
REVIEW Open Access

Current status and perspectives of
patient-derived xenograft models
in cancer research
Yunxin Lai1,2, Xinru Wei1,2, Shouheng Lin1,2, Le Qin1,2, Lin Cheng1,2 and Peng Li1,2,3*

Abstract

Cancers remain a major public health problem worldwide, which still require profound research in both the basic and
preclinical fields. Patient-derived xenograft (PDX) models are created when cancerous cells or tissues from patients’
primary tumors are implanted into immunodeficient mice to simulate human tumor biology in vivo, which have been
extensively used in cancer research. The routes of implantation appeared to affect the outcome of PDX research, and
there has been increasing applications of patient-derived orthotopic xenograft (PDOX) models. In this review, we firstly
summarize the methodology to establish PDX models and then go over recent application and function of PDX
models in basic cancer research on the areas of cancer characterization, initiation, proliferation, metastasis, and
tumor microenvironment and in preclinical explorations of anti-cancer targets, drugs, and therapeutic strategies
and finally give our perspectives on the future prospects of PDX models.
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Background
Cancers are among the leading causes of death world-
wide. The Cancer Moonshot 2020 program has been
launched in 2016 to transform the cancer research and
care ecosystem and double the rate of progress in cancer
prevention, diagnosis, and treatment [1], though success
achieved in reducing cancer death rates in the USA [2].
This program envisaged the development of precision
medicine based on five critical elements—clinical bioinfor-
matics, precision methods, disease-specific biomarkers,
drug discovery and development, and precision regula-
tions—to guard the application of precision medicine [3].
Novel techniques and research tools would play important
roles in this process.
Patient-derived xenograft (PDX) models are immuno-

deficient mice engrafted with patients’ cancerous cells or

tissues. The development of PDX models for cancer
research, based on the assumption that these models
faithfully resemble the original tumors, especially for the
patient-derived orthotopic xenograft (PDOX) models
[4], has significantly enhanced cancer research in recent
years. These models for various types of cancers, such as
chronic lymphocytic leukemia [5], large B cell lymphoma
[6], pancreatic cancer [7], colorectal cancer [7, 8], gastric
cancer [9, 10], high-grade serous carcinoma [11], and
intrahepatic cholangiocarcinoma [12], are biologically
stable and accurately reflect the patients’ tumors with
regard to histopathology, gene expression, genetic muta-
tions, inflammation [13], and therapeutic response.
Thus, PDX models allow invaluable assessment of
human tumor biology, identification of therapeutic tar-
gets, and preclinical screening and evaluation of drugs
for various cancers. In this review, we summarize the
methodology to establish PDX models (Fig. 1), go over
the recent advances of basic cancer studies and preclin-
ical studies in which PDX models have been used (Fig. 2),
and give our perspectives on the future prospects of
PDX models.
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Fig. 1 Overview of the methodology to establish PDX models and their uses in cancer research. Tumors from cancer patients (P0) are fragmented or
digested into single-cell suspension and then transplanted (directly or with additives such as Matrigel) into immunodeficient mice (P1) for engraftment.
Once grown, the tumors were transplanted into secondary recipients (P2) for tumor expansion. The expanded tumors can then be cryopreserved or
transplanted into P3 mice for cancer research of the type of origin. Specifically, tumors can be transplanted into the sites other than that the tumors
are derived, called heterotopic transplantation or into the corresponding sites of the tumors like the brain [39, 97], lung [130], liver [12],
pancreas [131, 132], kidney [26],and ovary [11], which is called orthotopic transplantation. The successfully established PDX models are to
be used in cancer research, which consists of two, basic and preclinical, arms. Basic and preclinical cancer research in PDX models are
connected with each other, as basic research can identify therapeutic targets or strategies for preclinical tests and preclinical research can
generate new basic questions

