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Abstract

cancer in clinics.

Therapeutic target

The fact that various immune cells, including macrophages, can be found in tumor tissues has long been known.
With the introduction of concept that macrophages differentiate into a classically or alternatively activated
phenotype, the role of tumor-associated macrophages (TAMs) is now beginning to be elucidated. TAMs act as
“protumoral macrophages,” contributing to disease progression. TAMs can promote initiation and metastasis of
tumor cells, inhibit antitumor immune responses mediated by T cells, and stimulate tumor angiogenesis and
subsequently tumor progression. As the relationship between TAMs and malignant tumors becomes clearer, TAMs
are beginning to be seen as potential biomarkers for diagnosis and prognosis of cancers, as well as therapeutic
targets in these cases. In this review, we will discuss the origin, polarization, and role of TAMs in human malignant
tumors, as well as how TAMs can be used as diagnostic and prognostic biomarkers and therapeutic targets of
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Background

Non-resolving inflammation in a tumor microenviron-
ment is a hallmark of cancer [1, 2]. Leukocytes, fibro-
blasts, and vascular endothelial cells together form a
tumor microenvironment, with immune cells represent-
ing its major component. These immune cells interact
with tumor cells to influence the initiation, growth, and
metastasis of tumors [3]. Tumor-associated macrophages
(TAMs), specifically, are often prominent immune cells
that orchestrate various factors in the tumor microenvir-
onment [4, 5].

In general, monocytes/macrophages can be polarized
to M1 or M2 macrophages. Classically activated macro-
phages, also known as M1-polarized macrophages, are
activated by cytokines such as interferon-y, produce pro-
inflammatory and immunostimulatory cytokines (e.g.,
interleukin [IL]-12 and IL-23), and are involved in helper
T cell (Th) 1 responses to infection. TAMs are thought
to more closely resemble M2-polarized macrophages [6],

* Correspondence: yizhang@zzu.edu.cn

'Biotherapy Center, The First Affiliated Hospital of Zhengzhou University,
No.1 Jianshe East Road, Zhengzhou 450052, Henan Province, China
2Cancer Center, The First Affiliated Hospital of Zhengzhou University, No.1
Jianshe East Road, Zhengzhou 450052, Henan Province, China

Full list of author information is available at the end of the article

( ) BiolVled Central

also known as alternatively activated macrophages,
which are activated by Th2 cytokines (e.g., interleukin
(IL)-4, IL-10, and IL-13). TAMs play an important role
in connecting inflammation with cancer. TAMs can
promote proliferation, invasion, and metastasis of tumor
cells, stimulate tumor angiogenesis, and inhibit antitu-
mor immune response mediated by T cells, followed by
the promotion of tumor progression [6].

With the unraveling of the relationship between TAMs
and malignant tumors, TAMs are now being recognized
as potential biomarkers for diagnosis and prognosis of
cancer, as well as potential therapeutic targets for cancer.
In this review, we summarize how TAMs are involved in
tumor progression and discuss the clinical significance
of TAMs in diagnosis and prognosis of cancers and their
use as therapeutic targets in these cases.

Origins of TAMs

The original understanding of tissue macrophages was
that they were solely derived from bone marrow.
However, lung alveolar and peritoneal macrophages,
Kupffer cells, epidermal Langerhans cells, and brain
microglia derived from primitive yolk sac precursors are
referred to as tissue-resident macrophages, and they are
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locally self-maintained. The contribution of locally
proliferating macrophages to the pool of TAMs was
demonstrated in a Her2/Neu-driven mammary carcin-
oma animal study [7]. Although there is evidence that
all kinds of macrophages can coexist in tumors, re-
cruited macrophages may account for the majority of
TAMs and the respective contributions of these mac-
rophages to the various stages of progression in many
different tumors cannot be currently quantified. Fur-
ther studies to characterize TAMs in different human
cancers are needed (Fig. 1).

