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Abstract

The 2016 Nobel Prize in Physiology or Medicine was awarded to the researcher that discovered autophagy, which
is an evolutionally conserved catabolic process which degrades cytoplasmic constituents and organelles in the
lysosome. Autophagy plays a crucial role in both normal tissue homeostasis and tumor development and is
necessary for cancer cells to adapt efficiently to an unfavorable tumor microenvironment characterized by
hypo-nutrient conditions. This protein degradation process leads to amino acid recycling, which provides sufficient
amino acid substrates for cellular survival and proliferation. Autophagy is constitutively activated in cancer cells due
to the deregulation of PI3K/Akt/mTOR signaling pathway, which enables them to adapt to hypo-nutrient
microenvironment and exhibit the robust proliferation at the pre-metastatic niche. That is why just the activation of
autophagy with mTOR inhibitor often fails in vain. In contrast, disturbance of autophagy–lysosome flux leads to
endoplasmic reticulum (ER) stress and an unfolded protein response (UPR), which finally leads to increased
apoptotic cell death in the tumor tissue. Accumulating evidence suggests that autophagy has a close relationship
with programmed cell death, while uncontrolled autophagy itself often induces autophagic cell death in tumor
cells. Autophagic cell death was originally defined as cell death accompanied by large-scale autophagic
vacuolization of the cytoplasm. However, autophagy is a “double-edged sword” for cancer cells as it can either
promote or suppress the survival and proliferation in the tumor microenvironment. Furthermore, several studies of
drug re-positioning suggest that “conventional” agents used to treat diseases other than cancer can have antitumor
therapeutic effects by activating/suppressing autophagy. Because of ever increasing failure rates and high cost
associated with anticancer drug development, this therapeutic development strategy has attracted increasing
attention because the safety profiles of these medicines are well known. Antimalarial agents such as artemisinin
and disease-modifying antirheumatic drug (DMARD) are the typical examples of drug re-positioning which affect
the autophagy regulation for the therapeutic use. This review article focuses on recent advances in some of the
novel therapeutic strategies that target autophagy with a view to treating/preventing malignant neoplasms.
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Background
Cellular degradation processes mainly fall into two categor-
ies: macroautophagy (commonly referred to as autophagy)
and the ubiquitin-proteasome system. Autophagy is an
evolutionarily conserved catabolic process involving the
formation of autophagosome vacuoles that engulf cellular
macromolecules and dysregulated organelles, leading to
their breakdown after fusion with lysosomes [1, 2]. In con-
trast, ubiquitin-proteasome pathway is composed of two
distinct and successive steps: marking the substrate protein
with the covalent attachment of numerous ubiquitin mole-
cules and the subsequent degradation of the tagged sub-
strate in the 26S proteasome. Studies have highlighted
significant differences between these two degradation
systems [3–5]. First, autophagy generates energy efficiently
via ATP synthesis in the mitochondria and maintains
endoplasmic reticulum (ER) stress mediated by select-
ive degradation of non-functional macromolecules and
organelles. In contrast, the proteasome system con-
sumes ATP. Second, the size of the protein targets that
can be hydrolyzed via autophagy is virtually unlimited.
Autophagy is driven by mitochondrial depolarization,

nutrient starvation, aggregation of toxic proteins, and
pathogen infection [6–13]. Thus, viruses, large protein
aggregates, and entire organelles are selectively broken
down by the autolysosome, which is formed by the
fusion of autophagosomes with lysosomes. Autophagy–
lysosome flux mainly comprises three steps: (i) forma-
tion of phagophores, derived by the ER, mitochondria,

and Golgi apparatus [14–16]; (ii) formation of autopha-
gosomes containing macromolecules, pathogenic protein
aggregates, and dysregulated mitochondria; and (iii)
fusion of autophagosomes with lysosomes to form auto-
lysosomes (with a low pH for protein degradation) [17, 18].
Autophagy is responsible for the clearance of old and
dysfunctional organelle. In particular, mitophagy is the se-
lective autophagy-dependent degradation of dysfunctional
mitochondria under hypoxic conditions [19]. Mitophagy
serves as an adaptive metabolic response that prevents
accumulation of high levels of reactive oxygen species
(ROS) by removing old/damaged mitochondria [19–21].
Mitochondrial permeability transition is thought to be
responsible for the mitophagy of depolarized mitochondria,
thereby generating cytotoxic ROS [19, 22].
Mammalian target of rapamycin complex 1 (mTORC1)

integrates nutrient and growth factor signaling to promote
anabolic metabolisms, such as protein synthesis and lipid
synthesis, and to inhibit catabolic pathways, such as
lysosome biogenesis and autophagy [23]. Whereas phos-
phatidylinositol 3-kinase (PI3K)/Akt/mTOR pathway is
constitutively activated in numerous kinds of tumors,
suppression of PI3K/Akt survival signaling pathway due
to the hypo-nutrient microenvironment leads to autoph-
agy induction in tumor cells [24, 25]. During autophagy,
the adaptor protein p62/SQSTM1 is consumed, and LC-3
conversion is promoted [26, 27] (lower panel in Fig. 1).
Obstruction of autophagy flux can be induced artificially
by chloroquine and bafilomycin A1, both of which result