Fig. 2 Use of PDX models in drug screening and preclinical therapeutic evaluation. Drug screening: PDX models can be used to expand tumors
derived patients without adequate initial tumors for in vitro studies. The expanded tumor cells can be cultured and manipulated ex vivo
and used for high-throughput screening of drugs or combinations. Identified candidate drugs and combinations can be further evaluated
in PDX mice before use in patients or directly used in patients if the drugs have been approved. Preclinical therapeutic evaluation: given
different clinical therapeutic regimens are available for cancer patients, PDX models can be used to define the best for individual patients.
Briefly, the PDX mice of one patient are randomly divided into certain groups and treated with different therapeutic regimens. Through
tumor assessment, the best regimen can be identified
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Methodology to establish PDX models
Immunodeficient mice
Immunodeficient mice engrafted with human immune
systems provide powerful models for the study of human
immunobiology in vivo, and PDX models with these
humanized mice are critical tools for studying the in-
teraction between human immunity and various cancers.
In order to establish a PDX model, we need a highly
immunodeficient mouse strain. Several types of immu-
nodeficient mice can be used to establish xenograft
models: athymic nude mice, SCID, NOD-SCID, and
recombination-activating gene 2 (Rag2)-knockout mice
[14]. However, these strains are usually used to establish
cancer cell line xenograft models. Primary cancerous
cells or tissues require higher immunodeficiency for
efficient engraftment in mice. NOD/SCID mice with
IL2rg mutations, such as NOD.Cg-PrkdcscidIl2rgtm1Wjl

(NSG) [15] and NODShi.Cg-PrkdcscidIl2rgtm1Sug (NOG)
mice [16], are with enhanced immunodeficiency and
able to engraft almost all types of human cancers
[17–20]. We generated a strain of NOD/SCID/IL2rg
−/− (NSI) mice, which exhibit severe immunodefi-
ciency, lacking T, B, and NK cells, and used these
mice in studies of both leukemia and solid tumors
[21–25]. As the number of immunodeficient strains
increases, the choice of mouse strains for cancer re-
search matters. We developed a method to quan-
titatively evaluate the immunodeficiency of various
strains of mice, through the tumor engraftment index
(TEI) [21]. Recently, we also derived a nude train of
NOD/SCID/IL2rg−/− mice, called NSIN, by deleting
foxn1 with CRISPR/Cas9 system. The nude NSIN
mice showed even higher immunodeficiency than
NSI mice by TEI and can be more suitable for stud-
ies of tumors with poor engraftment efficiency (data
unpublished).

Primary tumor samples
For the first implantation, patient-derived tumors
may be implanted into immunodeficient mice in the
form of small tumor fragments or cell suspensions
derived from blood of patients or from digestion of
tumors into single-cell suspensions. Principal determi-
nants of successful tumor engraftment into immu-
nodeficient mice are the viability and sterility of the
human tumor [26]. Cancer cells or tissues can be
mixed with basement membrane matrix proteins
(Matrigel) before injected into recipient animals,
which enables the growth of tumors with greater
efficiency of take and growth [27], without loss of the
primary tumor phenotype [28]. Tumor cells can also be
co-injected with additional cell types, such as fibro-
blasts, stromal cells, and endothelial cells, according to
experimental objectives.

Heterotopic vs orthotopic implantation
Cancerous cells or tissues can be implanted heterotopi-
cally or orthotopically and monitored for tumor forma-
tion (Fig. 1). In contrast to orthotopic implantation,
heterotopic implantation has advantages including easy
methods of cell implantation, accurate monitoring of
tumor size. Subcutaneous and intravenous PDX models,
for solid tumors and leukemia, respectively, are most
widely used in cancer research. Orthotopic implantation
is more technically challenging and time-consuming and
often requires ultrasound examinations or exploratory
laparotomies to confirm the presence of tumors inside;
however, the advantage is that the external milieu is
more closely preserved in orthotopic tumors and theor-
etically better approximates the “natural” setting of
human tumors. Orthotopic implantation can increase
the incidence of metastases during xenograft growth and
should be considered when tumor metastasis is the
investigation subject [29]. To improve the engraftment
efficiencies of inadequate quantities of patient-derived
tumors, it is favorable to do the initial subcutaneous
implantation of patient-derived tumors into F1 mice.
Once grown, the tumor may then be digested and
orthotopically transplanted into subsequent generations
of mice.

Induced pluripotent stem cells (iPSC)-derived PDX
models
Since many patients’ primary tumors cannot engraft dir-
ectly in immunodeficient mice, other methods are
needed to establish PDX models for these patients. Pri-
mary tumor cells can be reprogrammed to iPSC and
then differentiated into the cell type of origin, which
then can be used to establish PDX models. PDX models
derived through an intermediate iPSC stage could be
useful in approximately one third of patients whose pri-
mary cells cannot undergo PDXs [30]. An advantage of
this method is that an intermediate iPSC stage enables
the genetic manipulation of the cells in vitro before
transplantation to facilitate tracking or study of their
effects on tumor growth in vivo.

