Quwaider et al. Journal of Hematology & Oncology (2017) 10:92
DOI 10.1186/513045-017-0461-8

Journal of
Hematology & Oncology

RESEARCH Open Access

DEPTOR maintains plasma cell

@ CrossMark

differentiation and favorably affects
prognosis in multiple myeloma

Dalia Quwaider'?, Luis A. Corchete'”, Irena Misiewicz-Krzeminska'=*, Marfa E. Sarasquete'”, José J. Pérez?,

Patryk Krzeminski'?, Noemi Puig'*?, Marfa Victoria Mateos'*?, Ramon Garcfa-Sanz'*?, Ana B. Herrero

and Norma C. Gutiérrez'**""

131

Abstract

with longer progression-free survival.

clinicaltrials.gov as #NCT01237249, 4 November 2010).

Background: The B cell maturation process involves multiple steps, which are controlled by relevant pathways
and transcription factors. The understanding of the final stages of plasma cell (PC) differentiation could provide
new insights for therapeutic strategies in multiple myeloma (MM). Here, we explore the role of DEPTOR, an mTOR
inhibitor, in the terminal differentiation of myeloma cells, and its potential impact on patient survival.

Methods: The expression level of DEPTOR in MM cell lines and B cell populations was measured by real-time
RT-PCR, and/or Western blot analysis. DEPTOR protein level in MM patients was quantified by capillary
electrophoresis immunoassay. RNA interference was used to downregulate DEPTOR in MM cell lines.

Results: DEPTOR knockdown in H929 and MM1S cell lines induced dedifferentiation of myeloma cells, as
demonstrated by the upregulation of PAX5 and BCL6, the downregulation of IRF4, and a clear reduction in cell size
and endoplasmic reticulum mass. This effect seemed to be independent of mTOR signaling, since mTOR substrates
were not affected by DEPTOR knockdown. Additionally, the potential for DEPTOR to be deregulated in MM by
particular miRNAs was investigated. The ectopic expression of miR-135b and miR-642a in myeloma cell lines
substantially diminished DEPTOR protein levels, and caused dedifferentiation of myeloma cells. Interestingly, the
level of expression of DEPTOR protein in myeloma patients was highly variable, the highest levels being associated

Conclusions: Our results demonstrate for the first time that DEPTOR expression is required to maintain myeloma
cell differentiation and that high level of its expression are associated with better outcome.
Primary samples used in this study correspond to patients entered into GEM2010 trial (registered at www.
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Background

Multiple myeloma (MM) is a clonal disorder of B cells
(BCs) in the final stage of differentiation that accounts for
approximately 10% of all hematological cancers [1]. MM is
characterized by clonal accumulation of malignant plasma
cells (PCs) in the bone marrow, which secrete a
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monoclonal immunoglobulin. Although several therapeutic
agents are available, MM remains incurable. Knowledge of
all the factors involved in PC differentiation could provide
new insights of relevance to therapeutic strategies for MM.
In fact, in some hematological neoplasms, the malignant
transformation of BC has been associated with the disrup-
tion of the B cell differentiation process, such as mutations
of certain key BC maturation factors [2—4]. The transition
from B lymphoid precursors to antibody-secreting PCs in-
volves several molecular and cellular modifications includ-
ing transcriptional changes, expansion of the cytoplasm
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and the secretory organelles to accommodate high-rate syn-
thesis of immunoglobulins, unfolded protein response
(UPR) activation, and changes in cell surface antigen
expression [5-8]. It has been demonstrated that the tran-
scriptomes of BC and PC are maintained by two groups of
transcriptional factors: those that promote the B cell
program, such as PAX5, BCL6, and BACH?2, and those that
favor and facilitate PC differentiation, notably IRF4,
BLIMP1, and XBP1 [9]. Interestingly, many of these tran-
scription factors repress others required for the alternative
developmental state, thereby establishing mutually exclu-
sive gene expression programs [9—12]. Besides transcrip-
tional factors, other types of proteins and biochemical
pathways could be involved in the transformation of BC
into mature PC.