Fig. 1 ER stress caused by disruption of autophagy–lysosome flux or conventional chemotherapy confers synergistic therapeutic effects. While p62/
SQSTM1 is downregulated during autophagy–lysosome flux, lipidated form of LC-3 (LC-3II) accumulates (lower panel). Obstruction of autophagy flux
can be pharmacologically induced by chloroquine, which results in ubiquitination, p62 activation, and LC3-II accumulation (upper panel). Impairment
of the autophagy–lysosome pathway induces apoptosis mainly via excessive ER stress. On the other hand, TMZ is an alkylating agent that
induces formation of O6-methylguanine in DNA, which in turn induces mismatch pair with thymine during the following cycle of DNA
replication. Thus, chloroquine and TMZ exhibit the synergistic therapeutic effect for cancer cells
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in increased levels of ubiquitination, p62 activation, and
LC3-II accumulation (upper panel in Fig. 1). The smooth
autophagy–lysosome pathway, which is termed autophagy
flux, can be disturbed by bafilomycin A1, a specific in-
hibitor of vacuolar-type H+-ATPase. In the presence of
bafilomycin A1, autophagosomes fail to exhibit the fu-
sion with lysosomes, leading to the accumulation of
numerous immature autophagosomes [3, 28, 29]. Thus,
levels of the adaptor protein p62/SQSTM1 and the
lipidated mature form of LC3 (LC3-II) increase in the
presence of bafilomycin A1 and/or chloroquine under
steady state or starvation conditions.
Impairment of the autophagy–lysosome pathway in-

duces apoptosis mainly via excessive ER stress [30, 31]. In
contrast, temozolomide (TMZ) is an alkylating agent that
induces the formation of O6-methylguanine in DNA,
which in turn induces mismatch pair with thymine
during the following cycle of DNA replication [32, 33].
Accumulating evidence strongly suggests the role of
O6-methylguanine-DNA methyltransferase (MGMT)
expression in the acquired resistance to TMZ in malig-
nant glioma and acute leukemia cells [34, 35]. The
mechanisms underlying the action of TMZ and the
pathways by which glioma cells escape death have yet
to be adequately elucidated; however, genome stress
due to TMZ synergistically induces apoptosis in collab-
oration with accumulated ER stress upon chloroquine
treatment (Fig. 1) [2, 3].

Activation of autophagy in tumor tissues
Cancer cells tend to activate autophagy constitutively
via metabolic reprogramming [36–38]. For a typical
instance, tumor cells activate AMP-activated protein
kinase (AMPK), a key energy sensor that regulates
cellular metabolism, to maintain energy homeostasis
[38, 39]. Activated AMPK regulates the autophagy-
dependent amino acid recycling system in collabor-
ation with FIP200 and ULK1. Also, phosphorylation
of AMPK suppresses mTORC1 mediated inactivation
of Raptor or activation of TSC2 [40, 41]. Under conditions
of nutrient sufficiency, increased mTOR activity prevents
ULK1 activation by phosphorylating ULK1 on Ser 757,
thereby disrupting the interaction between ULK1 and
AMPK [8].
In addition, several molecular machineries have

been proposed to explain the tumor suppressive func-
tion of autophagy: (i) accumulation of p62, a substrate
of autophagy, leads to NF-κB activation [42]; (ii) ac-
cumulation of p62 stabilizes the transcription factor
nuclear factor erythroid 2-related factor 2 (Nrf2),
which imparts tumor cells with resistance to hypoxic
stress [43]; (iii) retention of damaged organelles, in-
cluding mitochondria [44]. These mechanisms may be
cell- and stimulus-type specific.

Constitutive activation of autophagy in tumor tissue is a
challenge regarding therapeutic resistance [45, 46].
Activated autophagy protects glioblastoma multiforme
(GBM) cells from the hyper-oxidative, hypoxic, and hypo-
nutrient tumor microenvironment [47, 48]. For example,
TMZ, an alkylating agent used to treat GBM and anaplas-
tic astrocytoma [49, 50], induces autophagy and subse-
quent therapeutic resistance, which is why Nrf2 inhibitors
exhibit a therapeutic effect when used in combination
with TMZ [48, 51]. Indeed, Nrf2 knockdown enhances
autophagy induced by TMZ, which attenuates the
cancer proliferation [51]. Furthermore, the flavonoid
chrysin, which is a potent Nrf2 inhibitor, has been
shown to effectively overcome the drug resistance by
downregulating the PI3K/Akt and ERK pathways [52].
Notably, recent investigations indicate the importance