Next-generation PDX models with humanized mice
Recent advances in immunotherapies highlight the im-
portance of the immune system in tumor progression
and treatment, which require PDX models with human
immune system to facilitate the study of immunity-
cancer interactions and preclinical assessment of cancer
immune therapies. To establish human immune system-
conditioned PDX models, we first need to generate
humanized mice (also known as human hemato-
lymphoid chimeric mice or human immune system
models). One method for the generation of humanized
mice involves the transplantation of total peripheral
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blood or tumor-infiltrating lymphocytes (TILs) into
immunodeficient mice. These procedures are known to
cause severe graft versus host disease (GVHD) 2–5 weeks
after injection [31] and limit the useful investigative time
window [32]. Another method is to transplant CD34-
positive human hematopoietic stem cells (HSCs) or
precursor cells isolated from the umbilical cord blood,
bone marrow, and peripheral blood, either alone or in
combination with additional human immune tissues
(e.g., human thymic tissue) into immunodeficient mice
[33]. Transplantation with HSCs results in a more
complete hematopoietic reconstitution, as HSCs give rise
to various lineages of human blood cells in mice. To
improve the integrity of engrafted human immune sys-
tem, genetically modified immunocompromised mouse
strains have been generated, such as NOG-GM3, NSG-
SGM3, and MISTRG [34]. The next-generation PDX
models based on genetically and immune cells huma-
nized mice, though expensive, are to be used widely in
future cancer research.

PDX models in basic cancer research
Basic cancer research is to characterize cancer biology
and explore mechanisms involved for improved under-
standing or prediction of cancer. PDX models essentially
provide important in vivo and ex vivo evidence to aid
basic studies of cancer, including tumor characterization,
tumorigenesis, and metastasis.

Characterization of cancer biology
Provided that PDX models faithfully mimic human can-
cers, they can be used to delineate the per se molecular,
cellular, and sub-clonal characterizations of various types
of cancers. In the PDX model of acute lymphoblastic
leukemia (ALL), a rare unfavorable ALL subpopulation
has been defined which is dormant and treatment
resistant and mimics patients’ primary cells at minimal
residual disease [35]. PDX models of acute myeloid
leukemia (AML) were used to study the relationships
between clonal architecture and functional heteroge-
neity, in which subclones showed variable engraftment
potential in immunodeficient mice and xenografts were
predominantly comprised of a single genetically defined
subclone [36]. For solid tumors, intratumoral heterogen-
eity arises from the evolution of genetically diverse
subclones during tumor progression, and PDX models
are ideal tools for studying the stability, the proliferation,
persistence, chemotherapy tolerance, and the mecha-
nisms involved [37]. PDX models revealed that tumor
growth can be driven by a minor cell subpopulation,
which enhances the proliferation of all cells within a
tumor by overcoming environmental constraints and yet
can be outcompeted by faster proliferating competitors,
resulting in tumor collapse [38].

Tumorigenesis
PDX models are frequently used to study the cellular
components involved in cancer cell initiation and prolif-
eration. The cancer stem cell (CSC) hypothesis suggests
that neoplastic clones are maintained exclusively by a
rare fraction of cells with stem cell properties. Xenograft
assay identified CD133+ human brain tumor initiating
cells (TICs) that initiate tumors in vivo, providing in-
sights into human brain tumor pathogenesis, giving
strong support for the CSC hypothesis as the basis for
many solid tumors [39]. The intrinsic molecular mecha-
nisms of tumorigenesis are usually studied in cancer cell
line xenograft (CCLX) models, in which cancer cell lines
were genetically modified, to consolidate in vitro studies.
For examples, LZAP inhibits, by the evidence from can-
cer cell line xenografts that decreased LZAP expression
promoted, tumor growth and vascularity [40]; knock-
down of endogenous PCBP1 enhanced tumorigenesis
whereas overexpression of exogenous PCBP1 abrogated
tumor formation [41]; Notch- and Hedgehog-dependent
TICs were identified in prostate cancer CCLX models
[42]; short hairpin RNA (shRNA) targeting long non-
coding RNAs (lncRNAs) in castration-resistant prostate
cancer cell lines strongly suppressed tumor xenograft
growth in vivo [43]. Since in vitro expansion and genetic
manipulation of primary tumor cells are difficult, we
can use PDX models for tumor cell expansion and mo-
lecular targeting (inhibitors or agonists). Musashi (Msi)
is a critical element of pancreatic cancer progression,
and Msi inhibition blocked the growth of primary
patient-derived tumors [44]. The initiation of human
neuroendocrine prostate cancer from prostate epithelial
cells is driven by N-Myc and activated AKT1, as evi-
denced by the in vivo transformation in NSG mice of
prostate basal epithelial cells overexpressing N-Myc
and myrAKT1 [45]. MiRNA-126 stabilizes B-ALL in a
proliferative B cell precursor state by targeting cell
cycle/apoptosis and p53 response genes and antagoniz-
ing miRNA-126 in human B-ALL reduces disease
burden in its PDX model [46]. Millions of somatic
mutations have been found in cancers through genome
sequencing, but the functional impact of most muta-
tions is poorly understood. With the help of PDX
models, we can define the impactful mutations that
induce tumor formation and/or confer resistance to
therapy [47]. The proliferation of human cancer cells
can be easily defined or compared through the growth
of cancer cells in PDX mice. Human cancer cells in
PDX models increase growth rate with time per se
without treatment [48]. A method was established for
identifying novel cancer targets via negative-selection
RNAi screening using a human breast cancer xenograft
model at an orthotopic site in the mouse, by which a
set of metabolic genes associated with aggressive breast
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cancer and stemness were screened to identify those
required for in vivo tumorigenesis [49].