Using microarray expression data, we found that the
mRNA-encoding DEPTOR, an inhibitor of mTORC1
and mTORC?2 kinases activities [13], was overexpressed
in normal PCs (NPCs) and myeloma cells compared
with normal B lymphocytes (NBLs) [14], which raised
the possibility that this protein contributes to PC differ-
entiation. The complete role of DEPTOR within the cells
has not yet been fully elucidated, although the involve-
ment of DEPTOR in several biological processes, such
as cell growth, apoptosis, and autophagy, has been
reported [15]. A potential role of DEPTOR as a tumor
suppressor or as an oncogene, depending on cell
context, has also been described. It is considered a
tumor suppressor, functioning by the inhibition of
mTOR, whose activity is frequently hyperactivated in
many human tumors. Indeed, DEPTOR has been found
to be downregulated in many types of human cancers.
However, it is also overexpressed in many other tumor
types, including chronic myeloid leukemia, and MM [13,
16]. The overexpression of DEPTOR in MM has been
associated with translocations involving MAF transcrip-
tion factors and CCNDI and CCND3 genes [13]. Fur-
thermore, DEPTOR seems to be overexpressed in MM
with copy number gains of 8q24 where DEPTOR is lo-
cated [17].

Here, we report for the first time that DEPTOR main-
tains the terminal differentiation of MM cells. Knock-
down of DEPTOR reverts the transcriptional program of
the PC to that characteristic of a BC. In addition, we
found that microRNA deregulation in MM, specifically
miR642a and miR135b downregulation, may also under-
pin the overexpression of DEPTOR.

Methods

Cell lines and primary samples

The human multiple myeloma cell lines (MMCL), NCI-
H929, MM1S, and U266 were acquired from the ATCC
(American Type Culture Collection), and the JJN3, RPMI-
8226, OPM-2, KMS12BM, KMS12PE, and HEK923 lines
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were obtained from the Deutsche Sammlung von Mik-
roorganismen and Zellkulturen (DSMZ). Cell line identity
was confirmed periodically by STR analysis with the
PowerPlex 16 HS system kit (www.promega.com) and on-
line STR matching analysis (www.dsmz.de/fp/cgi-bin/
str.html). Cell lines were cultured in RPMI 1640 medium
supplemented with 10% fetal bovine serum and antibiotics
(Gibco Life Technologies, Grand Island, NY, USA). Bone
marrow (BM) samples from ten healthy donors were
sorted by a FACSAria equipment into four BC popula-
tions: immature B cells (CD34-, CD19 +, CD10+, CD38+
+), naive B cells (CD19+, CD27-, CD10-), memory B cells
(CD19+, CD138-, CD27+, CD38+), and plasma cells
(CD38+++, CD138+, CD45low). Monoclonal antibodies
were purchased as follows: anti-CD45-FITC (clone D3/9)
and anti-CD19-PECy7 (clone A3-Bl) from Immunostep
(Salamanca, Spain); anti-CD38-PerCP-Cy™5.5 (clone
HIT2), anti-CD34-APC (clone 8G12), and anti-CD27-
BV421 (clone M-T271) from BD Biosciences (San Jose,
CA, USA); anti- CD138-Pacific OrangeTM (clone B-A38)
from Exbio Praha (Vestec, Czech Republic); and anti-
CD10-PE (clone ALB1) from Beckman Coulter (Pasadena,
CA, USA). CD138+ plasma cells were isolated from BM
samples of 24 patients with newly diagnosed MM
included in the GEM2010 Spanish trial (bortezomib,
melphalan, and prednisone plus lenalidomide and dexa-
methasone), using an autoMACS separation system
(Miltenyi-Biotec, Auburn, CA, USA).

RNA extraction and quantitative real-time PCR analysis
RNA was extracted from the cell lines using an RNeasy
mini kit (Qiagen, Valencia, USA) according to the stand-
ard protocol. RNA integrity was assessed using an
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA, USA). Total RNA (1 pg) was reverse-
transcribed to complementary DNA (cDNA) using
High-Capacity cDNA Reverse Transcription Kits (Ap-
plied Biosystems, Foster City, CA, USA). Expression of
target genes was assessed using TagMan qRT-PCR
assays (Applied Biosystems). Relative gene expression
was calculated by the 27" method using GAPDH as
the endogenous control for normalization.