Peripheral blood monocytes from bone marrow are
recruited locally and differentiate into TAMs in response
to chemokines and growth factors produced by stromal
and tumor cells in the tumor microenvironment.
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Colony-stimulating factor (CSF) 1 is the master regula-
tor and chemotactic factor for most populations of mac-
rophages, whether they are derived from the yolk sac or
bone marrow [8]. In a polyoma middle T oncoprotein
model, the binding of chemokine (C-C motif) ligand
(CCL) 2 to chemokine (C-C motif) receptor (CCR) 2
directly mediated monocyte recruitment to the primary
tumor and metastases [9]. In a xenograft model, vascular
endothelial growth factor A (VEGFA) recruited mono-
cytes that differentiated into TAMs in the presence of
IL-4 and the absence of these TAMs inhibited tumor
growth, invasion, proliferation, and angiogenesis [10]. In
human breast cancer models, binding of CCL18 to its
receptor PITPNM3 mediated the recruitment of macro-
phages in collaboration with CSF2 [11]. In colon cancer
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Fig. 1 The origin and polarization of TAMs in tumor microenvironments. Recruited macrophages from blood (green) and tissue-resident macrophages
from the yolk sac (purple) coexist in tumors. Recruited macrophages represent the majority of TAMs. Peripheral blood monocytes are recruited locally
and differentiate into macrophages in response to various chemokines and growth factors produced by stromal and tumor cells in the
tumor microenvironment (CCL2, CSF1, VEGFA, CCL18, CCL20, and CXCL12). Factors that promote the polarization of TAMs to a protumor
phenotype can be subdivided into those actively produced by tumor cells (microparticles, CCL2/3/4, CSF1, IL-4, IL-10), those derived from
immune system components (Treg-derived IL-10, B cell-derived Igs, Th2-derived IL-4/13, and MSC-derived MFG-E8), those secreted by
TAMs (MIF, IL-10, CXCL12), and those resulting from tissue stress (hypoxia, tumor-derived HMGB-1, ECM components) (orange). In addition,
TAMs can also be differentiated from myeloid-derived suppressor cells in the leukemic stem cell niche
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models, macrophage recruitment was mediated by CCL20
binding to its receptor CCR6 [12], the ablation of the
chemokine resulted in the loss of monocytes and/or
TAMs and inhibition of the malignancy. The accumula-
tion of TAMs in response to CXC chemokine receptor
type (CXCR) 4/CXC motif chemokine ligand (CXCL) 12
has been shown to contribute to B16 melanoma progres-
sion [13] (Fig. 1).

Polarization of TAMs

Based on their functions within the tumor microenviron-
ment, TAMs are generally characterized as M2-like macro-
phages, which express higher levels of anti-inflammatory
cytokines, scavenging receptors, angiogenic factors, and
proteases than that in M1-type macrophages. These anti-
inflammatory cytokines can reprogram the immuno-
suppressive microenvironment and then promote tumor
progression with TAM-derived angiogenic factors, and
proteases by multiple ways described in “TAMs promote
cancer progression.” TAMs do not become polarized by
virtue of their location per se but instead receive signals
from the particular microenvironment in which they reside.
Currently, a variety of long non-coding RNAs has been
demonstrated to impair the function and development
of monocyte-macrophages [14]. Moreover, the factors
affecting the polarization of TAMs are discussed in
detail below (Fig. 1).

Tumor-derived factors

Several factors produced by tumor cells can reduce
macrophage polarization (Fig. 1). Colon cancer cell-
derived CSF1 has been shown to drive the recruitment
and reeducation of macrophages [15]. Chemokines
CCL2, 3, and 14 stimulate macrophage proliferation and
polarization in multiple myelomas [16]. IL-10 inhibits
the production of pro-inflammatory cytokines and che-
mokines in macrophages [17]. IL-4 also works in synergy
with CSF1 to induce M2-polarized macrophages [18].
Recent evidence indicates that tumor cell-derived micro-
particles mediate the polarization of TAMs for tumor
progression [19]. In addition, prostate cancer-derived
cathelicidin-related antimicrobial peptide reeducates
macrophages to M2-like phenotype [20]. Hypoxic cancer
cell-derived Oncostatin M and Eotaxin differentiate
macrophages into M2-polarized phenotype [21]. Soluble
MHC 1 chain-related molecule skews macrophages to
immune suppressive alternative phenotype through
activation of STAT3 [22].

Tumor microenvironment

Once monocytes in peripheral blood are recruited to the
tumor, the tumor environment rapidly promotes their
differentiation into TAMs (Fig. 1). Consistent with the
original description of alternative activation, the type 2
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cytokine IL-4 secreted from Th2-polarized CD4" cells
[23], IL-10 derived from regulatory T cells (Tregs) [24],
and immunoglobulin (Ig) from B cells [25] regulate
macrophage polarization to the protumor phenotype. IL-
13 from Th2 cells may have similar effects on TAM
polarization because of overlapping IL-13 and IL-4
signaling cascades that lead to signal transduction and
transcription (STAT) 6 activation, although this is yet to
be proven in vivo [26]. In addition, mesenchymal stro-
mal cell-derived milk fat globule-epithelial growth factor
8 protein (MFG-E8) [27] has been shown to enhance
M2 polarization of macrophages.