Metastasis
Metastasis is the basis of cancer lethality, of which the
mechanisms are not fully understood and interventional
strategies not well defined. PDX models are useful in de-
fining cell populations and molecules associated with
metastasis. Metastasis-initiating cells (MICs) have been
proven critical for cancer metastasis. But it is difficult to
identify and isolate adequate numbers of MICs from pa-
tients for research. PDX models are depositories of
MICs. PDX model of human breast cancer was used to
identify and isolate MICs through a highly sensitive
fluorescence-activated cell sorting (FACS)-based assay
[50]. Circulating tumor cells (CTCs) play a critical role
in tumor metastasis and have been identified and iso-
lated from patients with several tumor types. Isolated
CTCs have been used to generate PDX models of breast
[51], pancreatic [52], and prostate cancers [53]. And
these PDX models are ideal for the study of tumorigene-
city, phenotypic and genetic characterizations of CTCs
[54]. Recently, both CCLX and PDX models were used
to assess the effect of blocking the fatty acid receptor
CD36 on the metastasis of cancer which revealed CD36
as an anti-metastasis target [55]. Elsewhere, the relation-
ship between metastasis and P53 deficiency was studied
in PDX models of triple-negative breast cancer [56].

PDX models in preclinical cancer research
Anti-cancer therapies exert selective pressure on tumor
cells that leads to the preferential growth of resistant
subpopulations, necessitating the development of novel
generations of therapies to treat the evolving cancers. A
critical role for PDX models in preclinical research is to
identify therapeutic targets, including specific molecules
and molecular interactions. Another major role for PDX
models is as a guide for the clinical treatment of cancer
patients (Fig. 2). The choice of therapeutics is critical
for cancer treatment and is dependent on the cancer
type and the patient. PDX models provide solutions
to the challenges that researchers face in cancer drug
research such as positive tumor responses in mouse
models but not translating over when the study is im-
plemented in humans.
First, PDX models can help to discriminate the most

suitable therapy for cancer patients (Fig. 2). PDX models
can be used to identify patients with cancers that are
resistant to chemotherapy [57] and define the associ-
ation between drug resistance and genetic mutations
[58]. Second, PDX models can be used to identify and
evaluate new anti-cancer therapeutic approaches, includ-
ing new conventional chemotherapies, surgery, radiation,
and also the less common microwave, nanoparticles,

genetic therapies. For examples, encapsulating BYL719,
a PI3Kα inhibitor, into P-selectin-targeted nanoparticles
led to specific accumulation of BYL719 in the tumor
milieu of PDX model for head and neck squamous cell
carcinoma [59]; transdifferentiation-induced neural stem
cells which were genetically engineered with optical re-
porters and tumoricidal gene were evaluated effective in
globlastoma PDX models [60]; precise fluorescence-
guided surgery (FGS) has the potential to greatly im-
prove outcomes for patients with recalcitrant cancers.
During development, the technique was preclinically
evaluated in a PDX model of pancreatic cancer, in which
cancer and stroma cells were labeled with different
colors [61] and a PDX model of colon cancer was also
used for FGS with fluorophore-conjugated anti-CEA
antibody [62]. The preclinical studies of radiation ther-
apies in PDX models have been reviewed elsewhere [63];
a lung cancer cell line xenograft model has been used
for evaluation of microwave hyperthermia therapy [64];
however, PDX models have been rarely reported in the
evaluation of microwave hyperthermia therapy. Third,
which is the most important, PDX models are useful for
preclinical drug tests which can indicate drug safety,
efficacy, and dosage. PDX models have been applied to
preclinical drug testing in many different types of
cancers, including pancreatic cancer [65], non-small
cell lung cancer (NSCLC) [66, 67], melanoma [68],
breast cancer [69, 70], colon cancer [71], and prostate
cancer [72]. PDX model-based oncology drug devel-
opment in specific cancers has been discussed com-
prehensively [73].
CCLX models are not adequate for preclinical devel-