To detect mature miR135b and miR642a expression
levels, TagMan quantitative real-time polymerase chain
reaction (qQRT-PCR) micro RNA (miRNA) assay (Applied
Biosystems) was performed. The relative levels of ex-
pression of mature miR135b and miR642a normalized
with respect to the RNU43 endogenous control were
determined by the 27“* method. Each measurement
was performed in triplicate.

Transfections
Cell lines were transfected using the nucleofector II sys-
tem (Lonza, Allendale, NJ, USA) with the following
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programs: C-16 for H929 and JJN3, G-16 for MMI1S,
and X-005 for U266. Cells were transfected with on-
TARGET plus™ control pool or on-TARGET plus
SMART pool Human DEPTOR (Dharmacon, Lafayette,
CO, USA); pre-miR™ miRNA precursors pre-miR-135b,
pre-miR-642a, and pre-miR™ miRNA negative non-
targeting control#1 (Ambion, Austin, TX, USA); and
microRNA inhibitors, hsa-miR-135b-5p miRCURY
LNA™ microRNA inhibitor, hsa-miR-642a-5p miRCURY
LNA™ microRNA inhibitor, and miRCURY LNA™ micro-
RNA inhibitor negative control A (Exiqon, Woburn,
MA, USA). Small interfering RNA (siRNA) and miRNA
concentration of 25 nM was used in all the experiments.

Cell cycle analysis

Cells were washed in PBS and fixed in 70% ethanol for
later use. Cells were rehydrated with PBS, resuspended
in 500 pl of PI/RNase staining solution (Immunostep),
and incubated for 20 min at RT in the dark. Samples
were analyzed using a FACSCalibur flow cytometer.

Apoptosis and cell proliferation assays

Apoptosis was measured using an annexin V-fluorescein
isothiocyanate/propidium iodide (PI) double staining
(Immunostep) according to the manufacturer’s procedure.
Cell viability was evaluated with the CellTiter-Glo® lumi-
nescent cell viability assay based on the amount of ATP
present (Promega), in accordance with the manufacturer’s
protocol.

Immunophenotyping

MM cell lines were immunophenotyped on a FACS-
Canto II cytometer (Beckton Dickinson Biosciences)
using the following monoclonal antibodies: CD138-
OC515 (Cytognos S.L., Salamanca, Spain), CD38-APC-
H7 (BD Biosciences), and sIgk-PB (Vestec, Czech Re-
public). Data analysis was performed using the Infinicyt
software (Cytognos S.L.). A minimum of 10° events were
stored. Median fluorescence intensity of each marker
was analyzed.

Luciferase reporter assay

The double-stranded oligonucleotides corresponding to
the wild-type or mutant miR135b and miR642a binding
sites in the 3'-untranslated region (3'UTR) of DEPTOR
were synthesized (Additional file 1: Table S1) (Sigma-Al-
drich, St Louis, MO, USA) and ligated between the Pmel
and Xbal restriction sites of the pmirGLO vector
(Promega, Madison, WI, USA). Oligonucleotide
sequences are detailed in Additional file 1: Table SI.
Luciferase assays in HEK293 cells were performed as
previously described [18].
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Western blot

Protein extraction and Western blot analysis were carried
out as previously detailed [18]. The primary antibodies
used for immunoblotting were anti-DEPTOR, anti-AKT,
phospho-AKT (ser473), anti-p70 S6 kinase, anti-phospho-
p70 S6 (Thr389), anti-4E-BP1, anti-phospho-4E-BP1
(Thr37/46), anti-S6 ribosomal protein, anti-phospho-S6
ribosomal protein (Ser235/236) (Cell Signaling Technol-
ogy, Beverly, MA, USA), anti-IRF4, anti-Ig kappa light
chain, and anti-Ig lambda light chain (Santa Cruz Biotech,
Delaware, CA, USA). Anti-B-actin (Sigma-Aldrich) was
used as an internal control for protein loading. The mem-
branes were then washed and incubated with the second-
ary horseradish per-oxidase-linked anti-mouse IgG or
anti-rabbit IgG antibodies (PierceNet) (1:10000), anti-goat
IgG (Santa Cruz Biotech) (1:10000). Chemiluminescence
was detected using the Amersham ECL Plus™ Western
Blotting Detection Reagent (GE Healthcare).