Self-secretion

Recently, migration inhibitory factor (MIF) from macro-
phages was reported to be an important determinant of
TAM polarization in melanoma-bearing mice [28]. MIF
deficiency or treatment with an MIF antagonist was
shown to attenuate tumor-induced TAM polarization
and reduce the expression of proangiogenic genes in
TAMs. In addition, tumor-infiltrated macrophages could
produce IL-10 to promote TAMs self-polarization [29].
Another study found that autocrine CXCL12 production
modulated differentiation of monocytes toward a distinct
program with proangiogenic and immunosuppressive
functions [30] (Fig. 1).

Homeostatic imbalance

Hypoxia seems to promote malignant conversion and
metastasis, which is mediated primarily through hypoxia-
inducible factor (HIF)-la and HIF-2a. Both of these
factors can also regulate macrophage function [31]. The
presence of high-mobility group box 1 protein (HMGB1),
extracellular ATP, and other normally intracellular mole-
cules is detected by a class of receptors on the surface of
macrophages called Toll-like receptors (TLRs). Both TLR2
and TLR6 signaling can promote lung cancer progression
by inducing tumor necrosis factor-a (TNF-a) production
of macrophages [32]. Tumor-derived extracellular matrix
(ECM) components, including biglycan and hyaluronan,
are potentially important factors in directing TAM
polarization via TLR2 and TLR4 [33]. Crucially, these
ECM components do not bind to TLRs in non-inflamed
tissue but become TLR ligands following protease cleavage
or interaction with reactive oxygen or nitrogen species,
thereby forming putative sensory pathways for the
detection of inflammation and tissue disruption. In
addition, TAMs can also be differentiated from myeloid-
derived suppressor cells (MDSCs) in the leukemic stem
cell niche [34] (Fig. 1).

TAMs promote cancer progression
TAMs play particular functional roles in tumor progres-
sion, including cancer initiation and promotion, immune
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suppression, metastasis, establishing a premalignant niche,
and angiogenesis. Each of these functions is described
below (Fig. 2).

Cancer initiation and promotion

TAMs connect inflammation and cancer. In 2009, cancer-
related inflammation was first defined as a hallmark of
cancer. Activated macrophages work in concert with other
immune cells in this type of immune response. Evidences
suggest that an inflammatory microenvironment promotes
genetic instability within developing tumor epithelial
cells and infiltrating or resident immune cells such as
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macrophages in inflammatory microenvironments. Recently,
the presence of TAM-derived inflammatory cytokines IL-23
and IL-17 has been shown to be closely associated with
cancer progression [35]. Kupffer cells can provide essential
mitogens for the promotion of hepatocellular carcinoma
through a nuclear factor kB (NF-«B)-dependent signaling
mechanism, because its ablation reduced tumor burden
[36]. Recent data indicates that TAM-derived IL-6 promotes
the occurrence and development of hepatocellular carcin-
oma via STAT3 signaling [37]. These results suggest that
tumor-infiltrated macrophages play an important role in
cancer initiation and promotion (Fig. 2).
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Fig. 2 The effects of TAMs on tumor progression. The protumor functions of TAMs include cancer initiation and promotion (blue), immune

suppression (green), metastasis, establishment of a premalignant niche (orange), and promotion of angiogenesis (purple). (1) TAMs can produce
cytokines such as IL-6/IL-17/IL-23 or mitogens to induce the initiation and progression of cancer via the NF-kB or STAT3 signaling pathway in
tumor cells. (2) Suppression of CTL proliferation by TAMs is at least partly dependent on metabolism of L-arginine via iNOS or arginase |, which
results in ROS production. TAMs inhibit CTL responses via PD1/PD-L1 signaling pathway. TAM-derived PGE2 and IL-10 promote the induction
of Tregs, and TAM-derived CCL17/18/22 recruit Tregs, which results in CTL suppression. (3) Neoplastic cell invasion of ectopic tissue can be
promoted through protease-dependent ECM remodeling that may directly affect neoplastic migration or the premalignant niche. TAM-derived
CCL18 promotes tumor metastasis by triggering integrin clustering and enhancing their adherence to extracellular matrix (EM) in tumor cells.
TAM-derived TGF-B plays important roles in initiation and progression of the EMT. TAMs-derived TNF-a, VEGF, and TGF-3 can transport through
the bloodstream to destination organs, where they induce macrophages to produce S100A8, which further recruits tumor cells to these organs
and promotes the formation of metastatic foci. (4) Hypoxia induces HIF-Ta expression in TAMs and further regulates the transcription of many
genes associated with angiogenesis. Subsets of Tie2" TAMs can interact with mural cells/pericytes to regulate vascular structure
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Immune suppression

