced
cell growth in 3D cultures. Using several human and murine xenograft breast cancer models, we showed that EPCR
silencing reduced primary tumor growth and secondary outgrowths at metastatic sites, including the skeleton and
the lungs. Interestingly, these effects were independent of APC ligand stimulation in vitro and in vivo.
Transcriptomic analysis of EPCR-silenced tumors unveiled an effect mediated by matricellular secreted proteoglycan
SPOCKT/testican 1. Interestingly, SPOCKT1 silencing suppressed in vitro 3D growth. Moreover, SPOCK1 ablation severely
decreased orthotopic tumor growth and reduced bone metastatic osteolytic tumors. High SPOCK1 levels were also
associated with poor clinical outcome in a subset breast cancer patients. Our results suggest that EPCR through
SPOCK1 confers a cell growth advantage in 3D promoting breast tumorigenesis and metastasis.

Conclusions: EPCR represents a clinically relevant factor associated with poor outcome and a novel vulnerability to
develop combination therapies for breast cancer patients.
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Background

Endothelial protein C receptor (EPCR) is an endothelial
type 1 transmembrane receptor that enhances the activa-
tion of protein C (PC) by the thrombin (IIa)-thrombomo-
dulin (TM) complex [1]. EPCR-dissociated activated
protein C (APC) negatively regulates the coagulation
process, while EPCR-bound APC induces cytoprotective
signaling through the proteolytic cleavage of protease-
activated receptor 1 (PAR1), leading to anti-inflammatory
and anti-apoptotic responses [2].

Recently, research in EPCR has gained considerable
momentum by the identification of new EPCR ligands
[2]. An EPCR domain distinct from the APC binding site
was shown to interact with a specific T cell antigen
receptor with potential implications in immunosurveil-
lance of tumors [3]. EPCR was also identified as the
endothelial receptor for some subtypes of the erythro-
cyte membrane protein 1 (PfEMP1) on the surface of
the parasite Plasmodium falciparum, mediating its se-
questration in the blood vessels during severe malaria
[4]. FVII/FVIIa has been shown to bind EPCR with a
similar affinity as PC/APC [5], whereas the binding of
FX/FXa to EPCR remains an open question [6].

Recently, EPCR has been identified as a marker of mul-
tipotent mouse mammary stem cells (MaSCs). These
EPCR" cells (accounting for 3—7% of basal cells) exhibited
a mesenchymal phenotype and enhanced colony-forming
abilities [7]. EPCR was also shown to be necessary for cell
organization and growth of human mammary epithelial
cells in 3D cultures [8].

In cancer, aberrant expression of EPCR is detected in
tumors of different origin including the lung [9], breast
[10], ovarian [11], colon [12], glioblastoma [13], meso-
thelioma [14], and leukemia [13]. In lung tumorigenesis,
APC/EPCR drives an anti-apoptotic program that en-
dows cancer cells with increased survival ability, enhan-
cing their metastatic activity to the skeleton and adrenal
glands [9]. Moreover, high expression levels of this
single gene at the primary site in early stage lung
cancer patients predict the risk of adverse clinical
progression [9, 15].

In breast cancer patients, tumor cells often dissemin-
ate to target sites including the skeleton, lungs, brain,
and lymph nodes [16]. This event represents a frequent
complication associated with a 5-year survival rate
~25.9%. Recent findings have unveiled novel markers in
the primary tumor that predict the development of me-
tastasis to target organs such as the skeleton [17]. High
EPCR levels have been associated with poor disease pro-
gression in the polyoma middle T (PyMT) breast cancer
model, closely similar to the luminal B type in humans
[18]. Moreover, EPCR" sorted MDA-MB-231 human
breast cancer cells showed stem cell-like properties and
enhanced tumor-initiating activity, an effect inhibited by

Page 2 of 12

APC-EPCR blocking antibodies [18]. In contrast, overex-
pression of EPCR in MDA-MB-231 cells resulted in re-
duced final tumor volumes in a xenograft model despite
favoring tumor growth at initial stages [19]. The effect of
EPCR at different stages of tumor progression remains
poorly defined.

In this study, we addressed the functional role of
EPCR in primary and metastatic tumor growth in breast
cancer using several human and murine xenograft
models. We found that EPCR silencing impaired ortho-
topic tumor growth and metastatic activity to the skel-
eton and lungs. Moreover, high EPCR expression levels
associated with a poor clinical outcome in a cohort of
breast cancer patients. Furthermore, we showed that
EPCR effects in tumor progression were APC independ-
ent and were partially mediated by a novel mechanism
involving SPOCKI1. Thus, these findings unveil a novel
mechanism mediated by EPCR in tumorigenesis and me-
tastasis of breast cancer with potential clinical impact on
the therapeutic management of breast cancer patients.