Capillary electrophoresis immunoassay

Capillary electrophoresis immunoassay was performed
using the WES™ machine (ProteinSimple Santa Clara, CA,
USA) according to the manufacturer’s protocol. In brief,
4 ul of samples at a concentration of 0.1 mg/ml (or lower
when it was not possible to achieve 0.1 mg/ml) were
combined with a master mix (ProteinSimple) to a final
concentration of 1x sample buffer, 1x fluorescent molecu-
lar weight markers, and 40 mM dithiothreitol (DTT), and
then heated at 95 °C for 5 min. The samples, blocking re-
agent, wash buffer, primary antibodies (anti-DEPTOR and
anti-GAPDH at 1:100 concentration), secondary anti-
bodies, and chemiluminescent substrate were dispensed
into designated wells in the microplate provided by the
manufacturer. After plate loading, the fully automated
separation electrophoresis and immunodetection steps
were carried out in the capillary system. Data were ana-
lyzed with the inbuilt Compass software (ProteinSimple).
The signal from DEPTOR was normalized with respect to
the signal from GAPDH, making sure that the signals of
both proteins were within the linearity range.

Immunofluorescence staining

Cells were collected 48 or 72 h post-transfection,
washed with PBS, and stained for 30 min with 1 uM
ER-Tracker™ Red (Invitrogen). Cells were washed
again with PBS, fixed with 4% formaldehyde for
5 min at room temperature, placed on glass slides
coated with poly-L-lysine, and stained for 1 min with
DAPI II. The slides were then mounted using VEC-
TASHIELD Mounting Medium (Vector Laboratories,
Burlingame, CA, USA). Images were collected under
a Zeiss confocal microscope equipped with 636/1.4
Oil Plan-APOCRHOMAT DIC.
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Statistical analysis
The two-tailed Student ¢ test or the two-tailed Welch ¢
test was used to analyze group differences in experi-
ments when data showed equal or unequal variances, re-
spectively. Data are reported as mean values + standard
deviation (SD) of at least three determinations.
Progression-free survival (PFS) distribution curves
were plotted using the Kaplan—Meier method; the log-
rank test was used to estimate the statistical significance
of differences between the curves. The Cutoff Finder
web application (http://molpath.charite.de/cutoff) was
used to determine the optimal cutoff, defined as that
yielding the most significant split discriminating shorter
and longer survival, and identified by testing all possible
cutoffs using the log-rank test [19]. Values of p <0.05
were considered statistically significant. All statistical
analyses were conducted using the SPSS 21.0 program
(IBM Corp. Released 2012. IBM SPSS Statistics for
Windows, Version 21.0. Armonk, NY: IBM Corp).

Results

DEPTOR is overexpressed in plasma cells compared with
B lymphocytes

In order to confirm the previously observed overexpres-
sion of DEPTOR by microarray analysis in NPC and mye-
loma cells relative to NBL (GSE6691 at GEO repository)
[14] (Fig. 1a), we quantified DEPTOR mRNA levels by
qRT-PCR in four BC populations. To this end, immature,
naive, memory B cells and PCs were sorted from BM sam-
ples obtained from healthy donors. DEPTOR expression
was found to be significantly higher in PCs than in all pre-
vious stages of differentiation (Fig. 1b), which suggested
that this protein could be involved in PC maturation.