of transcriptional factors for regulating constitutive acti-
vation of autophagy [53, 54]. Pancreatic adenocarcinoma
cells exhibit constitutive nuclear expression of TFE3 and
MITF despite displaying suppressed mTORC1 signaling
in the presence of Torin1, which is an mTOR inhibitor.
Constitutive activation of transcriptional factors TFE3
and MITF in the nuclei of pancreatic cancer cells is
critical for autophagy–lysosome function [53]. These
basic helix–loop–helix–leucine zipper (bHLH-Zip) tran-
scriptional factors are well known to be involved in the
differentiation of osteoclasts, mast cells, and melano-
cytes [55], and exhibit the translocation in renal cell
carcinoma [56]. Thus, the persistent nuclear localization
of MiT/TFE factors regardless of mTORC1 signal modi-
fication induces and maintains the robust activation of
anabolic pathways in tumor cells, while cancer cells sur-
vive and proliferate owing to the fine-tuning metabolic
regulation and the adaptation to metabolic stress afforded
by activation of autophagy and lysosome-dependent protein
degradation. Activated mTORC1 phosphorylates MiT/TFE
proteins, a process that inhibits nuclear translocation
mediated by importin 8, which itself belongs to the
importin-β family of nucleocytoplasmic transporters (Fig. 2)
[57]. Also, depletion of c-Myc impairs autophagy flux,
thereby reducing phosphorylation of JNK1 and its down-
stream target anti-apoptotic molecule Bcl2. Knockdown of
this proto-oncogenic transcriptional factor disrupts
autophagosome formation [58]. The functional relevance
of this observation reinforces the attractiveness of targeting
Myc as a therapeutic strategy for cancer [59–61], since
autophagy promotes cell survival under the stress condi-
tions (i.e., nutrient depletion and hypoxia) often encoun-
tered by established tumor cells.

Intra-tumoral heterogeneity and metabolic stress responses
As previously explained, cancer cells highly depend on
autophagy in the tumor microenvironment [45, 46]. Dif-
ferences in the mechanism(s) of autophagy activation
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determine metabolic symbiosis, which explains the het-
erogeneous therapeutic response to anticancer therapies
targeting tumor metabolism [38, 62]. For a typical ex-
ample, there is metabolic cross-talk between cancer stem
cells (CSCs) and non-CSCs and between cancer cells
and cancer-associated fibroblasts (CAFs) [38, 63, 64].
CSCs exist at the top of the hierarchical tumor cell society
and possess several biological features including resistance
to oxidative stress and chronic inflammation [65–67],
capacity for rapid repair of damaged DNA [68, 69], ability
to adapt to an unfavorable tumor microenvironment
lacking of glucose or growth factors [70, 71], plasticity
between the proliferative and quiescent cell cycle condi-
tions [72, 73], and importantly, metabolic reprogramming
[38, 74–76]. Furthermore, CAFs in the tumor stroma ex-
hibit robust activity in terms of aerobic glycolysis and
autophagy due to loss of caveolin 1 (Cav-1) expression
[63, 77]. Cav-1 is a scaffold protein involved in several
cellular processes, including cholesterol homeostasis,
vesicular transport, and regulation of signal transduction.
Although Cav-1 functions as a tumor suppressor molecule
in several solid cancers [78–80], its loss from stromal cells
positive for α-smooth muscle actin (α-SMA) leads to
robust proliferation, increased extracellular matrix
production, and activated TGF-β signaling [81]. Also,
a metabolic hallmark of a constitutive myofibroblastic
phenotype is achieving higher levels of aerobic gly-
colysis and autophagy than in neighboring cancer
cells [63]. CAFs depend on autophagy; importantly,

activation of autophagy in the tumor stroma leads to
chemo-resistance [63, 82].
Notably, circulating tumor cells express high levels of

epithelial cell adhesion molecule (EpCAM), also known
as CD147 [83, 84]. EpCAM interacts with three major
amino acid transporters: monocarboxylate transporters
(MCTs), SLC1A5 (also known as ASCT2), and SLC7A5
(also known as LAT1) [71, 85]. Given that LAT1 trans-
ports branched side-chain amino acids such as L-leucine
into cells in exchange for efflux of intracellular amino
acids such as L-glutamine, EpCAM-induced stabilization
of LAT1 distribution at the cellular membrane negatively
regulates the mTOR signaling pathway [71, 86]. EpCAM
is a marker of functional CSCs and, as such, regulates
metabolic stress [38, 71]. EpCAM expression is, at least
in part, responsible for the observed heterogeneity of
tumor cell metabolism [87–89]. CSCs expressing high
levels of EpCAM can adapt to the hypo-nutrient tumor
microenvironment better than non-CSCs that express
low levels of EpCAM. Taken together, the different
degrees of autophagy activation in CSCs, non-CSCs, and
CAFs lead to heterogeneity and cross-talk between path-
ways responsible for tumor metabolism.
Of note, the autophagy-dependent and selective deg-