Methods

Cell lines and reagents

One thousand eight hundred thirty-three human breast
cancer cell line was a kind gift from Dr. Massagué
(Memorial Sloan-Kettering Cancer Center, NY, USA) [20].
ANV5 murine breast cancer cell line was previously de-
scribed [21, 22]. APC (Xigris®) was purchased from Eli Lilly
(Indianapolis, IN, USA). Anti-EPCR antibodies RCR252
and RCR1 were kindly provided by Dr. Fukudome (Saga
Medical School, Japan) while 1489 was kindly gifted by
Dr. Esmon (Oklahoma Medical Research Foundation,
Oklahoma City, USA). F(ab’), fractions of the RCR252
antibody were obtained as previously detailed [9].
shRNAs cloned into PLKO.l-puro vector and the
empty vector were obtained from Mission® (Sigma-
Aldrich).

Cell proliferation assay

Cell proliferation was assessed using CellTiter 96°
AQueous One Solution Cell Proliferation Assay (MTS),
according to manufacturer’s recommendations (Pro-
mega). All absorbance values were normalized with the
absorbance values from day 0 (5 h after seeding cells).

Cell cycle analysis

Cell cycle analysis was carried out with Click-iT* EdU
Flow Cytometry Assay Kit (Invitrogen). Cells were main-
tained in culture for 24 or 48 h before adding 10 uM
EdU for 2 h. Next, cells were harvested, fixed in formal-
dehyde (Click-iT* fixative), permeabilized in 1X Click-iT®
saponin-based permeabilization and wash reagent, and
incubated with the Click-iT® reaction cocktail for 30 min
at room temperature in the dark. After a washing step,
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cells were incubated with 0.2 pg/pl RNase A (Sigma-
Aldrich) for 1 h at room temperature, in the dark.
7AAD was added to the tubes 10 min before the acquisi-
tion of cells in a FACSCanto II cytometer (BD Biosci-
ences). Data were analyzed using FlowJo® software v9.3.

Annexin-V flow cytometry assay

Cells were seeded into 24-well plates and cultured for
24 h. Next, cells were incubated with 2 uM staurospor-
ine for 1 h or serum-starved overnight before the
addition of 50 nM APC for 4 h followed by 2 pM staur-
osporine for 1 h next day. After staurosporine treatment,
cells were harvested, resuspended in annexin-binding
buffer (10 mM HEPES, 140 mM NaCl, and 2.5 mM
CaCl,, pH 7.4) and incubated with Alexa Fluor 647-
conjugated annexin-V and 7AAD (BD Biosciences) for
15 min at room temperature, in the dark. Cells were ac-
quired in a FACSCanto II cytometer (BD Biosciences)
and analyzed using Flow]o® software v9.3.

Cell culture in 3D

Culture media was mixed at 1:1 ratio with Growth
Factor Reduced Matrigel (BD Biosciences). One hundred
microliters of the mix were added to each well of a 96-
well plate and incubated at 37 °C for 30 min. Five
hundred (1833, BT-549, ANV5, MCFI10A) or 1000
(MDA-MB-231) cells in medium with 10% matrigel were
added on top of the coating and maintained in culture
for 8-10 days. Medium with 10% matrigel was replaced
at day 4-5. Pictures of the spheres were taken at day 8-
10 at x4 magnification using an inverted microscope
(Leica) and analyzed using Fiji software [23].