opment of anti-cancer agents because most human
cancer cell lines do not accurately reflect human malig-
nant tumors [74]. In contrast, PDX models can better
recapitulate each individual patient’s cancer pathology.
The use of these models for in vivo preclinical investiga-
tions would yield results more predictive of subsequent
activity in patients. PDX models provide in vivo plat-
forms to study the mechanisms by which anti-tumor
agents exert their effects and the cellular and molecular
mechanisms of therapy resistance of cancers [75, 76].
Here, we give a brief summary of preclinical cancer re-
search which uses PDX models to identify and evaluate
therapeutic targets, varied kinds of anti-cancer “drugs”
and therapeutic approaches. Representative drugs and
their targets are shown in Table 1.

Identification of cancer biomarkers
PDX models in preclinical cancer research is to aid the
identification of cancer-specific biomarkers that can be
used for diagnosis, prognosis, and therapeutically tar-
geted. Whole-transcriptome profiling of PDX models to
identify both tumor- and stromal-specific biomarkers
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Table 1 Representative potential therapeutic drugs and their targets in various types of cancers that have been assessed by
xenograft models [133]

Drug or combination Target Cancer type Mouse References

DEL-22379 Erk Colorectal cancer NOD/SCID [134]

CSL362 CD123 AML NSG [135]

Bicalutamide Androgen Prostate cancer SCID [72]

FP3 VEGF Colon cancer Nude [71]

Pyruvinium pamoate Glutathione Lymphoma NOG [116]

Ponatinib, dovitinib, and BGJ398 FGFR Cholangiocarcinoma NSG

Luteolin cMet Gastric cancer Nude [95]

BKM120 PI3K inhibitor Pancreatic adenocarcinoma NSG [52]

Erlotinib and gefitinib EGFR Chordomas Nude [86]

Salmonella A1-R - Melanoma Nude [104]

Salmonella A1-R and doxorubicin - Sarcoma Nude [103]

Trastuzumab Her2 Esophageal squamous cell
carcinoma

Nude and SCID [99]

Trastuzumab/cetuximab Her2/EGFR Gastric cancer Nude [98]

Cetuximab/bevacizumab EGFR/VEGF Colon cancer Nude [136]

Cetuximab EGFR Lung Adenocarcinoma NOD/SCID [87]

AZD5363 AKT Gastric cancer Nude [88]

Brequinar Dihydroorotate
dehydrogenase

AML SCID [137]

GSK2879552 LSD1, lysine demethylase 1 Small cell lung cancer Nude [138]

Anti-CD47 antibody CD47 Non-Hodgkin lymphoma NSG [114]

CHZ868 JAK2 B-ALL NSG [139]

HA15 Bip Melanoma nude [140]

UNC0379 SETD8 Neuroblastoma Nude [141]

PARP inhibitors and β-lapachone DNA repair Pancreatic cancer and NSCLC NOD/SCID [142]

MCB-613 Steroid Receptor Coactivator Breast cancer (MCF-7) Nude [143]

P5091 USP7 Multiple myeloma SCID [144]

MLN8237 and ABT-199 Aurora kinase and BCL-2 Neuroblastoma SCID [111]

TH287 and TH588 MTH1 Melanoma NOG [93]

Agonists HIF-2 Renal cell carcinoma Nude [145]

SSR128129E (SSR) FGFR Lewis lung carcinoma
And breast cancer

Nude [146]

CH5424802 ALK NSCLC SCID or nude [147]

ON01910 Plk1 Liver, breast, and pancreatic
cancers

Nude [148]

Shepherdin ATP pocket of Hsp90 Prostate cancer SCID and beige [149]

PD0325901 MEK BRAF mutant cancer Nude [150]

Monoclonal antibody S1P Multiple cancers Nude [151]

NSC23766 Rac P210-BCR-ABL positive CML NOD/SCID [152]

Argyrin A Proteasome Colon cancer Nude [153]

Syk inhibitors Syk AML NOG [154]

Polyphenylureas XIAP, an apoptosis
suppressor

Prostate and colon cancers Nude [155]