TAMs are the major immunoregulatory cells in tumors,
and they participate in inhibiting cytotoxic T lymphocyte
(CTL) responses in tumor microenvironments (Fig. 2). In
murine tumor models, suppression of CD8" T cell prolif-
eration by TAMs is at least partly dependent on metabol-
ism of L-arginine via inducible nitric oxide synthase
(iNOS) or arginase I, which results in the production of
reactive oxygen species (ROS) [38]. IL-10 produced by
TAMs can induce the expression of costimulatory mol-
ecule PD-L1 in monocytes, which can inhibit CTL re-
sponses [39]. In addition, TAM-derived prostaglandin E2
(PGE2), IL-10, and indoleamine 2,3-dioxygenase play im-
portant roles in the induction of Tregs and TAM-derived
CCL17, CCL18, and CCL22 are chemotactic factors for
Tregs [40], which results in the suppression of T cells in
the tumor microenvironment.

Metastasis and premalignant niche

The most comprehensively described mechanism by
which TAMs promote solid tumor development is to pro-
vide factors that enhance metastasis and the establishment
of a premalignant niche of malignant cells (Fig. 2).

In human xenograft models, CCL18 is also required for
tumor cell invasion and metastasis, playing a role in integrin
clustering [41]. Migration on and through the ECM is ne-
cessary for tumor cells metastasis, and TAMs are believed
to promote tumor cell migration/invasion through the ECM
[42]. TAMs can produce proteases, including cathepsin B,
matrix metallopeptidase (MMP) 2, MMP7, and MMP9, and
cleave the ECM, thereby providing conduits for tumor cells.

The epithelial-mesenchymal transition (EMT) is an im-
portant result of the interaction between TAMs and
tumor cells. EMT plays a fundamental role in tumor pro-
gression and metastasis; therefore, clarifying the regulation
of EMT will greatly enhance our understanding of tumor
migration and invasion. Accumulating evidence suggests
that TAMs play a critical role in the regulation of EMT in
cancers. TAM-derived factors play important roles in initi-
ation and progression of the EMT [43].

Also of interest, based on results of studies on animal
models, TAMs may play a role in forming premetastatic
niches in organs to which the tumor will eventually
metastasize. Specifically, TNF-a, VEGE, and transforming
growing factor-p (TGEF-), which are derived from TAMs
in cancer tissues, are believed to be transported through
the bloodstream to destination organs, where they induce
macrophages to produce S100A8 and serum amyloid A3.
Both S100A8 and serum amyloid A3 can recruit macro-
phages and tumor cells to these organs and promote the
formation of metastatic foci [44]. Thus, TAMs are believed
to not only influence their local environments but also to
influence macrophages throughout the body and thereby
contribute to disease progression.
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Angiogenesis

A few studies have shown that the levels of TAMs are
closely associated with the number of vessels in human
cancers. Hypoxia is a major driver of tumor angiogen-
esis. Accumulated macrophages can be found in hypoxic
areas of tumor, and particularly in necrotic tissue. HIF-
la, which is expressed in macrophages, regulates the
transcription of many genes such as VEGF associated
with angiogenesis at hypoxic sites. Genetic analysis has
revealed that TAMs can produce VEGEF, TNF-a, IL-15,
IL-8 (CXCLB8), platelet-derived growth factor (PDGF),
basic fibroblast growth factor (bFGF), thymidine phos-
phorylase, MMPs, and other molecules that are involved
in tumor angiogenesis, indicating that TAMs promote
the formation of intratumoral blood vessels that provide
nutrition for tumor growth [45]. Tie2* TAMs are closely
associated with tumor vasculature and have been found
crucial for angiogenesis in orthotopic and transgenic
tumor models [46], which depend on endothelial cell-
produced angiopoietin-2 (ANG2) and Tie2 receptors on
TAMs along the vasculature (Fig. 2).

