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Abstract

Background: Despite recent advances in the treatment of multiple myeloma (MM), the prognosis of most patients
remains poor, and resistance to traditional and new drugs frequently occurs. EDO-S101 is a novel therapeutic agent
conceived as the fusion of a histone deacetylase inhibitor radical to bendamustine, with the aim of potentiating its
alkylating activity.

Methods: The efficacy of EDO-S101 was evaluated in vitro, ex vivo and in vivo, alone, and in combination with
standard anti-myeloma agents. The underlying mechanisms of action were also evaluated on MM cell lines, patient
samples, and different murine models.

Results: EDO-S101 displayed potent activity in vitro in MM cell lines (ICsq 1.6-4.8 uM) and ex vivo in cells isolated
from MM patients, which was higher than that of bendamustine and independent of the p53 status and previous
melphalan resistance. This activity was confirmed in vivo, in a CB17-SCID murine plasmacytoma model and in de
novo Vk*MYC mice, leading to a significant survival improvement in both models. In addition, EDO-S101 was the
only drug with single-agent activity in the multidrug resistant Vk12653 murine model. Attending to its mechanism
of action, the molecule showed both, a HDACi effect (demonstrated by a-tubulin and histone hyperacetylation) and
a DNA-damaging effect (shown by an increase in yH2AX); the latter being again clearly more potent than that of
bendamustine. Using a reporter plasmid integrated into the genome of some MM cell lines, we demonstrate that,
apart from inducing a potent DNA damage, EDO-5101 specifically inhibited the double strand break repair by the
homologous recombination pathway. Moreover, EDO-S101 treatment reduced the recruitment of repair proteins
such as RAD51 to DNA-damage sites identified as yH2AX foci. Finally, EDO-S101 preclinically synergized with
bortezomib, both in vitro and in vivo.

Conclusion: These findings provide rationale for the clinical investigation of EDO-5101 in MM, either as a single
agent or in combination with other anti-MM drugs, particularly proteasome inhibitors.
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Background

Despite recent advances in our understanding of the
biology of multiple myeloma (MM) and the development
of novel agents and therapeutic strategies [1], the prog-
nosis of MM patients remains poor, and resistance to
traditional and new drugs frequently occurs [2]. Alkyla-
tors have underpinned the treatment of MM for more
than 50 years [3], but short- and long-term toxicity of
these drugs remains a concern. Considerable effort has
been made to develop new molecules [4] and strategies
[5, 6] which could improve the activity and decrease the
toxicity of these agents. In this context, EDO-S101 [7] is
a first-in-class compound derived from a molecule of
the alkylator bendamustine that has been linked to a
histone deacetylase inhibitor (HDACIi) radical with po-
tent inhibitory activity of both class I and II HDAC [7].

Bendamustine [8] is a bifunctional molecule that com-
bines the alkylating activity of the mustard group with an
anti-metabolite purine analog structure. It is approved for
newly diagnosed MM patients, based on a randomized
phase III study that compared bendamustine and prednis-
one (BP) with the standard melphalan and prednisone (MP)
[9]. However, bendamustine is mainly used in the relapsed
setting, either in monotherapy [10] or in combination with
bortezomib [5, 6] or immunomodulators [11, 12].

On the other hand, HDACi have been described to in-
hibit histone deacetylase proteins (HDACs) and other
non-histone proteins [13]. HDAC proteins are enzymes
that remove acetyl groups from an N-acetyl-lysine amino
acid on a histone, allowing the histones to wrap the
DNA more tightly. HDAC proteins can also be called
lysine deacetylases (KDAC), to describe their function
rather than their target, which also includes non-histone
proteins [14]. HDACs are deregulated in many cancers
thereby affecting the expression of tumor suppressors
and oncogenes [15]. Two of these HDACi have been
tested in phase III trials in combination with bortezomib
in relapsed MM patients: vorinostat [16] and panobino-
stat [17]; particularly, panobinostat potentiated the activ-
ity of the proteasome inhibitor, leading to the recent
approval of panobinostat in combination with bortezo-
mib and dexamethasone for the treatment of relapsed
MM patients.