RD162 and MDV3100 Androgen Advanced prostate cancer SCID [156]
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supports drug efficacy studies and compartment-specific
biomarker discovery [77]. PDX models have been used
to evaluate possible detective agents for the diagnosis of
cancers, such as the fluorescently labeled chimeric anti-
CEA antibody in the detection of colon cancer [78]. The
prognostic value of stem cell markers in cancers such as
hepatocellular carcinoma (HCC) [79] has been evaluated
in PDX models. For cancers such as bladder cancer,
PDX models are useful both for the discovery of novel
molecular targets and predictive biomarkers and for de-
termining the risk of treatment failure [80]. Generation
of paired chemonaive and chemoresistant small cell lung
cancer (SCLC) PDX models led to the finding that
EZH2 promotes chemoresistance by epigenetically silen-
cing SLFN11, and EZH2 inhibition prevents acquisition
of chemoresistance and improves chemotherapeutic
efficacy in SCLC [81]. NEK2 represents a strong pre-
dictor for drug resistance and poor prognosis in cancer,
in that targeting NEK2 by NEK2 shRNA overcame drug
resistance and induced apoptosis in vitro and in a mye-
loma PDX model [82]. The long non-coding RNA gene
SAMMSON can be targeted to sensitize melanoma to
MAPK-targeting therapeutics both in vitro and in PDX
models [83]. The IGF-1 receptor is universally expressed
in various cancers, which can be therapeutically targeted,
as exemplified by an orthotopic PDX model of multiple
myeloma [84].

Identification and evaluation of potential drugs
Chemicals
Conventional chemotherapy is still the mainstay treat-
ment modality for various cancers, and PDX models are
valuable tools for the evaluation of chemical drugs in

vivo. PDX models have been used to evaluate dozens of
small-molecule compounds, mainly kinase inhibitors, in
various cancers. Kinase inhibitors have been tested in
PDX models for cholangiocarcinoma [85], chordoma
[86], NSCLC [87], gastric cancer [88], etc. VEGF blocker
FP3 inhibited gastric cancer through an antiangiogenic
mechanism in a PDX model [89]. CXCR4 is critical to
T-ALL cell leukemogenicity and required for T-ALL
migration, homing, and niche positioning [90]. And tar-
geting CXCR4 with small-molecule antagonists reduces
tumor growth in murine T-ALL and T-ALL PDX models
[91]. Inhibition of the MDM2–p53 interaction sup-
pressed tumor growth in PDX models for NSCLC [92].
Inhibition of MTH1 selectively causes incorporation of
oxidized dNTPs in cancer cells, leading to DNA damage,
cytotoxicity, and therapeutic responses in patient-derived
mouse xenografts [93]. Gesterone receptor antagonists
show antiproliferative and proapoptotic activities in breast
cancer PDX models [94]. Luteolin inhibits tumor growth
in cMet-overexpressing PDX models of gastric cancer
[95]. The compound trabectedin modulates gene and
microRNA expression and various signaling pathways in
PDX models [96]. PF-06463922, a potent and brain-
penetrant ALK/ROS1 inhibitor, displayed superior po-
tency against all known clinically acquired ALK mutations
and inhibited regression of EML4-ALK-driven brain
metastases and prolonged survival of PDX mice [97].

Antibodies
Moreover, PDX models are valuable tools for the tests of
novel antibodies before clinical application. Antibody-
based therapies have been widely used in the clinical
treatment of cancer patients, and PDX models have been

Table 1 Representative potential therapeutic drugs and their targets in various types of cancers that have been assessed by
xenograft models [133] (Continued)

EPI-001 Androgen receptor
NTD domain

Castrate-recurrent
prostate cancer

NOD/SCID [157]

piperlongumine Stress response to ROS Multiple cancers nude [158]

CFI-400945, inhibitor PLK4 Multiple cancers NSG and SCID [159]

BDA-366 Bcl2 BH4 domain Lung cancer Nude [160]

CCT196969, CCT241161 pan-RAF and SFKs Multiple cancers Nude [161]

SR9243, LXR inverse agonist LXR Multiple cancers Nude [162]

SHP099 SHP2 RTK-driven cancer Nude [163]

Antibody RSPO3 Colorectal cancer Nude [164]

CB-5083 AAA ATPase p97 Multiple myeloma and
solid tumors

Nude and
SCID-Beige

[165]

BI-505 ICAM-1 B cell cancer and MM SCID [166]

MLN4924 NEDD8-Activating Enzyme Multiple cancers SCID [167]

Selinexor (KPT-330) XPO1 AML NSG [168]

Matrix metalloproteinase inhibitor
prinomastat (AG3340)