Diagnostic biomarker of cancer

As the relationship between TAMs and malignant tu-
mors becomes clearer, TAMs have begun to be used
from bench to bedside, including as potential biomarkers
for diagnosis and prognosis of cancer and as therapeutic
targets for cancer. First, we will explain how TAMs can
be served as potential diagnostic biomarkers of cancer
(Fig. 3). Human TAMs are commonly identified by ex-
pression of CD163, CD204, or CD206; these biomarkers
are not specific for a particular type of cancer.

In our previous study, CD163"CD14" macrophages
were determined to be potential immune diagnostic
markers for malignant pleural effusion (MPE) and have
better assay sensitivity than that of cytological analysis
[47]. In addition, a serum CD163 value of 1.8 mg/L was
set as a cutoff concentration in a survival analysis of
patients with multiple myeloma and should be validated
in future studies [48]. Tang reviewed the relationship
between TAMs and clinicopathological parameters in
human breast cancers and addressed the potential value
of TAMs as diagnostic biomarkers [49].

Using precision microfilters under low-flow conditions,
circulating cancer-associated macrophage-like cells were
isolated from the peripheral blood of patients with breast,
pancreatic, or prostate cancer. These cells, which are not
found in healthy individuals, were found to express epi-
thelial, monocytic, and endothelial protein markers and
were observed bound to circulating tumor cells in circula-
tion [50]. These data support the hypothesis that dissemi-
nated TAMs can be used as a biomarker of advanced
disease, suggesting that TAMs play a participatory role in
tumor cell migration.
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Fig. 3 The clinical application of TAMs. As the relationship between TAMs and malignant tumors becomes clearer, TAMs are beginning to be
seen as potential biomarkers for diagnosis and prognosis of cancers and as therapeutic targets in cancers. Therapeutic strategies directed at TAMs
can be grouped into four areas: limiting monocyte recruitment, targeting the activation of TAMs, reprogramming TAMs to antitumor
macrophages, and targeting TAMs in combination with standard therapies
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Due to TAMs’ important role in tumor progression, the
level of infiltrated TAMs may be used as a prognostic fac-
tor in cancers (Fig. 3). Over 80% of immunohistochemical
studies using various human tumor tissues have shown
that higher numbers of TAMs are associated with worse
clinical prognosis. Recently, we showed that the accumu-
lation of CD163" TAMs in MPE caused by lung cancer
was closely correlated with poor prognosis [51]. The
results of a study indicate that CD204" TAMs are an inde-
pendent prognostic factor in esophageal squamous cell
carcinoma [52]. A high density of infiltrated TAMs is
associated with aggressive features of gastric cancer and is
an independent prognostic marker in gastric cancer
patients [53]. Macrophage phenotypes (CD68, MAC387,
and CLEVER-1/Stabilin-1) provide significant independ-
ent prognostic information, particularly in bladder cancers
following transurethral resection [54]. Moreover, evidence
suggests the expression of inflammation-related genes,
especially genes related to polarization of TAMs, contrib-
utes to prognosis and is associated with poor clinical
outcomes. Therefore, TAMs can be used as a potential
biomarker for prognosis of cancers in clinics.

Therapeutic targets in cancer

As discussed above, there is strong evidence of tumor
promotion by TAMs in different cancer models and an
increased TAM prevalence correlates with low survival
rates in many human cancers. Therefore, targeting
TAMs is a novel strategy for the treatment of cancers.

Therapeutic strategies directed at TAMs can be grouped
into four areas described as below (Fig. 3).

Limiting monocyte recruitment

One strategy for targeting TAMs is to block monocyte
recruitment into tumor tissues. Targeting the CCL2-
CCR2 axis is promising due to its important role in
monocyte recruitment in tumors. A CCL2-blocking
agent (carlumab, CNTO88) has been shown to inhibit
the growth of several cancers in animal models. A phase
II study of carlumab in metastatic castration-resistant
prostate cancer patients showed that this antibody was
well tolerated, but that neither blocked the CCL2/CCR2
axis nor showed antitumor activity as a single agent in
these metastatic cancer patients [55] (NCT00992186,
Table 1). Similar results of Brana et al. showed that car-
lumab in combination with four chemotherapy regimens
for the treatment of patients with solid tumors was well
tolerated, although no long-term suppression of serum
CCL2 or significant tumor responses were observed [56]
(NCT01204996, Table 1). However, according to the re-
sults of other study, carlumab was well tolerated, with
evidence of transient CCL2 suppression and preliminary
antitumor activity [57] (NCT00537368, Table 1).