In vivo experiments

Athymic nude mice (FoxnI™) were purchased from
Harlan (Barcelona, Spain) and maintained under specific
pathogen-free conditions. Five- to six-week-old mice
were used for all experiments. RAG-2~'~ mice were bred
at the in-house Animal Core Facility and used for the
intratibial experiment. For the orthotopic injection, 50 pl
containing 500,000 cells resuspended in Growth Factor
Reduced Matrigel (BD Biosciences) mixed with PBS at
1:1 ratio were directly injected into the fourth mammary
fat pads of mice (2 tumors per mouse). In the second
orthotopic experiment, cells were injected resuspended
in 20 pl of PBS without matrigel. Tumor growth was
monitored regularly using a digital caliper and tumor
volume was calculated as follows: 7 x length x width?/6.
For intracardiac injection, 10° cells in 100 pl of PBS were
inoculated into the left cardiac ventricle, using a 29G
needle syringe [24]. For intratibial injection, 15,000 cells in
5 pl of PBS were injected into the tibia’s bone marrow
through the femoro-tibial cartilage using a Hamilton syringe
[25]. For intravenous injection, 100,000 cells in 100 pl of
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PBS were injected through the tail vein of mice. For BLI, an-
imals were anesthetized and inoculated with 50 ul of
15 mg/ml D-luciferin (Promega). Images were taken during
1 min with a PhotonIMAGER™ imaging system (Biospace
Lab) and analyzed using M3Vision software (Biospace Lab).
Photon flux was calculated by using a region of interest
(ROI) or by delineating the mouse for whole-body bio-
luminescence quantification. All bioluminescence signals
were normalized with values from day 0, except for the
metastasis experiment with RCR252 treatment. Radio-
graphic and micro-computed tomography (Micro-CT)
analyses were performed as described elsewhere [26].

Microarray analysis

RNA was extracted from snap-frozen mammary tumors
and hybridized to Human Gene ST 2.0 microarrays
(Affymetrix). Data were normalized with RMA (Robust
Multi-Array Average) approach. Low expression probes
were removed by filtering those that did not exceed a
level of expression of 32 in at least one of the samples
for each condition. Differentially expressed genes were
identified using LIMMA (linear models for microarray
data) method [27].

Statistical analysis

Statistical analysis was performed using SPSS v15.0. When
data exhibited homoscedasticity, pairwise Student’s ¢ test
and Mann—Whitney U test were used for normally and
non-normally distributed variables, respectively. When
data exhibited heterocedasticity, Welch and Median tests
were used for normally and non-normally distributed
variables, respectively. ANOVA and posterior Bonferroni
tests were used for multiple comparisons of normally
distributed variables. Kruskal-Wallis and posterior
Bonferroni adjusted-Mann—Whitney U tests were used
for multiple comparisons of non-normally distributed
variables. Statistical significance was defined as signifi-
cant (p < 0.05, *), very significant (p <0.01, **) and highly
significant (p < 0.001, ***). Other additional methods are
included in the Additional file 1.

Results

High EPCR expression in breast tumors correlates with
poor clinical outcome

To evaluate the association between EPCR expression
levels and risk of metastasis in breast cancer, we per-
formed a relapse-free survival analysis in a cohort of 286
patients, including 106 patients with distant relapses
(GSE2034) [28]. EPCR expression levels were classified as
“high” or “low” according to the median. We found that
patients with high EPCR expression levels had signifi-
cantly shorter relapse-free survival times (Fig. 1la)
(Additional file 2: Figure S1). The clinical predictive po-
tential of EPCR was not related to a higher EPCR
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Fig. 1 Kaplan—Meier analysis in breast cancer patients based on EPCR expression levels. a Relapse-free survival analysis of all patients included in
the GSE2034 cohort (n = 286), classified into “high EPCR" and “low EPCR" based on median expression value of EPCR. b EPCR expression levels in
the primary tumors, classified by molecular subtype. Whiskers represent minimum and maximum values. AU, arbitrary units
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expression in different molecular subtypes (Fig. 1b). Over-
all, these results indicate that EPCR is a poor prognosis
factor in breast cancer patients.

EPCR silencing impairs breast tumorigenesis and
spontaneous metastases

To study the role of EPCR, we used several triple-
negative breast cancer cell lines, including human cell
lines (MDA-MB-231 and its bone metastatic derivative
1833, and BT-549) and the ANV5 murine cell line. We
silenced EPCR expression levels by lentiviral transduc-
tion of different shRNAs targeting human (shEPCR#1
and shEPCR#2) and murine (shEPCR#3) EPCR and a
scramble shRNA (shControl) as control (Fig. 2a and
Additional file 3: Figure S2A). EPCR knockdown did not
affect cell proliferation, cell cycle progression, or basal
and induced apoptosis of MDA-MB-231, 1833, BT-549,
and ANVS5 cells in 2D cultures (Fig. 2b—d and Additional
file 3: Figure S2A-D). However, EPCR knockdown signifi-
cantly reduced the number of spheres grown in 3D matri-
gel cultures in all cell lines tested (Fig. 2e and Additional
file 3: Figure S2E).