radation of cytotoxin-associated gene A (CagA), the type
IV secretion effector of Helicobacter pylori (H. pylori), is
activated by reduced levels of intracellular glutathione
(GSH), resulting in redox stress and activation of Akt
[12]. Gastric CSCs expressing high levels of a CD44
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Fig. 2 Nuclear translocation of MiT/TFE protein is responsible for the constitutive activation of autophagy–lysosome pathway in cancer cells.
Compared with normal cells, greater amounts of MiT/TFE transcriptional factors (i.e., MITF, TFE3, and TFEB) accumulate in the nuclei of cancer cells
under nutrient-insufficient conditions. These transcriptional factors drive expression of genes related to autophagylysosome flux. Surprisingly, even
under mTOR-inactivated conditions (such as starvation), cancer cells express high levels of Mit/TFE proteins in the nucleus, which may explain the
constitutive activation of autophagy independent of mTOR signaling. Note that the red bar indicates the enhanced autophagic activation, while
the blue bar indicates the suppressed autophagic regulation
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variant containing exons 8–10 (CD44v8-10) are resistant
to ROS due to the robust GSH synthesis mediated by
stabilization of xCT (a cysteine/glutamate antiporter) at
the cellular membrane (Fig. 3) [65, 90, 91]. Gastric can-
cer cells expressing high levels of CD44v8-10 fail to
support the autophagy-dependent degradation of CagA.
Mounting evidence has demonstrated that the accumu-
lation of intracellular CagA due to autophagy inhibition
is observed in CSCs derived from human gastric adeno-
carcinoma [12, 92, 93]. Taken together, these studies
suggest that both of the ubiquitin-proteasome pathway
and the selective autophagy machinery contribute to the
emergence of gastric cancer-initiating cells derived from
tissue stem cells expressing CD44v8-10.

Therapeutic strategies associated with drug re-positioning
Several reports show that certain drugs conventionally
used to treat non-malignant diseases exhibit anticancer
effects, a phenomenon referred to as oncology drug re-
positioning [94, 95]. Biopharmaceutical manufacturers
who attempt to increase productivity through novel
discovery technologies have fallen short of achieving the

desired results when attempting to develop de novo anti-
cancer drugs. Given the costs associated with the discovery,
development, registration, and commercialization of new
therapeutic agents, it has been increasingly difficult for
pharmaceutical companies to achieve an adequate return
on investment for difficult-to-cure diseases. Re-positioning
conventional drugs may rectify this. Thus, an increasing
number of pharmaceutical companies are aggressively scan-
ning the existing pharmacopoeia for re-positioning candi-
dates. For instance, chloroquine is used to treat malaria and
autoimmune disorders such as systemic lupus erythemato-
sus and rheumatoid arthritis. However, chloroquine also
blocks autolysosome formation by disrupting fusion be-
tween mature autophagosomes and lysosomes; this agent
acts synergistically with TMZ to induce GRP78/BiP-
dependent ER stress accumulation (Fig. 1) [1, 96–98]. Com-
pared with novel molecular-targeting drugs, conventional
agents are not only pharmacologically safe but are also
cheaper than specialized drugs. Combination therapy with
multiple signal transduction inhibitors has been tested in a
clinical setting with the aim of preventing tumor cells from
activating alternative survival and proliferation signaling
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Fig. 3 CD44 variant-xCT axis-mediated ROS regulation determines the malignant transformation of gastric epithelial cells showing CagA accumulation.
Stabilization of xCT (cystine/glutamate antiporter) at the cell membrane in gastric epithelial stem cells due to high CD44v8-10 expression promotes
glutathione synthesis, thereby inactivating the Akt signaling pathway. Phosphorylated Akt in CD44v-negative cells induces ubiquitin-proteasome-
dependent degradation of p53 in the cytoplasm. Activated Akt signal transduction in non-cancer stem-like cells expressing the standard isoform of
CD44 exhibit selective autophagy-mediated degradation of CagA. CagA is translocated from H. pylori via type IV secretion channels, and importantly,
accumulation of this pathogenic protein in CD44v-expressing cancer stem-like cells leads to carcinogenesis and maintenance of “stemness.” Note that
the red bar shows the relatively high level, while the blue bar indicates the low level
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pathways and acquiring resistance to a single targeting
agent [99–101]; however, this therapeutic strategy has un-
realistically high costs. In contrast, the use of conventional
medications would be much cheaper.

Therapeutic strategies that promote synergistic antitumor
effects
Some conventional agents show synergistic antitumor
effects when used alongside chemotherapeutic agents or
radiation [95, 102, 103]. For instance, pyrimethamine
(Pyr) is an orally administered drug used to treat infec-
tions caused by protozoan parasites such as malaria. Pyr is
an anti-folate agent that blocks dihydrofolate reductase
(DHFR) [104]. DHFR inhibitors have been studied as anti-
cancer drugs because they are selectively toxic to rapidly
proliferating cells [104, 105]. Tommasino et al. recently
investigated the therapeutic effect of novel derivatives of
Pyr, including iso-pyrimethamine (Iso-Pyr), m-nitropyri-
methamine (MNP), methylbenzoprim (MBP), and m-azi-
dopyrimethamine ethanesulfonate salt (MZPES), against
metastatic melanoma cells both in vitro and in vivo [95].
Among these derivatives, MBP induces cell cycle arrest
and apoptosis upon cathepsin B activation. Cathepsin B is
a lysosomal cysteine protease that directs cells toward
both autophagy and apoptosis [106, 107]. It is notable that
the in vivo concentration of MBP necessary for a signifi-
cant therapeutic effect is approximately fivefold lower
than that of Pyr [95], which strongly suggests that the
antitumor effects of MBP may be as efficient as those of
other anti-folate drugs already in use (e.g., methotrexate)
but with less severe adverse effects.
Furthermore, high-throughput screening identifies F-