The rationale for using EDO-S101 arises from the
hypothesis that histone acetylation induced by the novel
radical would result in a more open chromatin structure
which would be particularly susceptible to the alkylating
effect of bendamustine. Preclinical data have shown the
synergy of panobinostat with melphalan [18] and that of
entinostat with bendamustine [19]. Unfortunately, this
effect has not been observed in the clinical setting, partly
due to the hematological toxicity of these combinations
[20, 21]. Our hypothesis is that this hybrid molecule may
be able to overcome these caveats.
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In the present work, we show the potent activity of
EDO-S101 in MM cell lines, in MM cells from patients, in
a subcutaneous plasmacytoma xenograft model, and in
the clinically predictive VK*MYC murine model. This
activity was found to be mediated through the potent
induction of DNA damage, deacetylase inhibitory activity,
and the simultaneous impairment of DNA damage repair.

Methods

Reagents and immunochemicals

EDO-S101 and bendamustine were provided by Mundi-
pharma (Basel, Switzerland). Cell culture media, fetal bo-
vine serum, and penicillin—streptomycin were purchased
from Invitrogen Corporation (Gaithersburg, MD, USA).
Bortezomib was purchased from LC Laboratories (Wo-
burn, MA, USA), lenalidomide and pomalidomide from
Selleckchem (Houston, TX, USA), and dexamethasone
and Mirin from Sigma-Aldrich (St Louis, MO, USA).
Details of other tested compounds have been specified
elsewhere [22].

MM cell lines, patient samples, and cultures

The origin of the different human MM cell lines and cell
cultured methods has been previously reported [23, 24].
Bone marrow (BM) samples from patients with MM
were obtained after the approval of the Complejo Asis-
tencial Universitario of Salamanca Review Board and
after having obtained informed consent from participat-
ing subjects.

Cell viability

Viability of MM cell lines was examined using the MTT
colorimetric assay as previously described [23]. The half-
maximal inhibitory concentration (ICs) of the drug was
calculated using the SigmaPlot software. The cell cycle
profile and apoptosis induction were evaluated using
commercial kits provided by Immunostep (Salamanca,
Spain) as described elsewhere [18].

Ex vivo analysis of apoptosis in BM samples from
myeloma patients
Red blood cells in BM aspirates from patients with MM
were lysed, and remaining cellular components were
maintained in culture for 48 h in the absence or
presence of different concentrations of EDO-S101. EDO-
S101 efficacy was measured, ex vivo, using an automated
flow cytometry platform [25]. For the simultaneous
evaluation of the efficacy on plasma cells and toxicity in
lymphocytes, a different method was employed [18].

The percentage of cells at each cycle phase was calcu-
lated on the alive cells, not considering sub-GO (apop-
totic) cells in the computation.
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Microenvironment assays

MMIS cells were incubated for 48 h with increasing
doses of EDO-S101, together with IL-6 at 1 nM or IGF-
1 at 10 nM, and proliferation of MM cells was assessed
by MTT assay. To evaluate the efficacy of EDO-S101 in
the presence of cellular components of the microenvir-
onment, MM1S-luc cells were co-cultured with bone
marrow stromal cells (BMSCs) from MM patients.
Detailed protocols have been described elsewhere [26].

Quantification of EDO-S101 synergism with other anti-
myeloma agents

MMIS cells were treated for 48 and 72 h with different
doses of EDO-S101, and other drugs in monotherapy and
in double combinations. The synergism of the combina-
tions was quantitated using the Calcusyn software (Biosoft,
Ferguson, MO, USA), which is based on the Chou-Talalay
method [27] and calculates a combination index (CI) with
the following interpretation: CI > 1: antagonistic effect; CI
= 1: additive effect; CI < 1 synergistic effect.

Immunohistochemistry and immunofluorescence

After appropriate treatments in vitro, myeloma cell lines
were cytospinned onto glass slides by cytocentrifugation
and subjected to immunofluorescence staining as described
elsewhere [24]. Immunohistochemical studies were per-
formed on paraffin sections of selected plasmacytomas
excised from treated and control mice after two doses of
vehicle or EDO-S101 (60 mg/kg) as previously described
[26]. Anti-cleaved PARP, anti-phospho-histone H2AX
(Ser139), and anti-acetyl-histone H3 were purchased from
Cell Signaling, Boston, MA, USA. Anti-Ki67 was obtained
from Thermo Scientific, Fremont, CA, USA.