Sanford et al. demonstrate that a CCR2 antagonist
(PF-04136309) can block the mobilization of CCR2*
monocytes from bone marrow to tumors in a mouse
model of pancreatic cancer and can lead to TAM depletion,
causing the inhibition of tumor growth and distant metas-
tasis [58]. PF-04136309, in combination with FOLFIRINOX
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chemotherapy, was used in a phase Ib trial NCT01413022,
Table 1). This therapy was found safe and tolerable with
an objective tumor response [59]. Moreover, the effi-
ciency of the humanized antibody specific for CCR2
(MLN1202) was determined in a clinical investigation
(NCT01015560, Table 1).

Treatment with systemic CD11b-neutralizing mono-
clonal antibodies has been shown to prevent the recruit-
ment of myeloid cells to tumors. It has been shown that
the use of Mac-1 (CD11b/CD18) antibodies leads to an
improved response to radiation therapy in squamous cell
carcinoma xenografts of mice, which is accompanied by
reduced infiltration of myeloid cells expressing MMP-9
and S100AS8 inside tumors [60].

Because targeting monocytes, prior to being re-
cruited to tumors, has been effective in various cancer
models and partial clinical trials, TAMs can be directly
targeted as well by other approaches once they invade
tumors.

Targeting the activation of TAMs

TAMs can be targeted at the level of activation using
various strategies. CSF1/CSF1 receptor (CSF1R) signal-
ing is critical for the generation of monocyte progenitors
in bone marrow and TAM polarization in tumor tissues.
For these reasons, CSF1/CSFIR signaling is an attractive
target for cancer treatment. Genetic loss of CSF1 results
in significantly reduced metastasis and delayed tumor
progression in breast and neuroendocrine tumor models
[61]. miR-26a expression reduces CSF1 expression in
hepatocellular carcinoma [62]. Based on these results,
several clinical trials of CSF1/CSFIR inhibitors have
been completed or are ongoing (Table 1).

Macrophage surface markers can act as useful thera-
peutic targets. Mannose receptor CD206 can be exploited
as a macrophage-specific target. A single-chain peptide
bound to the CD206 receptor was attached to nanobodies
that can selectively target CD206" TAMs [63]. Legumain,
a stress protein and a member of the asparagine endopep-
tidase family, can serve as an efficient therapeutic target
when overexpressed in TAMs [64]. Targeting surface
markers such as scavenger receptor A and CD52 by using
immunotoxin-conjugated monoclonal antibodies (mAbs)
has been investigated in ovarian cancer [65]. Moreover,
the efficiency of alemtuzumab (anti-CD52 antibody) as a
tumor treatment in ongoing clinical trials is under investi-
gation (NCT00637390, NCT00073879, Table 1).

Trabectedin (ET743, Yondelis®) was shown to decrease
the number of TAMs in tumor tissues by inducing apop-
tosis of monocytes and macrophages [66, 67]. Based on
the favorable results of several phase I, 11, and III clinical
trials, trabectedin has gained full marketing approval
from the European Commission for use in the treatment
of ovarian cancer and soft tissue sarcomas and FDA
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approval in 2015 for use in unresectable or metastatic
liposarcoma or leiomyosarcoma [68].

Reprogramming TAMs to antitumor macrophages

As discussed above, one of the key features of macro-
phages is their plasticity, which enables them to change
their phenotype in the tumor microenvironment. Thus,
reprogramming TAMs to an antitumor phenotype is an
attractive therapeutic strategy. Antitumor macrophages
are good at scavenging and destroying phagocytosed
tumor cells [69]. The results of our previous study
showed that pseudomonas aeruginosa mannose-sensitive
hemagglutinin, which is used in MPE treatment, re-
educated CD163" TAMs to M1 macrophages in MPE,
suggesting that reprogramming CD163" TAMs can be
served as a potential therapeutic strategy of MPE [51].