AMP as combination agents for gastrointestinal stromal
tumor (GIST) therapy with imatinib mesylate. The majority
cases of GIST which are resistant to conventional chemo-
therapy and radiation have been well controlled with ima-
tinib mesylate. However, these effects are often short-lived,
because some of the cases with GIST demonstrate a
median time to progression of approximately 2 years
[108–110]. F-AMP inhibits DNA synthesis by interfer-
ing with ribonucleotide reductase and DNA polymer-
ase [103, 111]. Given that clinical cases of advanced
GIST progressing on tyrosine kinase therapy fre-
quently have secondary mutations, there is a rationale
for testing combination therapies that target receptor
tyrosine kinase-independent pathways, such as those
that block DNA synthesis and lead to enhanced DNA
damage [103]. Thus, synergistic antitumor effect pre-
vents the emergence of secondary mutations which
are responsible for the acquired resistance.

Drug re-positioning for the treatment of solid tumors
Several investigations have revealed the therapeutic use-
fulness of drug re-positioning for the treatment of solid

tumors [112–114]. It has been recently identified, for
example, that the novel therapeutic strategy targeting
autophagy in GBM focuses not only on conventional
drugs but also on endogenous neurotransmitters in the
synapse. A recent study described the chemical screening
of 680 neurochemical compounds using patient-derived
GBM neural stem cells (GNS) and the subsequent identifi-
cation of dopamine receptor D4 (DRD4) antagonists as
selective inhibitors of GNS growth and inducers of normal
neural stem cell differentiation and LC-3 puncta forma-
tion [114]. Xenograft experiments revealed that a DRD4
antagonist acted synergistically with TMZ to activate
autophagy and inhibit GNS proliferation. CSCs tend to
exhibit autophagy activation either under steady condi-
tions or upon exposure to various stresses; this results in
robust survival and proliferation within the niche. Import-
antly, when autophagy flux is obstructed, the amounts of
both p62/SQSTM1 (an adaptor protein for selective
autophagy) and LC3-II (the lipidated mature form of
LC-3) increase. This leads to ER stress and, ultimately,
apoptosis. DRD4 antagonists suppress the PDGF
receptor-β/ERK1/2 (p44/p42-MAPK) signaling axis and
disrupt autophagy flux in GBM stem cells, leading to
apoptosis via caspase-3-mediated cleavage of poly
(ADP-ribose) polymerase (PARP) [114]. It is notable
that fananserin, a drug that acts as a potent antagonist
of the serotonin 5HT2A receptor and the dopamine D4 re-
ceptor, has long been used as a sedative and as a treatment
for schizophrenia, bipolar disorder, and antianxiety [115].
Furthermore, the purinergic receptor P2Y12 inhibitor ticlo-
pidine, which is an anticoagulant drug used to prevent
transient ischemic attacks and stroke, increases intracellu-
lar cAMP levels in low-grade glioma and high-grade astro-
cytoma and promotes autophagy flux (Table 1). Notably,
tricyclic antidepressants such as imipramine act synergis-
tically with ticlopidine to promote autophagy in glioma
cells by further increasing intracellular cAMP concentra-
tions [116]. Taken together, these studies suggest that in-
duction of excessive autophagy in cancer cells using
conventional drugs leads to autophagic cell death.

Drug re-positioning of antimalarial agents and the
underlying molecular machinery
Beclin 1 (the homolog of yeast autophagy-related gene 6
(Atg6)) was the first mammalian autophagy protein to
be identified [117]. Beclin 1 comprises a class III PI3K
complex that plays a role in autophagosome formation
[118, 119]. Also, haploinsufficiency of Beclin 1, which is
directly phosphorylated by AMPK, increases the incidence
of spontaneous tumor development in Beclin 1+/− hetero-
zygous mutant mice [120]. Tumor types included lung
adenocarcinomas, hepatocellular tumors, and lymphomas
showing Nrf2 accumulation and p62-positive inclusion
bodies. Although autophagy tends to suppress tumor
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initiation, it increases invasive and metastatic potential.
This is the “double-edged sword” of autophagy with re-
spect to malignant neoplasms [121, 122]. Dihydroartemisi-
nin (DHA) is a critical inducer of c-Jun NH2-terminal
kinase (JNK)-mediated Beclin 1 expression in pancreatic
cancer cells [123]. Treatment of human pancreatic cancer
cell lines with DHA activates caspase-3 and induces
conversion of LC-3 to its lipidated form, hallmarks
of apoptosis and autophagy, respectively [123]. Both
transient small interfering RNA (si-RNA)-mediated
depletion of Beclin 1 and pharmacological suppres-
sion of class III PI3K by 3-methyladenine (3-MA)
lead to reduced numbers of double-membrane vacuoles