DEPTOR knockdown induces dedifferentiation of
myeloma cells

To gain further insight into the potential role of DEPTOR
in PC differentiation, we knocked down its expression in
MMCLs by siRNA for 48 h and then assessed the
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expression of key genes involved in B cell maturation by
qRT-PCR. Cell growth and apoptosis experiments re-
vealed that DEPTOR knockdown did not alter cell viabil-
ity (Additional file 1: Figure S1 a and b). However, we
found that PAX5 and BCL6, which both encode B cell
lineage-specific activator proteins and which are present
only at early stages of B cell differentiation [9], were in-
creased in DEPTOR-silenced cells (Fig. 2a). Conversely,
IRF4, an essential transcription factor for PC differenti-
ation [20], was downregulated after DEPTOR knockdown.
Reduced IRF4 levels were also confirmed by Western blot,
mainly in H929 cells (Fig. 2b). Additionally, immunophe-
notypic markers related to B cell differentiation, such as
CD19, CD38, CD138, and k light chain were also assessed.
Thus, expression levels of CD38, CD138, and k light chain
were found to be lower, while CD19 expression was higher
after DEPTOR silencing (Fig. 2a—c). Next, we analyzed the
effect of DEPTOR downregulation on myeloma cell
morphology. Clear reductions in cell size and endoplasmic
reticulum (ER) mass were found in both H929 and MM1S
as a consequence of DEPTOR downregulation (Fig. 3a—c).
To exclude the possibility that cell cycle profiles were re-
sponsible for the differences in size of myeloma cells, we
determined the percentage of cells in G1, S, and G2/M by
flow cytometry. No differences in cell cycle profiles were
observed between control and DEPTOR-silenced cells
(Fig. 3d). Next, we also determined whether the observed
reduction in cell size in DEPTOR-silenced cells could also
be detected by flow cytometry. A clear reduction in mean
ESC value was observed in DEPTOR-silenced cells
compared with control cells (Fig. 3e). Taken together,
these results indicate that DEPTOR downregulation in
MM cells induces a reversal of PCs to previous stages of
PC differentiation.

Dedifferentiation of myeloma cells induced by DEPTOR
silencing is independent of mTOR signaling

As DEPTOR has been described previously as an
mTORC1/mTORC2 inhibitor [13], we were interested
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to determine whether PC dedifferentiation observed
after DEPTOR silencing was induced through the
mTOR signaling pathway. For this purpose, mTORC1
and mTORC?2 activity was monitored through the phos-
phorylation state of their substrates using the same
conditions of DEPTOR knockdown that induced PC
dedifferentiation. We found that the levels of mTOR
substrates were not changed by DEPTOR knockdown
under the conditions assayed (Fig. 4a). These results im-
plied that all the molecular and morphological changes
obtained after DEPTOR knockdown were independent
of the mTOR pathway. To confirm these findings, we
added rapamycin, a well-known mTORCI inhibitor, in
the DEPTOR knockdown experiments. As shown in
Fig. 4b, levels of p-S6 were again found to be similar in
control and in DEPTOR knockdown cells, but lower in

cells exposed to rapamycin, showing that the downregu-
lation of IRF4 triggered by DEPTOR silencing was not
reverted by the addition of rapamycin. Therefore, the PC
state is maintained by DEPTOR independent of its role
as an mTORC inhibitor.

DEPTOR is a direct target of miR135b and miR642a

It has previously been shown that DEPTOR is overex-
pressed in the subset of MM carrying MAF/MAFB and
CCND1/CCND3 translocations. The influence of MAF/
MAFB on DEPTOR levels was confirmed by both
ectopic expression of MAFB and MAF silencing, which
induced DEPTOR upregulation and downregulation,
respectively [13]. We evaluated DEPTOR expression in a
panel of MM cell lines with different chromosomal
translocations (Fig. 5a). DEPTOR mRNA and protein
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levels were detected in almost all cell lines analyzed, es-
pecially in RPMI-8226 and MM1S, which overexpress
MAF [21], but also in H929 and OPM2 carrying the
(4514) translocation. Surprisingly, some MM cell lines
exhibited low levels of DEPTOR, like JJN3, even though
it carries a MAF translocation, and U266, which overex-
press cyclin D1 [22-26]. These results suggest that,
although DEPTOR levels may be influenced by MAF/
MAFB or cyclin D1/3 expression, additional mechanisms
may affect its expression. To address the possibility that
post-transcriptional regulation by microRNAs is in-
volved in DEPTOR expression, we looked for miRNA-
DEPTOR interactions in five databases (miRMap, PITA,
RNA22, RNAhybrid, and Targets scan), using a value of
p =0.05 for miRNAs whose predicted binding site is the
3'UTR of DEPTOR (Additional file 1: Figure S2). A total
of 47 common miRNAs were predicted to target