To explore the relevance of these findings in vivo, we
performed an orthotopic experiment using the highly
metastatic subpopulation 1833, as outlined in Fig. 2f.
Remarkably, EPCR silencing significantly reduced pri-
mary tumor growth after the injection of shControl,
shEPCR#1, or shEPCR#2 1833 cells into the fourth
mammary fat pads of athymic nude mice, in two inde-
pendent experiments (Fig. 2g). Consistently, time until
resection of tumors at 300 mm? was significantly longer
for EPCR-silenced groups, showing that control tumors
maintained higher proliferation rates over the course of
the experiment (Fig. 2h). Of note, several tumors in
EPCR-silenced groups did not reach the size established
for tumor resection by the end of the experimental
period (Fig. 2h). In addition, BLI performed after tumor

resection showed that the number of mice with metasta-
sis and the number of metastatic events were lower in
EPCR-silenced groups (Fig. 2i). Importantly, EPCR in-
hibition was confirmed by immunohistochemistry in
resected primary tumors (Fig. 2j). Similarly, in another
xenograft model of murine ANV5 cells, EPCR silencing
reduced primary tumor growth after orthotopic injection
of shControl and shEPCR#3 cells into athymic nude mice.
Evaluation of spontaneous metastases in this model was
limited by the highly frequent local recurrence after tumor
resection (Additional file 3: Figure S2F, G).

Analysis of tumors in the orthotopic model of 1833
cells, either size-matched tumors resected at different
time points (Additional file 4: Figure S3) or tumors of
different size resected at the same time point (Additional
file 5: Figure S4) revealed a slight increase in apoptosis
(cleaved caspase-3) and/or necrosis and a lower prolifer-
ation rate, assessed by Ki67 staining, in EPCR-silenced
tumors. Of note, we did not observe relevant changes in
angiogenesis and immune infiltration patterns of tumors
(Additional file 5: Figure S4 and Additional file 6: Figure
S5). Taken together, these data indicate that EPCR con-
tributes to primary tumor growth and the development
of spontaneous metastases in breast cancer.

EPCR silencing reduces metastasis to the bone and lungs

Next, we studied the activity of EPCR in additional
experimental models of metastasis. The effect of EPCR
silencing in bone metastasis was assessed after intracar-
diac inoculation of shControl, sShEPCR#1, and shEPCR#2
1833 cells into athymic nude mice (Fig. 3a). The
percentage of mice and the bones with metastases was
significantly lower in EPCR-silenced groups (Fig. 3b),
consistent with the reduced whole-body and hind limb
bioluminescence signals (Fig. 3c, d). Differences in BLI
were statistically significant from day 13 of the experi-
ment, suggesting that EPCR promotes tumor growth of
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day 28 post-injection. Each dot represents mean + SEM. h Kaplan—-Meier curves of resection-free survival. I Incidence of metastatic events and
representative images showing metastases (red arrows), assessed by BLI. Mets metastases. j Representative images at x20 magnification showing
immunohistochemical staining of EPCR in formaldehyde-fixed mammary tumors. Scale bar 50 um. *p < 0.01, ***p < 0.001

[ Basal Wl sta2um

% of cells
% of apoptotic cells

IS
)

©
)

2
3
s
=

[
h

% of apoptotic cells

04

\ 2
a<© &
50 (& o

A

A
¥
«€

shEPCR#2

shControl

—— shControl

shEPCR#1
shEPCR#2

100~
——
—— shControl
—+— shEPCR#1

—=— shEPCR#2

400

—_

w
=1
=]

N
o
=]

-
o
=]

>

T T T T T T 1
19 0 20 40 60 80 100 120

Time (days)

J

Time (days)

shEPCR#2

cancer cells once they have reached the target organ. Ac-
cordingly, EPCR silencing significantly reduced bone
tumor burden and the extension of osteolytic lesions at
day 28 post-injection (Fig. 3e—g). Importantly, EPCR

inhibition by shRNAs was maintained until the end of
the experimental period (Fig. 3g, bottom panel). These
results substantiate the role of EPCR in breast cancer
and indicate that EPCR promotes metastatic activity to
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the bone. Moreover, the lower incidence of metastatic  mice. Bone colonization was analyzed by BLI, X-rays, and

events in mice injected with EPCR-silenced cells sug-
gests that EPCR is required during metastatic tumor re-
initiation at the secondary site.