Western blot

Protein lysates were generated, and western [28] blots per-
formed the following standard procedures [18]. All primary
antibodies used in western blot analyses [anti-yH2AX, anti-
phospho-CHK1 (Ser345), anti-phospho-CHK2 (Thr68),
anti-phospho-BRCA1 (1524), anti-phospho-ATM  (Ser
1981), anti-phospho-ATR (Ser 428), anti-p53, anti-acetyl-
histone 3, anti-acetyl-histone 4, anti-Bcl-XL, anti-Mcll,
anti-Bcl2 and anti-AIF] were obtained from Cell Signaling,
Boston, MA, USA. Horseradish peroxidase linked-donkey
(anti-rabbit), sheep (anti-mouse), or mouse (anti-goat)
immunoglobulins were used as secondary antibodies at a
1:5000 dilution (Santa Cruz Biotechnology, Santa Cruz,
CA, USA).

Comet assay

Cells were treated with increasing doses of EDO-S101,
and collected and processed for alkaline comet assay
using a previously described method [28]. Tail moment
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was calculated at different time points using the Open-
Comet software [29].

Homologous recombination functional assay

To determine in vitro levels of homologous recom-
bination (HR), a reporter GFP (green fluorescent pro-
tein) plasmid [30] was integrated into the genome of
JIN3 and U266 cell lines (JJN3HR and U266HR cells
[31]). Then, a unique double strand break (DSB) was
introduced by the rare-cutting endonuclease I-Scel; a
functional GFP gene is then reconstituted by gene
conversion, the predominant HR repair pathway in
mammalian cells. To evaluate HR efficiency in these
cells, they were first pre-incubated with various con-
centrations of EDO-S101 for 24 h. Then, 1 x 10° cells
were co-transfected with 5 pg of an I-Scel-expressing
plasmid and 0.5 pg of pDsRed-N1 to normalize for
transfection efficiency, and incubated again in the
presence or absence of EDO-S101 for additional 30 h.
Live cells were selected by FSC/SSC gating, and GFP+ and
DsRed+ cells were quantified by flow cytometry. HR
efficiency was calculated as the ratio of GFP+ to DsRed+
cells.

Animal models

The two human subcutaneous plasmacytoma models
(small and large plasmacytomas) in CB17-SCID mice
(The Jackson Laboratory, Bar Harbor, ME, USA) were
developed and followed as previously reported [26].
Mice were randomized to the control group (receiving
a PBS vehicle solution with 15% HPBCD, 1.5% acetic
acid, and 1.25% NaHCOj3) or the EDO-S101 group,
when tumors became palpable (in the case of small
plasmacytomas), or when the median tumor volume
reached 4000 mm? (for large plasmacytomas). To cal-
culate the working dose of EDO-S101, a maximum
tolerated dose (MTD) experiment in CB17-SCID mice
was performed. All protocols and experiments were
approved by the Animal Ethics Committee of the
University of Salamanca.

Two de novo VK*MYC mice with a M-spike corre-
sponding to gamma/alpha ratio of 0.65 and 0.43 were
chosen. EDO-S101 was administered once/week for
2 weeks by intra-cardiac injection at 30 mg/kg in vehicle
solution. Bortezomib-resistant tumors generated in the
VEK*MYC mice were harvested and passaged serially in
mice. Two lines of tumor were generated (Vk12598 and
Vk12653) and used for drug testing. For transplantation
studies, 7—10-week-old C57BL/6] wt mice were trans-
planted with ~1x10° million splenocytes harvested
from Vk12653 tumor-bearing mice. Drug treatment was
performed as indicated for the de novo mice and was
initiated once their M-spike levels reached >10 g/L, or
their gamma/albumin fraction was >0.3 to mimic clinical
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setting. Details on serum protein electrophoresis (SPEP)
analysis as in the generation, characterization, and
validation of the VK*MYC models has been reported
elsewhere [22].

Statistical analyses

Statistical significance of tumor growth inhibition was
calculated by Student’s ¢ test. Cumulative survival was
analyzed using the log rank test. Statistical significance
was concluded for values of p<0.05. Analyses were
carried out with IBM SPSS Statistics for Windows
version 21.0 (IBM Corp., Armonk, NY, USA).