(called autophagosomes) within cells. Thus, Beclin1 plays
a fundamental role in DHA-induced activation of au-
tophagy. Furthermore, DHA causes ROS-induced JNK
phosphorylation in a concentration- and time-dependent
manner [123]. JNK activation is responsible for Bcl-2
phosphorylation, which increases autophagy by disrupting
the competitive interaction between Beclin 1 and Bcl-2
[124]. Bcl-2 regulates autophagy by directly binding to
Beclin 1, which partially explains the relationship between
autophagy and apoptosis. Although Jia et al. did not
mention this specifically [123], it is highly likely that
DHA induces autophagic cancer cell death, defined as
cell death due to excessive autophagy. Surprisingly

Table 1 Typical examples of drug re-positioning targeting autophagy in cancer cells

Name of the agent
(the type of the drug)

Conventional application Mechanism of action to
exhibit the antitumor effect

Targeting tumor types References

Sulfasalazine (cystine/
glutamate antiporter
inhibitor)

Ulcerative colitis,
rheumatoid arthritis

To decrease GSH synthesis
by the disruption of cystine
uptake via xCT transporter
and, therefore, enhancing ROS
leads to ferroptosis, which is
the autophagic cell death due
to the excessive degradation
of ferritin.

Gastric cancer, breast
cancer, head and neck
squamous carcinoma,
non-small cell lung cancer

[65, 131, 135–139]

Chloroquine
(antimalarial drug)

Autoimmune diseases
such as lupus and
rheumatoid arthritis

To disrupt the fusion of
autophagosomes with
lysosomes (the formation
of autolysosomes) and to
enhance GRP78/BiP-
dependent ER stress.
Remarkably, TMZ and
chloroquine show the
synergistic therapeutic
effect.

Colon cancer, malignant
melanoma, hepatocellular
carcinoma, low-grade glioma,
high-grade astrocytomas

[96]

Fananserin (dopamine
receptor 4 antagonist)

Schizophrenia, bipolar disorder,
antianxiety and sedative effects

To suppress PDGFR-β/ERK
signal pathway, to induce
G0/G1 cell cycle arrest, and
to disrupt autophagy–lysosome
pathway in which enough ER
stress accumulates for apoptosis
of glioma cells to occur

High-grade astrocytomas
(anaplastic astrocytoma
grade III and glioblastoma
multiforme)

[114, 115]

Ticlopidine (purinergic
receptor P2Y12 inhibitor)

Anticoagulant drug to prevent
transient ischemic attack (TIA)
and stroke

To increase intracellular
cAMP level and promote
autophagy flux. Notably,
tricyclic antidepressants
such as imipramine promote
autophagy in glioma cells
synergistically with this
drug by further elevating
intracellular cAMP concentration.

Low-grade glioma, high-
grade astrocytomas

[116]

Valproic acid (a short-chain
fatty acid HDAC inhibitor)

Epilepsy such as tonic-clonic
seizures

To upregulate CDKN1A/B and
downregulate c-Myc, thereby
augmenting mTOR inhibitor to
induce autophagic cell death

Cutaneous T cell lymphoma,
Burkitt leukemia/lymphoma

[126, 148]

Terfenadine (histamine
receptor H1 antagonist)

Autoimmune diseases such
as allergic dermatitis

To induce ROS-mediated
DNA damage, autophagy,
and apoptosis independent
of p53 via the attenuated
secretion of VEGF in hypoxic
area

Malignant melanoma [140–142]
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enough, autophagic cell death in mouse embryonic
fibroblasts (MEFs) established from Bax/Bak double-
knockout mice, which are resistant to apoptotic cell
death, was rescued by 3-MA treatment [44, 125].
Notably, given that JNK activation is observed during
autophagic cell death, it may be that DHA induces this
type of cell death as well as apoptosis [126]. Thus, JNK
inhibitors can rescue autophagic cell death in a reversible
manner.

Drug re-positioning of DMARDs and the underlying
molecular machinery
Artemisinin, which is known to be an antimalarial agent
[127, 128], induces iron-dependent necrotic cell death,
also referred to as ferroptosis, in cancer cells [129, 130].
Ferroptosis is recognized in various human diseases,
including ischemic tissue damage and malignancy.
Recent research revealed the close relationship between
ferroptosis and autophagic cell death. Pharmacological
induction of ferroptosis leads to excessive activation of
selective autophagy, which in turn results in the degrad-
ation of ferritin and the ferritinophagy cargo receptor
NCOA4 [131]. In addition, because ferroptosis is trig-
gered by excessive ROS levels due to insufficient
amounts of GSH, system XC