Nanoparticles are gradually used in polarization of
TAMs into antitumor macrophages. Recently, Zanganeh
et al. found that ferumoxytol significantly inhibited growth
of subcutaneous adenocarcinomas in mice, and this tumor
growth inhibition was accompanied by an increase in pro-
inflammatory M1 macrophages in tumor tissues [70].
Recent data suggest that bioconjugated manganese diox-
ide nanoparticles enhance the responses of chemotherapy
by inducing TAM toward M1-like phenotype [71]. Synthe-
sized nanoparticles with IL-12 payload can reverse macro-
phages to antitumor function [72].

CD40 is a surface marker of macrophages that can be
used to inhibit cytotoxic functions. The combination of a
CD40 agonist with gemcitabine in unresectable pancreatic
cancer resulted in regression of tumors by promoting anti-
tumor macrophages [73]. ChiLob 7/4 is an intermediate
CD40 agonist and chimeric 1gG1, which was also shown
to induce pro-inflammatory cytokines, with promising re-
sults in CD40-expressing solid tumors and diffuse large B
cell lymphoma resistant to conventional therapy in a phase
I clinical trial [74] (NCT01561911, Table 1). Other clinical
trials of molecules targeting CD40 for cancer treatment are
ongoing (NCT01433172, NCT01103635, Table 1).

Activation of the NF-«B pathway also plays an import-
ant role in polarization of TAMs to an antitumor pheno-
type using TLR agonists, anti-CD40 mAbs, and IL-10
mAbs [75]. In addition, regulation of STAT1 activity is
an attractive strategy to induce an antitumor phenotype
in macrophages because of the increase production of
IL-12 in a murine carcinoma model. A small molecule
inhibitor of STAT3 (WP1066) was found to reverse im-
mune tolerance in patients with malignant gliomas and
to selectively induce the expression of costimulatory
molecules CD80, CD86, and IL-12 on peripheral and
tumor-infiltrating macrophages [76]. An investigation of
this agent to treat recurrent malignant gliomas and brain
metastasis is ongoing (NCT01904123, Table 1).
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Thymosin-a is an immunomodulating hormone that
can reeducate TAMs into dendritic cells, which participate
in antitumor host responses and produce high level of
pro-inflammatory cytokines. Nanodelivery of thymosin-a
is a feasible approach to increase immune activity in
cancer patients. Moreover, several clinical trials have con-
firmed that thymosin-a prolongs survival in patients with
metastatic melanomas and advanced non-small cell lung
cancers [77].

B-glucan, a yeast-derived polysaccharide, has been shown
to differentiate TAMs into an M1 phenotype and is a
potent immunomodulator with anticancer properties [78].
The use of B-glucan is currently under investigation in
a phase I clinical trial of patients with neuroblastoma
[79] (NCT00911560, Table 1). In another clinical trial, a
B-glucan polymer (PGG) showed compelling but mod-
est activity in a phase II multi-cancer study [80]
(NCT00912327, Table 1). Furthermore, the efficiency of
B-glucan is currently under phase I clinical investiga-
tion (NCT00492167, Table 1).

Targeting TAMs in combination with standard therapies
Radiotherapy and chemotherapy are useful treatments in
many cancers, and studies have shown that infiltrated
myeloid increases after irradiation. However, the inter-
action between tumor cells and stroma after these ther-
apies remains poorly defined. DNA damage, cell death,
and increased hypoxia have been observed in tumors
after radiotherapy, which has been shown to lead to
macrophage recruitment and promote tumor progres-
sion in animal models [81]. Therefore, it is essential to
combine TAM targeting with standard therapies for
effective tumor treatment.

The HIF-1 pathway is stimulated by radiation-induced
tumor hypoxia, and the HIF-1 inhibitor can result in
decreased infiltration of myeloid cells into tumors [82].
Even more strikingly, blocking CSF1R signaling appears to
enhance the efficacy of several other standard therapies.
As such, CSF1R blockade has been shown to increase the
efficacy of chemotherapy for pancreatic tumors [83].

Conclusions

In this review, we discussed the origin, polarization,
function, and clinical application of TAMs. TAMs
play critical roles in the development and progression
of human cancers. Therefore, it will be critical to ob-
tain a better understanding of TAMs to apply clinic-
ally, especially as a diagnosis and prognosis marker
and a therapeutic target as well. Targeting TAMs is a
promising strategy for cancer treatment. Recent on-
going experimental, preclinical, and clinical studies of
TAMs have shown encouraging progress. We believe
that TAM-targeted therapies will be applied in cancer
patients in the future.
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