Results

EDO-S101 displays more potent anti-myeloma activity
than bendamustine, and its activity is independent of pre-
vious melphalan resistance and p53 mutational status
The cytotoxic activity of increasing concentrations of
EDO-S101 was evaluated on seven MM cell lines with
different p53 mutational status and alkylator-resistance
profiles. MM1S and MMI1R displayed a wild type (WT)
p53 and were sensitive to melphalan; RPMI-8226 and
U266 and their respective melphalan-resistant counter-
parts, RPMI-LR5 and U266-LR7, were all p53-mutants.
Finally, JJN3 did not express p53, due to a mono-allelic
deletion and epigenetic silencing of the other allele [32].
Treatment with increasing doses of EDO-S101 for 48 h
reduced cellular viability (Fig. 1a) in all cell lines, with
ICs¢ values between 1.6 and 4.8 uM. By contrast, benda-
mustine showed clearly lower activity with ICs, values
over 100 pM for all MM cell lines except for MMIR,
with an IC5y=20 puM (Fig. 1b). Moreover, EDO-S101
was able to completely overcome the resistance to mel-
phalan in two melphalan-resistant cell lines (U266-LR7
and RPMI-LR5) (Additional file 1: Figure S1).

The effect of EDO-S101 was further investigated ex
vivo in cells from the BM from six patients with MM
using an automated cytometry method. Four were newly
diagnosed, one of them displaying a 1q gain (patient 4),
while patients 5 and 6 were relapsing after previous
treatments. Patient number 5 had previously received
bortezomib, dexamethasone, lenalidomide, and later on
an investigational DNA-damaging agent to which he had
been refractory; patient number 6, with p53 deletion,
had been treated with bortezomib, dexamethasone, and
carfilzomib in the context of a clinical trial. EDO-S101
induced cell death in all cases, with a potency similar to
that observed in MM cell lines, and without substantial
differences between patients despite the different cyto-
genetic and drug resistance patterns (Fig. 1c). In three
additional samples, the activity of EDO-S101 was
analyzed not only on plasma cells but also on normal
lymphocytes. In all of them (particularly in two), the
efficacy on plasma cells exceeded the toxicity on
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lymphocytes, suggesting a therapeutic window for this
compound (Additional file 1: Figure S2).

EDO-S101 was also evaluated in the context of the
bone marrow microenvironment. It retained its activity
in the presence of the soluble cytokines IL-6 and IGF-1
and when plasma cells were co-cultured with BMSCs
from myeloma patients (Fig. 1d, e).

EDO-S101 activates the DNA damage response and
triggers histone and non-histone acetylation

Treatment of MM1S with EDO-S101 induced an early
increase in the DNA damage sensor p-ATM and its
downstream effector p-Chk2, which was observed in a
dose- and time-dependent fashion. Levels of the other
sensor of DNA damage, p-ATR, were not significantly
modified by the treatment; however, its downstream ef-
fector, p-Chkl, was clearly induced by EDO-S101
(Fig. 2a). Increased levels of p53 and YH2AX, a marker
of DNA double strand breaks (DSBs), were observed
both in the WT p53 cell line MM1S and also in cells
bearing mutated p53, such as RPMI-8226 and JJN3
(Fig. 2b) or U266 (Additional file 1: Figure S3). Consist-
ent with the induction of DNA damage, the comet assay
showed characteristic nuclei with tails due to separation
of fragmented DNA after treatment with EDO-S101
(Fig. 2¢).

Attending to acetylation, 48 h of treatment of MM1S
cells with EDO-S101 at doses as low as 1.0 or 2.5 uM
markedly increased the acetylation of histones H3 and
H4, and of a-tubulin in MMIS (Fig. 2d). Moreover,
increased acetylation of histone H3 was also observed in
RPMI-8226 and JJN3 cell lines (Fig. 2d).

Finally, the mechanism of EDO-S101 was also evalu-
ated on MM1S cells co-cultured with BMSCs. Interest-
ingly, the EDO-S101-induced DNA damage and HDAC
inhibitory effects were maintained even in the presence
of stroma components of the bone marrow microenvir-
onment (Additional file 1: Figure S4).