− is likely to be involved.
System XC

− is an amino acid antiporter that typically me-
diates the exchange of extracellular L-cysteine (L-Cys2)
and intracellular L-glutamate (L-Glu) across the cellular
plasma membrane. It is composed of a light chain, xCT,
and a heavy chain, 4F2 heavy chain (4F2hc); thus, it
belongs to the family of heterodimeric amino acid
transporters [132, 133]. Sulfasalazine, which is a
disease-modifying antirheumatic drug (DMARD), has
long been used to treat rheumatoid arthritis and ulcerative
colitis. DMARDs are a group of medications commonly
used in patients with autoimmunue disorders character-
ized by rheumatoid arthritis. Some of these drugs are also
used in treating other conditions such as ankylosing
spondylitis, psoriatic arthritis, and systemic lupus erythe-
matosus. DMARDs are mainly composed of methotrexate,
D-penicillamine, and sulfasalazine [134]. Notably, sulfa-
salazine inhibits the cysteine/glutamate antiporter, thereby
attenuating GSH synthesis by disrupting cysteine uptake
via system XC

− [65, 135, 136]. This DMARD is also an
effective treatment for glioma-associated brain edema due
to increased intracellular concentrations of glutamate
[137, 138]. Increased ROS levels lead to ferroptosis, a form
of autophagic cell death caused by excessive degradation
of ferritin and NCOA4 [131]. Remarkably, a clinical
trial of combination treatment with chemotherapy with
sulfasalazine has been performed in patients with non-
small-cell lung cancer and patients with advanced gas-
tric tumors without driver gene mutations such as RAS
(G12V) (Table 1) [91, 139]. Taken together, these

studies suggest that chemical or drug screening should be
undertaken to identify the novel antitumor therapeutic
effects of drug re-positioning in a clinical setting.

Drug re-positioning and molecular mechanisms associated
with p53 and epigenetics
The histamine receptor H1 antagonist terfenadine, which
is used to treat patients with autoimmune diseases such
as allergic dermatitis, suppresses invasion and metastasis
of malignant melanoma cells. Terfenadine induces ROS-
mediated DNA damage, autophagy, and p53-independent
apoptosis by attenuating secretion of vascular endothelial
growth factor in hypoxic areas [140]. Activation of p53
increases mitochondrial membrane permeabilization,
cytochrome c release, and caspase-9 activation. ROS
inhibition by vitamin E partially attenuates induction of
p73 and Noxa expression, but not that of p53 and p21.
This strongly suggests that Noxa expression and apop-
totic cell death are regulated independently of p53. In
malignant melanoma cells, a strong apoptotic stimulus
conferred by terfenadine triggers Ca2+-dependent DNA
damage and activation of caspase-2 as the predominant
mechanisms which induce apoptosis via the mitochon-
drial pathway [141]. Caspase-2, which is activated by
an autoproteolytic mechanism in response to DNA
damage, interacts directly with mitochondria to trigger
mitochondrial membrane permeabilization and cyto-
chrome c release [141, 142].
Indeed, recent studies show that excessive induction of

autophagy in aggressively proliferating cancer cells is an
essential therapeutic target of histone deacetylase
(HDAC) inhibitors [126, 143, 144]. HDAC inhibitor-
induced autophagy is mainly caused by transcriptional
activation of FOXO1, which promotes autophagy via
mTOR signal suppression and ATGs upregulation [144].
Remarkably enough, while hyper-acetylation of ATGs
has been implicated in starvation-induced autophagy,
deacetylation of proteins crucial for autophagy including
ATG5, ATG7, ATG12, and LC3 is implicated in autoph-
agy induction by starvation [144, 145]. Given that
mTOR signaling, which is aberrantly activated in lymph-
oma, plays a major role in tumor cell growth [146, 147];
Dong et al. demonstrated that HDAC inhibitors and
mTOR inhibitors work synergistically to inhibit Burkitt
B cell lymphomas showing constitutive activation of
PI3K/Akt signaling and c-Myc overexpression [126]. In
the clinical settings, valproic acid (VPA; a short-chain
fatty acid HDAC inhibitor) is widely used as an anticon-
vulsant; however, it also exhibits antitumor activity
[148]. In lymphoma cells, HDAC inhibition by VPA is
essential for the autophagy-enhancing effects observed
when it is used in combination with the mTOR inhibitor
temsirolimus [126]. Therefore, epigenetic modulation via
VPA inhibition is a promising method of inducing
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autophagic cell death in malignant neoplasms. Still, much
remains to be elucidated about the relationship between
HDAC-mediated epigenetic regulation and autophagy
induction or suppression.

Drug re-positioning of natural and functional food
ingredients
Common ingredients of many foods can also be subject
to drug re-positioning. For example, capsaicin (trans-8-
methyl-N-vanillyl-6-nonenamide), the major pungent
ingredient in “hot” chili peppers, elicits a sensation of
burning by selectively activating sensory neurons that
convey peripheral information about noxious stimuli to
the central nervous system [149]. Capsaicin binds to a
receptor called transient receptor potential cation chan-
nel subfamily V member 1 (TRPV1), the archetypal
member of the vanilloid TRP family [150]. TRPV1
functions as the mediator of chemical and physical
stimuli at nociceptor peripheral terminals and plays a
crucial role in thermal inflammatory hyperalgesia.