Matrix metalloproteinase Pancreatic ductal
adenocarcinoma

SCID [169]
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used to test the use of antibodies for the treatment of
various cancers [98, 99]. Especially, immune checkpoint
blockade therapy (ICBT), which blocks PD-1, PD-L1, or
CTLA4 with antibodies, has elicited a remarkable clinical
response in certain cancer patients. We recently evaluated
new PD-1/PD-L1 antibodies in NSCLC PDX models
established in humanized NSI mice reconstituted with
human HSC or blood cells (unpublished). Nevertheless,
intrinsic resistance to immune checkpoint inhibitors re-
mains a daunting challenge [100]. PDX models can be
used to evaluate treatments targeting specific resistance
mechanisms to sensitize ICBT-resistant tumors. As for
other antibodies, NSCLC PDX models with genetic aber-
rations within EGFR, KRAS, and FGFR1 were used to
evaluate the range of responses to Gefitinib, which were
shown in vivo to be consistent with the results of clinical
trials [66]. In a human bladder cancer PDX model, bladder
cancer stem cells (CSCs) actively contribute to therapeutic
resistance, which can be abrogated by a PGE2-neutralizing
antibody and celecoxib drug-mediated blockade of PGE2
signaling [101].

Anti-cancer microorganisms
PDX models are valuable tools for the careful assess-
ment of attenuated microorganisms in cancer treatment.
Salmonella typhimurium A1-R, a facultative anaerobe
that can grow in the oxic viable region of tumors and in
necrotic regions, has shown efficacy against osteosarcoma
[102], soft-tissue sarcoma [103], and melanoma [104] in
orthotopic PDX models. And the oncolytic viruses are also
promising for cancer treatment. The attenuated vesicular
stomatitis strains, AV1 and AV2, were tested in a xeno-
graft model of ovarian cancer, which effected complete
and durable cures in the majority of treated animals when
delivered systemically [105]. Oncolytic virus Delta24-RGD
[106] and measles virus strains [107] have been tested in
PDX models for glioblastoma.

Drug combinations
Targeted cancer therapies often lead to resistance, which
can be suppressed through combination drug therapies.
Combinatory targeting of two or more onco-signaling
pathways is a promising strategy for cancer therapy. We
recently used B-ALL PDX models to evaluate the anti-B-
ALL efficacy of the combination of disulfiram and
copper [108]. PDX models are useful for defining the
optimal target combinations which avoid therapy resist-
ance, as has been done in the glioblastoma PDX model
through single-cell phosphoproteomics [109]. CDK4/6
inhibitors resensitize PDX tumors to HER2-targeted
therapies and delay tumor recurrence [110]. Combin-
ation treatment with the Aurora kinase A inhibitor
MLN8237 and ABT-199 is synergistic in PDX models
of MYCN-amplified neuroblastomas [111]. Combined

CDK4/6-PI3K inhibition overcomes intrinsic and adap-
tive resistance leading to tumor regressions in PIK3CA
mutant breast cancer PDXs [112]. BRAF (V600E) mu-
tant colon cancers may benefit from a combination
therapy consisting of BRAF and EGFR inhibitors; EGFR
and BRAF (V600E) inhibitors synergize to induce apop-
tosis of colorectal cells and to suppress colorectal
tumor growth in a xenograft model [113]. Anti-CD47
antibody synergized with rituximab, by promoting
phagocytosis, to eliminate lymphoma in both dissemi-
nated and localized non-Hodgkin lymphoma (NHL)
xenograft models [114].

High-throughput drug screening and assessment
A major issue in cancer drug development is the low
success rate of new agents. Many compounds advance
to large phase III studies, which consume considerable
resources, but eventually fail because of low efficacy.
These poor results arise partly because conventional pre-
clinical models to screen new agents for clinical develop-
ment have poor predictive value [115]. Furthermore,
new drugs are tested in patients without selection and
response monitoring through appropriate biomarkers. In
this regard, the availability of PDX models with high pre-
dictive value is of major interest. The ex vivo cultured
PDX tumor cells can be used for the in vitro high-
throughput screening of anti-cancer drugs (Fig. 2) [116].
PDX models theoretically can provide unlimited sources
of human tumor cells for ex vivo high-throughput drug
assessment. A large biobank of breast cancer PDXs,
which preserves morphological and molecular charac-
teristics and intra-tumor genomic clonal architecture of
the originating tumors, has been generated and used
for high-throughput drug assessment in PDX-derived
tumor cells in vitro [117]. The Public Repository of
Xenografts (PRoXe) is a publicly available repository of
well-characterized leukemia and lymphoma PDXs,
which can be used to characterize drug efficacy and
generate transcriptional, functional, and proteomic bio-
markers in both treatment-naive and relapsed/refrac-
tory disease, and randomized phase II-like studies with
PRoXe are applicable to a range of therapeutic agents,
especially those that act through cancer cell-intrinsic
mechanisms [118]. PDX models are also useful for
assessment of drugs screened from high-throughput
computational design. A novel computational design
approach yields multivalent pan-RAS inhibitors and
PDX models were used to confirm the efficacy of the
identified small-molecule compound binding to KRASG12D