DEPTOR from the five combined datasets. Of these,
miR135b and miR642a had been previously reported to
be downregulated in MM with different cytogenetic
abnormalities [27]. Underexpression of both miRNAs in
different MM patients compared with NPCs was
confirmed by qRT-PCR (Fig. 5b). According to the
prediction algorithms, miR642a and miR135b have one
putative site in the DEPTOR 3'UTR (Fig. 5c). To deter-
mine whether DEPTOR was a direct target of those miR-
NAs, we carried out luciferase reporter assays. The 3’
UTR of DEPTOR harboring the sequence complemen-
tary to the miR642a or miR135b seed sequence was
cloned in a reporter plasmid vector referred to as wild-
type (WT). In parallel, a 3'UTR DEPTOR fragment
containing mutant sequences (MUT) of the seed site of
the two miRNAs was cloned in the same reporter
plasmid. DEPTOR 3'UTR WT and MUT luciferase
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constructs were then transfected into HEK293 cells
along with miR-135b/miR-642a or negative control (NC)
miRNA, and luciferase activity was determined. We
found that luciferase activity of cells cotransfected with
WT DEPTOR 3'UTR and miR135b or miR642a was sig-
nificantly lower (p <0.01) than that exhibited by cells
transfected with NC control miRNA. Luciferase activity
of MUT constructs was not affected by miR135b or
miR642a overexpression (Fig. 5d).

miR135b and miR642a regulate DEPTOR expression in
MM

Once DEPTOR had been validated as being a direct target
of miR642a and miR135b, we speculated that differences
in DEPTOR levels among MM cell lines could be partly
related with the endogenous levels of these miRNAs. In
fact, using qRT-PCR, we found that JJN3 and U266, which
exhibited low levels of DEPTOR despite MAF or cyclin
D1 overexpression (Fig. 6a), expressed higher levels of
miR642a and miR135b than H929, which displayed high
levels of DEPTOR and carried #(4;14) (Fig. 6a). To test this
hypothesis, H929 was transfected with miR135b or
miR642a and NC miRNA precursors. Clearly, lower levels
of DEPTOR protein expression were found in miR135b
and miR642a transfected cells compared with control cells
72 h post-transfection (Fig. 6b). To gain further evidence
of the relationship between miR642a/miR135b expression
and DEPTOR levels, miR642a and miR135b were specif-
ically knocked down in U266 and JJN3 cell lines.
DEPTOR protein expression was significantly higher in
both cell lines after transfection with miR642a/miR135b
inhibitors (Fig. 6c). Taken together, these results

demonstrate that miR135b and miR642a modulate
DEPTOR expression through the consensus miR135b or
miR642a-binding sites in DEPTOR 3'UTR. These
miRNAs can subsequently participate in the regulation of
DEPTOR expression in MM.

Upregulation of miR135b and miR642a results in
myeloma cell dedifferentiation through the negative
regulation of DEPTOR

Next, we were interested to determine whether downregu-
lation of DEPTOR induced by the overexpression of miR-
135b or miR-642a also led to PC dedifferentiation.
Consistent with the finding after DEPTOR silencing by
siRNAs, the downregulation of DEPTOR by transfection
of H929 cells with miR135b or miR642a resulted in down-
regulation of IRF4 and k light chain proteins (Fig. 7a). In
addition, DEPTOR knockdown by miR135b and miR642a
overexpression led to the appearance of smaller, rounder
cells with a less cytoplasm and ER content than control
cells (Fig. 7b and c). These results and those obtained
from siRNA experiments clearly indicated that the
presence of DEPTOR is required to maintain myeloma
cells at the terminal stage of differentiation.