Garufi et al. recently investigated the antitumor effects
of capsaicin, which occur via autophagy-mediated specific
degradation of a p53 mutant [151]. It is widely accepted
that tumor-associated p53 mutations such as p53R175H
and p53R273H, rather than the heterozygous loss of wild-
type tumor-suppressing p53, cause the malignant pheno-
type [152, 153]. Numerous mutant p53 proteins acquire
oncogenic properties that enable cancer cells to increase
their capacity for invasion, colonization, and proliferation
within the pre-metastatic niche [91, 154]. Remarkably,
Garufi et al. revealed that capsaicin-induced reactivation
of p53 increases the susceptibility of mutant p53-
harboring tumor cells to conventional anticancer agents
such as ADR and CDDP [151]. In the presence of capsa-
icin, TRPV1 activation leads to double-strand breaks and
phosphorylation of histone H2AX [155, 156]. Ataxia-
telangiectasia (A-T)-mutated (ATM) kinase functions by
phosphorylating and activating some DNA repair and
checkpoint proteins, including p53, H2AX, 53BP1,
Brca1, and Chk2, which ultimately induce cell cycle

BRCA1

P

TRPV1

cellular membrane

DSB

Na+, Ca2+

capsaicin

H2AX H2AX
P

ATM

Chk2 p53

cell cycle arrest

mutant p53

1 61 94 292 325 356 393

DBD
N

NLS

C

NLSR175H R273H

intact p53

1 61 94 292 325 356 393

DBD
N

NLS

C

NLS

autophagic degradation

Fig. 4 Capsaicin induces simultaneous autophagic degradation of mutant p53 and reactivation of wild-type p53. Capsaicin activates TRPV1, leading
to double-strand DNA breaks and phosphorylation of histone H2AX. ATM kinase phosphorylates and activates a number of DNA repair and checkpoint
proteins, including p53, Brca1, and Chk2, ultimately causing cell cycle arrest. On the other hand, capsaicin induces autophagic degradation
of p53R175H and p53R273H and reactivates intact p53 that does not harbor mutations in the DNA-binding domain. Thus, expression of apoptotic
genes such as Puma, Bax, and DRAM increases
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arrest [157, 158]. Furthermore, reactivated wild-type p53 in-
duces expression of apoptotic genes such as Puma, Bax,
and DRAM (damage-regulated autophagy modulator). In
particular, DRAM, which is induced only by a few natural
compounds, is upregulated by genotoxic stress. DRAM is
required for p53-induced autophagy and apoptosis [159,
160]. p53-mediated cell death in response to cellular stress
requires both DRAM-induced autophagy and other pro-
death signals (mediated by targets such as PUMA, NOXA,
and Bax) to elicit a full death response (Fig. 4).
Sulforaphane (SFN) is produced by hydrolysis of

glucoraphanin after ingestion of cruciferous vegetables,
particularly broccoli and broccoli sprouts [161]. SFN
acts as a tumor-preventive molecule by activating Nrf2
[162]. Nrf2 binds to Kelch-like ECH-associated protein 1
(KEAP1) in the cytoplasm under steady-state conditions;
however, Nrf2 dissociates from KEAP1 and translocates
to the nucleus upon exposure to redox stress [163, 164].
Activation of the antioxidant response element is
dependent on Nrf2 and induces expression of heme
oxygenase 1 (HO-1), NAD(P)H-quinone oxidoreductase
(NQO1), GST, superoxide dismutase 3 (SOD3), and
glucuronosyltransferase-1a6 (UGT-1a6). These enzymes
have cytoprotective, antioxidant, and anti-inflammatory
effects. SFN also induces autophagy in human breast
cancer cells, a process inhibited by bafilomycin A1 but
not by 3-MA [165]. This suggests that SFN does not
disrupt the formation of the autophagosome, but ra-
ther that of the autolysosome, the structure formed
after fusion of the autophagosome with the lysosome
[165, 166]. SFN-induced autophagy increases suscepti-
bility to apoptosis by modulating Bax, BCL-2, caspase-
3, PARP-1, and the mitochondrial membrane potential
[165, 167]. The cross-talk between signals that activate
autophagy and apoptosis requires further investigation
if we are to better understand the therapeutic signifi-
cance of drug re-positioning in terms of the molecular
and signaling machineries.

Conclusions
Conventional agents are not only pharmacologically safe
but also cheaper than specialized anticancer drugs. How-
ever, much remains to be discovered in terms of the
cross-talk between signals that mediate autophagy and
apoptosis [168, 169]. The 2016 Nobel Prize in Physiology
or Medicine was awarded to Emeritus Professor Yoshinori
Ohsumi (Tokyo Institute of Technology) for his discovery
of the autophagy machinery [170]; therefore, improving
our understanding of the mechanisms and relationships
between conventional drugs, chemotherapy, and autoph-
agy in the clinical setting is an important research topic.
Such an approach will enable us to develop novel antican-
cer treatments that target signal transduction pathways
related to cancer cell death.
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