[119]. Another computationally designed protein BINDI,
binding with BHRF1 of Epstein-Barr virus, suppressed
tumor growth and extended survival in a PDX model of
EBV-positive human lymphoma [120].
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CAR T cell immunotherapies
Adoptive transfer of chimeric antigen receptor (CAR)
T cells has shown great promise in treating cancers,
especially in B cell leukemia with CAR T cells targeting
CD19. PDX models are frequently used for preclinical
studies of chimeric antigen receptor (CAR) T cells
[121–123]. Novel designs of CARs have been fre-
quently evaluated in PDX models. The in vivo model
with NSG mice was critical to demonstrate that tar-
geting an anti-CD19 CAR to the TRAC locus with
CRISPR/Cas9 enhances tumor rejection, a strategy
averting antigen-stimulated differentiation and exhaus-
tion [124]. The “On-switch” CARs that enable small-
molecule control over CAR T cell therapeutic function
as to timing, location, and dosage of T cell activity,
thereby mitigating toxicity [125]. Loss of HVEM, which
disrupts HVEM-BTLA inhibitory interaction, leads to
cell-autonomous activation of B cell proliferation and
promotes lymphoma development. So, the anti-CD19
CAR T cells producing HVEM were tested and showed
improved anti-lymphoma efficacy in the PDX model
[126]. The CAR T cell immunotherapies have not gen-
erated satisfactory results in almost all types of solid
tumors. PDX models for solid tumors will play essen-
tial roles in future studies to promote efficacies of CAR
T cells against solid tumors.
In summary, PDX models facilitate the discovery and

testing of various therapeutic regimens including small-
molecule compounds, antibodies, microorganisms, and
cytotoxic cells.

Discussion
PDX models can provide in vivo evidences to support in
vitro findings, and data from PDX models may lead to
new discoveries or hypotheses which can be further
investigated by research in vitro. The use of these xeno-
graft models to study human tumor biology and drug
screening is, however, limited by several factors, includ-
ing the replacement of human stromal components
(such as cancer-associated fibroblasts, endothelial cells,
immune and inflammatory cells) by murine elements,
the lack of a functional immune system, and the lack of
interactions between human stromal cells and the im-
mune system. The development of PDX models that
account for interactions between tumor, stromal, vascu-
lar, and immune cells is essential to produce a tumor
microenvironment more representative of the human
host. PDX models in humanized xenochimeric mice, or
XactMice, engrafted with human HSPCs before tumor
engraftment expressed the chemical stimuli necessary to
give rise to stromal and immune cells that recreated the
original tumor microenvironment observed clinically
[127]; nonetheless, better PDX models are still needed to
simulate real cancer–stromal interactions in patients.

Furthermore, new approaches to optimizing cancer drug
development are required to fully achieve the goal of
individualized, precision cancer therapy, and improved
preclinical models that more closely reflect the genomic
complexity of human cancers are needed.
Recent studies using single-cell sequencing suggest

that in some PDX models, only a limited number of
clones propagate in mice, indicating a selection process
[128]. The identification of lymphocytes recognizing
tumor-specific mutant neoantigens represents a major
step toward the future eradication of heterogeneous can-
cers. Only recently reported was the identification of
neoantigen-specific lymphocytes in the peripheral blood
of melanoma patients [129]. However, the routine detec-
tion of lymphocytes that target neoantigens is currently
limited to T cells isolated directly from cancer patients,
which are often not available. This limitation might be
overcome using PDX models produced by engrafting an
autologous immune system. With genetically humanized
immunodeficient mice which can engraft a more inte-
grate human immune system, we will be able to up-
grade the translational research on cancers as well as
on other diseases including infectious diseases and
autoimmune diseases.

Conclusions
PDX models are increasingly used in translational cancer
research. These models are useful for the study of cancer
biology, biomarker development, drug screening, and
the preclinical evaluation of personalized medicine
strategies. This review provides a timely overview of
the key roles of PDX models in both basic and preclin-
ical cancer research and a detailed discussion of major
hurdles in the field.
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