To further explore the function of EPCR in bone
colonization, shControl, sShEPCR#1, and shEPCR#2 1833
cells were injected into the tibiae of immunocompromised

histological analysis (Fig. 3h). Tumors developed in all tib-
iae in shControl and shEPCR#2 mice, while two tibiae
remained tumor-free in shEPCR#1 group. Differences in
BLI became very relevant at advanced experimental time
points (Fig. 3i, 1). In addition, histological and X-ray ana-
lyses revealed reduced tumor burden and osteolytic bone
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areas in EPCR-knockdown groups at the end of the ex-
periment (Fig. 3j—1). Of note, the magnitude of the effect
of EPCR silencing revealed by different techniques (BLI
vs. histology and X-rays) differs, an event probably related
to the fact that X-ray analysis does not detect extraosseous
tumor grown through the cortical bone on the periosteal
surface (Fig. 31, bottom panel). Similarly, extracortical
tumor cells that contribute to tumor burden were lost
during histological processing, whereas these cells
contribute to BLI. Thus, these results indicate that
EPCR promotes metastatic tumor growth in the osse-
ous compartment.

Next, we evaluated the prometastatic activity of EPCR
in an intra-tail injection model. For this purpose, we
injected shControl and shEPCR#3 ANV5 cells intraven-
ously into athymic nude mice and analyzed lung metas-
tases at the end of the experiment (Additional file 7:
Figure S6A). EPCR knockdown was able to block the
development of lung metastases, assessed by BLI
(Additional file 7: Fig. S6B, D) and tumor area quantifi-
cation in H&E-stained lung sections (Additional file 7:
Figure S6C, D).

APC does not mediate effects of EPCR silencing in vitro
and in vivo

Next, we explored the mechanistic insights of EPCR
function in tumor growth and metastasis. First, we ana-
lyzed whether the main known ligand of EPCR, APC,
could signal and mediate cellular functions to favor
tumor progression in MDA-MB-231, 1833, BT-549, and
ANVS5 cells. Stimulation of cells with APC did not affect
their proliferation, cell cycle progression, and resistance
to basal and induced apoptosis (Additional file 8: Figure
S7). Accordingly, treatment with the F(ab)2’fraction of
RCR252 antibody, which blocks APC binding to human
EPCR (Additional file 9: Figure S8A), did not reduce
bone metastasis of 1833 cells inoculated into the left car-
diac ventricle of athymic nude mice (Additional file 9:
Figure S8B-F).

Identification of SPOCK1 as a mediator of EPCR effects

In order to explore other mechanisms mediating EPCR
effects, we interrogated Human Gene 2.0 ST microarrays
(Affymetrix) to discriminate genes associated with EPCR
silencing in size-matched mammary tumors grown in
athymic nude mice after orthotopic implantation of
shControl, shEPCR#1, and shEPCR#2 1833 cells. An
unsupervised clustering analysis revealed several genes
related to tumor progression to be downregulated in
both EPCR-silenced tumor groups (Fig. 4a). Among these
genes, SPOCK1/testican 1, a member of the SPARC family
of matricellular proteins, was also downregulated in sub-
cutaneous tumors derived from shEPCR#1 and shEPCR#2
1833 cells, compared to control tumors (Fig. 4b). Moreover,
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breast cancer patients (GSE2034 cohort) with high EPCR
expression also had significantly higher SPOCK1 expression
levels (Fig. 4c). Importantly, high SPOCK1 expression
levels associated with a significantly shorter relapse-free
survival time in patients with luminal B, basal and
HER2+ tumors (Fig. 4d) but not luminal A (Additional
file 10: Figure S9). Interestingly, these data are consist-
ent with the predictive potential of EPCR levels in these
three subsets, but not in luminal A. This finding sug-
gests that EPCR could mediate tumor progression in
part by upregulating SPOCKI.

Next, we tested the effects of SPOCK1 in vitro, by
silencing SPOCK1 expression levels with shRNAs in
MDA-MB-231, 1833, and BT549 human cell lines
(Additional file 11: Figure S10A). Interestingly, SPOCK1
silencing did not affect cell growth kinetics in 2D cul-
tures (Additional file 11: Figure S10B, C), but signifi-
cantly reduced the number of spheres in 3D matrigel
cultures in all cell lines (Fig. 4e). Conversely, ectopic ex-
pression of EPCR and SPOCK1 in non-tumorigenic
MCF10A mammary cells significantly increased the
number of spheres in 3D cultures (Fig. 4f). These data
indicate that EPCR or SPOCK1 overexpression confers a
growth advantage in 3D cultures in a non-tumorigenic
mammary cell line, but per se EPCR or SPOCK1 are not
sufficient to confer a tumorigenic phenotype requiring
an oncogenic background. Taken together, these findings
support the role of SPOCK1 mediating EPCR effects and
suggest that EPCR could promote 3D growth of breast
cancer cells by altering tumor-matrix interactions by
modulating SPOCKI.