Interestingly, and consistent with the efficacy observed
in the MTT assays, all these biological changes were sig-
nificantly more potently induced by EDO-S101 as com-
pared with bendamustine, even when using this drug at
five times higher concentrations (Fig. 2e).

EDO-S101 induces cell cycle arrest and apoptosis through
caspase-independent mechanisms

The induction of DNA damage by EDO-S101 prompted
the study of potential changes in the cell cycle profile
provoked by this agent. Treatment with EDO-S101
caused an accumulation of cells in G2-M phase that was
also independent of the p53 mutational status of the cell
lines analyzed (Fig. 3a and Additional file 1: Figure S5).
The cell cycle arrest was followed by an increase in cell



Lépez-Iglesias et al. Journal of Hematology & Oncology (2017) 10:127

Page 5 of 14

p
-
a ——MM1S MM1R MM1S MM1R
— —e X
==U266 =>=U266-LR7 U266 U266-LR7
RPMI8226 RPMI-LR5
RPMI-8226 RPMI-LR5
120 JUN3 120 NS
1 -
o 00 ez I -
3 80 ’\A—s e \Iw\
S T =
- 60 T >
=
= 40
By
20 T
0+ . . : . . 4 0 : . . r r )
0 0.1 0.5 1 2.5 5 10 0 1 5 10 20 50 100
EDO-S101 (pM) Bendamustine (M)
c , U1 2 3 4 5 ==
>
~ 120 -
3
2 100 A
<
P 80 A
8 60 A
©
£ 40
8
o 20 A
*
0 = T T ]
0 1 2,5 5 10
EDO-S101 (uM)
d e
160 1 =]
MM1S 250 -
140 1 OMM1S+IGF1 BMM1S-luc
200 1
£ BMM1S+IL6 OMM1S-luc + BMSC
s 3150 A
E T
= 100 A
N
50
o -
0 1 25 5 10 20 0 2.5 5 10 20
EDO-S101 (uM) EDO-S101 (uM)
Fig. 1 EDO-S101 inhibits the viability of MM cell lines and primary MM cells even in the presence of the microenvironment. Seven MM cell lines
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death (sub-GO population) that was particularly evident
at higher doses of EDO-S101 (Fig. 3a).

The induction of apoptosis in MM1S cells after treat-
ment with EDO-S101 was also demonstrated by
Annexin-V labeling (Fig. 3b). Western blot analyses
showed the dose and time-dependent cleavage of cas-
pases 3, 7, 8, and 9 and of PARP. However, cleavage of
this last protein was detected earlier than the activation
of the effector caspases, probably suggesting the add-
itional involvement of caspase-independent mechanisms
in EDO-S101-induced cell death (Fig. 3c). This was

confirmed by only a small reduction in the percentage of
apoptotic cells when the MMI1S cell line was pre-
incubated with the pan-caspase inhibitor, ZVAD-FMK
(Fig. 3d).

EDO-S101 deregulates mitochondrial permeability

Following the activation of the intrinsic apoptotic path-
way, there was a decrease in the mitochondrial mem-
brane potential (A¥Ym) with EDO-S101 (Fig. 3e), with
the subsequent translocation of AIF from the mitochon-
dria into the nucleus (Fig. 3f). In line with this, a slight
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decrease of the anti-apoptotic protein Bcl-XL, as well as
a translocation of the pro-apoptotic protein Bax to the
mitochondria, was observed (Additional file 1: Figure
S6); both proteins implicated in A¥Ym decrease, pore
formation, and AIF release from the mitochondria [33].

EDO-S101 inhibits DNA repair by HR in MM

Some histone deacetylase inhibitors have been described
to inhibit HR in MM [34], and we and others have pro-
posed this mechanism to be important in other tumors
such as AML [35], prostate [36] and ovarian [37]. This
prompted us to explore the effect of EDO-S101 on HR
efficiency in MM cell lines carrying a chromosomally

integrated GFP HR reporter cassette (JJN3HR and
U266HR). These cells were pretreated with EDO-S101 for
24 h, co-transfected with a IScel endonuclease-expressing
plasmid and a pDsRed-N1 plasmid (red) to normalize for
transfection efficiency, and incubated again with the drug
for 30 additional hours. Mirin, an inhibitor of the Mrell-
Rad50-Nbsl complex required for HR, was used as a
control [38]. Correct repair by HR of DSBs induced by the
endonuclease restored a functional GFP gene whose ex-
pression could be detected by flow cytometry (green cells).
There was a significant reduction in the number of HR-
proficient cells (green) in both JJN3HR and U266HR cell
lines treated with EDO-S101 compared with untreated
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(See figure on previous page.)