DEPTOR is differentially expressed in MM and its
upregulation is associated with longer survival and the
stage of PC maturity

DEPTOR mRNA is known to be differentially expressed
in MM patients [13, 28]. We confirmed these results
using two different microarray studies (GSE16558, and
GSE39925 at GEO repository) [27, 29]. Next, we decided
to quantify DEPTOR protein levels by capillary
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electrophoresis immunoassay in myeloma cells from 24
MM patients treated according to the Spanish
GEM2010 trial. Consistent with the mRNA expression
data, we observed that levels of DEPTOR protein also
differed among the myeloma samples (Fig. 8a). Interest-
ingly, we found that the PFS was significantly longer in
MM patients with high expression levels of DEPTOR
than in those with low DEPTOR expression levels (p =
0.038) (Fig. 8b).

The differences in DEPTOR protein expression among
MM patients led us to hypothesize that DEPTOR levels
might be associated with the maturation state of mye-
loma cells of each patient, in line with our results from
MMCLs. As morphological characteristics of myeloma
cells are correlated with maturation stage [30], we exam-
ined the morphology of myeloma cells isolated from
three patients with high DEPTOR protein levels and
three with low protein levels. We observed that those

cells harboring high levels of DEPTOR had an eccentric
nucleus and large and extended cytoplasm, and were
bigger than those exhibiting low levels of the protein
(Additional file 1: Figure S3). These results support
those obtained from MMCLs and indicate that a suitable
level of DEPTOR is necessary for PC maturation.

Discussion
In this study, we showed that DEPTOR, a protein over-
expressed in MM [13], maintains PC differentiation. We
also found that miR135b and miR642a, downregulated
in the disease, modulate DEPTOR levels in MM cells.
Initial studies of PC maturation reported that the final
step of PC differentiation was irreversible [9, 31-33].
However, recent studies have revealed that alterations in
IRE1, XBP1, FOXP1, PAX5, or BCL6/MTA3 may repro-
gram PCs to previous stages of differentiation [34—37].
In keeping with these reports, we found that DEPTOR
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knockdown changed the transcriptional program associ-
ated with PC differentiation through the upregulation of
PAXS and BCL6, which maintain the B cell program,
and downregulation of IRF4, a factor that favors PC
differentiation [12]. The main function of PC is the
production of immunoglobulins at high rate, and for this
to happen, PCs must display a highly specialized
morphology with expanded cytoplasm and a more

sophisticated ER network compared with B cells [38].
Our results demonstrated a clear loss of cell size and ER
mass in both H929 and MMI1S as a consequence of
DEPTOR downregulation. Taking these results together,
we propose that DEPTOR maintains the state of PCs,
and its deficiency in PCs results in PC dedifferentiation.
Accordingly, DEPTOR levels increased during the differ-
entiation of human PCs from B cells. Peterson et al.
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Fig. 7 Upregulation of miR135b and miR642a results in myeloma cell dedifferentiation through negative regulation of DEPTOR. a Western blot of
DEPTOR, IRF4, and kappa light chain in H929 cells 72 h post-transfection with NC or miR-135b/miR-642a. b Giemsa stain of H929 cells transfected
with NC or miR-135b/miR-642a. ¢ Immunofluorescence of H929 cells stained with ER tracker
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showed that DEPTOR overexpression is necessary to
maintain PI3K and AKT activation and that a reduction
in DEPTOR levels leads to apoptosis [13].

Here, we found that DEPTOR inhibition, at the times
and under the conditions assayed, did not affect cell sur-
vival, but reverted the commitment of PCs. A few earlier
studies have found a connection between DEPTOR
levels, mTORC1/mTORC?2 activities, and cell differenti-
ation. It has been reported that DEPTOR maintains stem
cell pluripotency by limiting mTOR activity in undiffer-
entiated embryonic stem cells (ESCs) [39], whereas dif-
ferentiation of mouse ESCs is associated with decreased
DEPTOR levels. In T cells, it has been demonstrated that
mTOR drives T cell differentiation and function [40, 41].
In B cells, one study has analyzed the consequences of B
cell-specific loss of the mTOR negative regulator TSC1
[42]. The authors showed that deletion of TSC1 in mur-
ine B cells and subsequent TORCI activation led to im-
pairment of B cell maturation. This work appears to be
in agreement with our findings, in the sense that B cells
would need an mTORCI inhibitor to promote PC differ-
entiation. However, we unexpectedly found that
mTORC1/mTORC?2 activities were not modified by DEP-
TOR silencing under our experimental conditions. The in-
dependence of mTORCI activity was corroborated by the