SPOCK1 silencing impairs breast tumorigenesis and
metastases

Next, we explored the role of SPOCK1 in breast tumori-
genesis using the previously described orthotopic model.
ShControl, shSPOCK#1, or shSPOCK#2 1833 cells were
injected into the fourth mammary fat pads of ahtymic
nude mice, and tumor growth was evaluated (Fig. 5a).
SPOCK1 silencing resulted in a significant reduction in
tumor growth (Fig. 5b, c). Importantly, SPOCK1 inhib-
ition by shRNAs was maintained along the whole experi-
mental period (Fig. 5d). Taken together, these results
indicate that SPOCK1 is a relevant factor for primary
tumor growth in breast cancer.

Finally, we evaluated the bone metastatic activity of
control and SPOCK1-silenced 1833 cells after intracardiac
inoculation into athymic nude mice (Fig. 5e). All mice in
the shControl and shSPOCK1#1 groups developed bone
metastases, but only 3 mice in the shSPOCK1#2 group.
Moreover, the number of bones with metastases was
significantly lower in both SPOCK1-silenced groups com-
pared to shControl (Fig. 5f). Consistently, BLI and H&E
staining revealed a lower tumor burden in SPOCKI-
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silenced groups, associated with a lower osteolytic area
(Fig. 5g—j). These results indicate that SPOCKI1 silencing
recapitulates the effects observed by EPCR silencing in
vivo and further support the role of SPOCKI as an
effector of EPCR.

Discussion

In this work, we unveiled a novel molecular mechan-
ism of EPCR contributing to breast cancer progres-
sion favoring tumor growth and metastatic activity to
target organs. EPCR endowed cells with advantageous
growth in 3D, an effect partially mediated by the
extracellular matrix proteoglycan SPOCKI1. These cell
functions were correlated with increased metastatic
risk and poor clinical outcome in breast cancer pa-
tients. Importantly, this association was relevant in all

the molecular subtypes, except luminal A, indicating
that EPCR could be useful as a potential prognostic
marker in these patient subsets.

Previous studies identified EPCR as a marker of
human breast cancer stem cells with enhanced tumor-
initiating and growth abilities in immunodeficient mice
[18]. In addition, EPCR deficiency attenuated spontan-
eous tumor growth in the PyMT murine breast cancer
model [18]. In agreement with these findings, we showed
that EPCR silencing impaired orthotopic tumor growth
of highly metastatic 1833 cells. In this model, differences
in tumor size between EPCR" and EPCR™ tumors be-
came more relevant at advanced experimental time
points. In contrast in another study, although EPCR
overexpression increased initial orthotopic growth of
MDA-MB-231 cells, it resulted in smaller final tumor
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volumes [19], a finding possibly related to EPCR loss in
evolving tumors. Thus, EPCR could display different roles
at different stages of breast cancer progression such as
initiation, maintenance, and target organ colonization.
Future experiments will help to characterize its role in
each of these stages in different histological subtypes.

Besides its role in tumorigenesis, EPCR also displayed
a marked prometastatic activity to target organs, events
that cooperatively support its contribution to prognosis.
The consistent results obtained in both metastatic
models indicate that EPCR confers a functional advan-
tage at late stages of the metastatic process. Moreover,
differences in metastatic tumor burden became more
relevant at advanced experimental time points, indicat-
ing an effect more pronounced during the colonization
of target organs, as evidenced by the overt osseous
colonization observed in the intratibial model.