Fig. 3 EDO-S101 induces cell cycle arrest, apoptosis, and mitochondrial permeability deregulation. a Different MM cell lines were incubated with
1 and 2.5 uM EDO-S101. After propidium iodide (PI) staining, the cell cycle profile was analyzed by flow cytometry. b Annexin-V labeling of MM1S
cells after treatment with different doses of EDO-5101 for 48 h and evaluated by flow cytometry. ¢ Dose and time-response changes of proteins
involved in apoptosis after EDO-S101 treatment of MM1S cells. d Effect of the pre-incubation for 24 h with the pan-caspase inhibitor Z-VAD-FMK
(50 uM) on the apoptosis induced by EDO-S101 at 10 uM. Bortezomib 2 nM was used as a positive control of caspase dependent apoptosis. Data
are presented as mean + SD. e Changes in mitochondrial membrane potential after treatment with EDO-S101 as measured by flow cytometry
with DioCg staining. f Subcellular distribution of AIF in mitochondrial and nuclear fractions, in the MM1S cell line after EDO-S101 treatment

controls (Fig. 4a). A quantification of the HR efficiency is
also shown in Fig. 4b.

Next, we investigated whether EDO-S101 was also in-
volved in the correct recruitment of repair proteins to
DNA damage sites. For this purpose, JJN3HR and
U266HR cells were pretreated or not with EDO-S101
1 uM for 24 h, and exposed to ionizing radiation (2 Gy)
to induce the formation of RAD51" foci. After 5 h, the
subcellular localization of RAD51 and yH2AX was ana-
lyzed by immunofluorescence. Most JIN3HR control
cells (exposed to radiation, but not to EDO-S101 treat-
ment) exhibited discrete RAD51" foci in the nuclei that
co-localized with yH2AX. However, EDO-S101 partially
impaired the recruitment of RAD51 to DNA damage
sites expressing YH2AX after radiation, as demonstrated
by a more diffuse staining of RAD51, which tended to
accumulate in the cytoplasm and a lower percentage of
cells exhibiting YH2AX and RAD51 double-stained foci
(Fig. 4c). Similar results were obtained in the U266 cell
line (not shown).

EDO-S101 is effective in vivo in a murine plasmacytoma
model

The in vivo activity of EDO-S101 was evaluated in sev-
eral models. In the first one, CB17-SCID mice bearing a
xenograft of subcutaneous plasmacytoma of MM1S cells
were randomized to receive vehicle or EDO-S101. Treat-
ment with EDO-S101 resulted in strong inhibition of
tumor growth that was statistically significant as com-
pared with untreated tumors from day 7 (p<0.05)
(Fig. 5a). This translated into a statistically significant
advantage in the median survival for EDO-S101 (76 vs
40 days; Log Rank test <0,05; Fig. 5b). Regarding toxicity,
mice receiving EDO-S101 lost 10-20% of their body
weight; however, all of them spontaneously recovered
after the 3 weeks of treatment. There was one mouse
that died prematurely on day 23 (tumor growth was
continued since this early death did not affect the group
median) (Additional file 1: Figure S7).

In a second study, the same groups, times, and
doses of treatment were used in mice already bearing
large plasmacytomas. Immunohistochemical studies
demonstrated a substantial increased staining for his-
tone H3 acetylation and for yH2AX in tumors of
mice treated with EDO-S101. Moreover, EDO-S101

showed a decrease in the number of Ki67 positive
cells and an increase in PARP positive cells. These
findings evidence the potent anti-proliferative and
pro-apoptotic effect of this molecule (Fig. 5¢ shows a
representative example of immunostaining with each
antibody and condition). Despite the initially large
volume of plasmacytomas, EDO-S101 was able to re-
duce tumor growth (Fig. 5d). Due to ethical reasons,
a low number of mice were used in this experiment,
which precluded the calculation of Kaplan—Meier
curves. Nevertheless, as shown in the figure, EDO-
S101 allowed these end-stage mice to remain alive
with an acceptable tumor control for more than
40 days.