addition of rapamycin, an mTORC]1 inhibitor that did not
revert the PC dedifferentiation induced by DEPTOR
knockdown. We hypothesize that DEPTOR may regulate
B cell differentiation through mTOR-independent path-
ways. Their molecular connections with PC differentiation
need to be elucidated.

DEPTOR has been found to be overexpressed in many
tumor types, including breast cancer, prostate cancer,
chronic myeloid leukemia, lung cancer, and MM [16]. In
the latter, DEPTOR overexpression was associated with
cyclin D1/D3 upregulation and especially with the pres-
ence of MAF/MAFB translocations [13]. The involvement
of miRNAs in the pathogenesis and biology of myeloma
has been suggested by several groups [27, 43, 44]. Here,
we found that DEPTOR expression is also controlled by
two miRNAs, miR135b and miR642a, both of which are
downregulated in several MM patients [27]. Using lucifer-
ase reporter assays and gain-of-function experiments, we
showed that transfection of miR135b and miR642a de-
creased DEPTOR levels in myeloma cells. Moreover, in-
hibition of miR135b and miR642a in two MMCLs
exhibiting high levels of expression of both miRNAs and a
low level of expression of DEPTOR, despite displaying
MAF or cyclinD1 upregulation, resulted in DEPTOR over-
expression. We observed that DEPTOR downregulation
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induced by miR135b and miR642a ectopic expression also
reverted the transcriptional program of the myeloma cells
and reduced cell size and ER mass, similarly to the results
obtained from DEPTOR silencing by siRNA. These find-
ings emphasize the role that these miRNAs play in regu-
lating DEPTOR expression.

It was of particular note that DEPTOR protein levels
in myeloma cells varied from patient to patient, and that
its upregulation was clearly associated with longer PFS.
Interestingly, high levels of DEPTOR expression have
previously been associated with the prediction of
response to thalidomide in MM [28]. This observation is
consistent with the fact that the patients included in our
study received a treatment regimen that contained lena-
lidomide, a thalidomide-like drug. On the other hand,
we have shown that DEPTOR induces PC maturation,
and it has been reported that the maturation of myeloma
cells is associated with sensitivity to anti-myeloma
agents [30, 34, 45-47], including lenalidomide [45]. In
fact, plasma cell maturity seems to be an indicator of
good prognosis in MM [47].

Conclusions

Overall, our results show that high levels of DEP-
TOR result in more mature myeloma cells that
would be more sensitive to therapeutic agents. They
suggest the merit of further investigations to test the
potential of DEPTOR levels as an indicator of mat-
uration and as a predictive biomarker of sensitivity
to anti-myeloma therapy.
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Additional file 1: Table S1. List of oligonucleotide sequences used for 3
UTR luciferase constructs. Figure S1. DEPTOR knockdown did not alter cell
viability. a Proliferation of myeloma cells 48 h after transfection with DEPTOR
SIRNA. Data are expressed as means of three independent experiments +
SD. Proliferation of cells transfected with siNT was taken as 100%, and values
obtained in DEPTOR-silenced cells were normalized accordingly. b Percent-
age of apoptosis after DEPTOR knockdown in H929 and MM1S. Right panel
shows representative dot plots. Figure S2. Bioinformatic identification of
miRNAs that regulate DEPTOR expression. Venn diagram showing numbers
of miRNAs predicted to target DEPTOR by the indicated five databases.
Figure S3. Cell morphology and size in MM patients with different DEPTOR
levels a Giemsa stain of three MM patients. b Average maximum diameter
of MM cells measured from patients harboring high (n=3) and low (n = 3)
DEPTOR levels. At least 50 cells per experiment were counted. (*p <0.05,

**p <001, **p <0.001). (DOCX 1346 kb)
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