In contrast with previous findings in lung cancer [9], EPCR
did not markedly contribute to tumor cell survival in the cir-
culation and engraftment in secondary sites. The prominent
effect in breast cancer during colonization was associated
with its role in 3D growth and based on the low number of
tumor nodules in shEPCR mice in both models (the bone

and lung) of experimental metastasis, EPCR may also modu-
late metastatic tumor re-initiation at the target organ.
Tumors are organ-like structures composed of tumor
cells and stromal cells embedded in a complex ECM within
the tumor microenvironment [29]. Components of the
ECM such as tenascin C have been shown to promote
breast cancer progression and metastasis [30-32]. In the
same line, our study identified SPOCK]1, a secreted matri-
cellular protein as a markedly downregulated gene in
EPCR-silenced tumors. SPOCK1 belongs to the Ca**-bind-
ing proteoglycan family which includes SPARC, a well-
studied tumor-associated component involved in regulating
adhesion, matrix cellular interactions, and cell growth
[33, 34]. Recently, SPOCK1 has been shown to promote
epithelial-mesenchymal transition (EMT) and metasta-
sis in other tumors including lung and gallbladder can-
cer and hepatocarcinoma [35-37]. Interestingly, high
SPOCK]1 expression levels were associated with adverse
clinical outcome in the same subsets of breast cancer
patients predicted by EPCR levels. Therefore, EPCR
could promote tumor growth in vivo, in part, by modu-
lating tumor-matrix interactions through SPOCK1 fa-
voring an advantageous 3D growth of tumorigenic cells.
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Indeed, SPOCK1 silencing in breast cancer cells im-
paired the number of 3D spheres and primary and
metastatic tumor growth, an effect that phenocopied
EPCR silencing. Accordingly, EPCR has been required
for cell organization and growth of mammary epithelial
cells in 3D cultures [8] In agreement with these find-
ings, EPCR/SPOCKTI axis activation in non-tumorigenic
mammalian cells increased the number of spheres
grown in 3D matrigel cultures. However, it was not
sufficient to confer a tumorigenic phenotype.

A surprising finding of our study was the lack of effects
mediated by APC, despite the fact that anti-EPCR blocking
antibodies (1535) reduced orthotopic growth of MDA-MB-
231 cells in previous studies [18]. Although, we did not spe-
cifically address APC/EPCR effects in orthotopic tumors,
we explored its contribution in vitro and during the devel-
opment of bone metastases. EPCR-blocking antibodies in
this model could not reduce the metastatic activity of 1833
cells, suggesting that EPCR triggered APC-independent ef-
fects. In this experiment, we used the F(ab”), fractions of
the anti-EPCR blocking antibody to avoid any interference
of the activated complement system, whereas Schaffner et
al. [18] employed whole-body antibodies. Furthermore, the
use of the same strategy of F(ab"), fractions showed a sig-
nificant effect on a model of lung cancer metastasis under-
scoring the validity of this approach [9]. Complementary to
this view, other ligands different than APC binding to
different regions of EPCR in each tumor type or accessible
in specific microenvironments could account for these dif-
ferences. Based on these findings, future experiments
should address other mechanisms that could be mediated
by EPCR in different tumor types and metastatic sites.

Conclusions

In summary, our study unveils a novel role of EPCR as a
clinically relevant factor in breast cancer, which pro-
motes primary tumor growth and metastatic activities in
target organs. Unexpectedly, EPCR modulates tumor
cell-ECM interactions involved in 3D growth required
for tumor progression and metastasis, in part by upregu-
lating SPOCK1. These findings underscore a novel role
of EPCR as a novel prognostic factor and a potential
therapeutic target in a subset of breast cancer patients.
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was cut. B. MTS in vitro proliferation assay of BT-549 (top) and ANV5 (bottom)
cells. Data were normalized with absorbance values from day 0 and represent
mean =+ SD of six replicates. C. Percentage of BT549 (top) and ANV5 (bottom)
cells in each phase of the cell cycle after maintaining cells in culture for 24
and 48 h. Sta, staurosporine. D. Percentage of apoptotic BT-549 (top) and
ANV5 (bottom) cells in basal and staurosporine-induced conditions, measured
by annexin-V binding flow cytometry assay. E. Quantification of spheres grown
in 3D matrigel cultures. Data are mean + SD of 8 replicates. Representative
images at x4 magnification. Scale bar 0.5 mm. F. Outline of the in vivo orthoto-
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markers in control and EPCR-silenced size-matched mammary tumors
resected at different time points. A. Representative images showing H&E
staining (x2.5 magnification) and the immunohistochemical staining of Ki67,
cleaved caspase-3, CD31, and F4/80 (x20 magnification) in formaldehyde-
fixed tumors. Scale bars 80 pm (H&E) and 10 um (Ki67, caspase-3, CD31, and
F4/80). T. mass, tumor mass. T. border, tumor border. B. Quantification of the
percentage of immunoreactive cells. Each dot represents one tumor. Data
are mean + SEM. ns means non-statistical significance. (PPTX 2780 kb)
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kinetics and immune infiltration of control and EPCR-silenced mammary
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=5 per group). B. Tumor volume at the end of the experimental period
(day 32 post-injection). Each dot represents one tumor. Data are mean +
SEM. C. Representative images showing H&E staining (x2.5 magnification)
and the immunohistochemical staining of Ki67, cleaved caspase-3, CD31,
and F4/80 (x20 magnification). T. mass, tumor mass. T. border, tumor
border. Scale bars 80 um (H&E) and 10 um (Ki67, caspase-3, CD31, and
F4/80). D. Quantification of the percentage of immunoreactive cells. Each
dot represents one tumor. Data are mean + SEM. *p < 0.05. ns means
non-statistical significance. (PPTX 2260 kb)

Additional file 6: Figure S5. Analysis of immune cells infiltrating
control and EPCR-silenced mammary tumors. A. Flow cytometry gating
strategy. Arrows of the same color indicate simultaneous detection of
markers. MDSCs, myeloid derived suppressor cells. NK, natural killer cells.
DCs, dendritic cells. B. Quantification of the percentage of immune
subpopulations infiltrating the tumors. Each dot represents one tumor.
Data are mean = SEM. (PPTX 932 kb)

Additional file 7: Figure S6. Effects of EPCR silencing in the ability of
murine ANV5 cells to metastatize to the lungs. A. Outline of the intra-tail injection
experiment (n =8 per group). Quantification of bioluminescence signals (B) and
tumor area (Q) in the lungs at the end of the experimental period (day 28 post-
injection). Each dot represents one mouse. D. Representative images of H&E-
stained lung sections (top) and BLI (bottom). *p < 005, **p < 0.01. (PPTX 1080 kb)

Additional file 8: Figure S7. Cell growth kinetics of APC-stimulated breast
cancer cell lines. A. MTS proliferation assay of cells stimulated with increasing
doses of APC. Data were normalized with absorbance values from day 0. Each
dot represents mean + SD of six replicates. B. Percentage of cells in each phase
of the cell cycle in control and 50 nM APC-stimulated cells for 24 and 48 h, in
serum-free and 4% serum medium. C. Percentage of apoptotic cells in basal
and staurosporine-induced conditions, measured by annexin-V binding flow
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Additional file 9: Figure S8. Effects of the pharmacological EPCR blockade
in the prometastatic activity of 1833 cells. A. Specificity of anti-EPCR antibodies,
RCR252, and its F(ab")2 fraction, by surface plasmon resonance (SPR). EPCR (500
RU) was immobilized through the anti-EPCR antibody RCR2 (that does not bind
in the ligand-receptor domain) on a CM5 chip. The binding of 250 nM of
RCR252 and its F(ab")2 fraction to the EPCR were monitored. A representative
experiment is shown. RU resonance units; s, seconds. B. Outline of the experi-
ment (n =8 per group). C. Photon flux quantification in hind limbs. D. Tumor
area quantification in H&E-stained bone sections. E. Osteolytic bone area
quantification in X-ray images from day 28 post-injection. F. Representative
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post-injection. All data are represented by mean + SEM. (PPTX 1540 kb)
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Additional file 10: Figure S9. Clinical relevance of SPOCK1 in different
breast cancer subtypes. A. Relapse-free survival analysis of all patients
included in the GSE2034 cohort (n = 286), classified into “high SPOCK1”
and “low SPOCK1” based on median expression value of SPOCK1. B.
SPOCKT mRNA expression levels in the primary tumors, classified by
molecular subtypes. Whiskers represent minimum and maximum values.
AU, arbitrary units. C. Relapse-free survival curves for each molecular
subtype of breast cancer. Log-rank test was used to determine p values
in all cases. ns, non-statistical significance. (PPTX 288 kb)
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human breast cancer cell lines after SPOCK1 silencing. A. Analysis of
SPOCKT expression levels by RT-gPCR in human cells transduced with a
scramble shRNA (shControl) and two different shRNAs (shSPOCK#1 and
shSPOCK#2) targeting human SPOCKT1. B. MTS in vitro proliferation assay
of MDA-MB-231 (top), 1833 (middle), and BT549 (bottom) cells. Data were
normalized with absorbance values from day 0 and represent mean + SD
of six replicates. Experiments were repeated three times with similar
results. C. Percentage of MDA-MB-231 (top), 1833 (middle), and BT549
(bottom) cells in each phase of the cell cycle, after maintaining cells in
culture for 24 and 48 h. (PPTX 223 kb)
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