EDO-S101 is active against the clinically predictive de
novo Vk*MYC and the multidrug refractory Vk12653
models

The VK*MYC MM mouse model (Additional file 2) has
been extensively validated for its clinical predictive value
[22, 39, 40]. The single-agent activity of EDO-S101 was
evaluated in two aged de novo VK*MYC mice with
established MM, where it induced a significant response
(median M-spike 40.5% of day 0), comparable to the
most active standard of care anti-MM agents (Fig. 5e).
Importantly, such response was sustained for more than
3 months in mice receiving only two doses, 1 week
apart. One mouse achieved a complete response 4 weeks
after the beginning of the treatment. Remarkably, EDO-
S101 was the only drug with single-agent activity in the
very aggressive, multidrug resistant Vk12653 transplant
model of relapsed/refractory MM (Fig. 5f), where it also
significantly prolonged survival (Fig. 5g).

EDO-S101 potentiates the activity of standard anti-
myeloma agents

Finally, the ability of EDO-S101 to synergize with conven-
tional anti-MM agents was evaluated. For this purpose,
MMIS cells were treated with suboptimal concentrations
of EDO-S101 in combination with other anti-MM agents.
EDO-S101 showed synergistic CI with all agents in dual
combinations: bortezomib (CI 0.6), dexamethasone (CI
0.7), lenalidomide (CI 0.7), and pomalidomide (CI 0.4)
(Fig. 6a). The combination with bortezomib was
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Fig. 4 EDO-5101 reduces HR efficiency. a JJN3HR and U266HR cells were pretreated with EDO-S101 for 24 h, simultaneously transfected with
5 ug of I-Scel endonuclease-expressing plasmid and 0.5 pg of pDSRed2-N1 (red cells), and incubated in the presence or absence of EDO-S101 for
30 additional hours at indicated doses. Correct repair by HR of the DSB induced by the endonuclease restored a functional GFP gene whose expression
could be detected as green cells. b Flow cytometry analyses of 100000 GFP+ and/or DsRed+ cells are shown for JJN3HR and of 200000 cells for U266HR.
Efficiency of HR is showed on the right side and was calculated 30-h post-transfection as the ratio of GFP+ (green) to DsRed+ cells (red). Data are
expressed as the mean of a minimum of three independent experiments + SD (***p < 0.001, compared to untreated cells). ¢ Immunofluorescence assay
for yH2AX and RAD51 in JIN3HR cells after 5-h post-irradiation with 2 Gy with or without EDO-S101 treatment. Percentage of foci with double staining
for yH2AX and RAD51 are shown on the right side. Data are the mean of three independent experiments. One hundred cells were counted in
each experiment

considered particularly promising, since proteasome in-
hibitors have been the most frequent partners for combin-
ation with alkylators in the clinical setting [5, 41]. This
effect was confirmed in three additional cell lines: RPMI-
8226, JJN3, and U266 (Additional file 1: Figure S8). Re-
garding the mechanism of action of this combination, the
addition of bortezomib enhanced the DNA-damaging ef-
fect of EDO-S101, as observed by an increase in
YH2AX levels and was also able to potentiate the
acetylation induced by EDO-S101 on histone 4 and a-
tubulin (Fig. 6b). Moreover, the combination was

evaluated in vivo, in mice bearing a subcutaneous
plasmacytoma. The combination EDO-S101 plus bor-
tezomib improved the effect of the respective agents
in monotherapy (Fig. 6¢) and significantly prolonged
survival (72 days) as compared to single agent borte-
zomib and EDO-S101 (39 and 44 days, respectively,
Log Rank, p <0.001, Fig. 6d). As far as toxicity is con-
cerned, mice in the EDO-S101 + bortezomib group
showed a moderate loss of body weight (always <20%) that
spontaneously recovered after the three planned weeks of
treatment (Additional file 1: Figure S9).
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Lépez-Iglesias et al. Journal of Hematology & Oncology (2017) 10:127

Page 11 of 14

a
120 1 120 - 120 1 120 1
100 100 - 100 100 4
g 80 80 80 80 4
‘g‘_ 60 - 60 - 60 1 60
40 40 A E |
E 0 40 40
* 20 4 20 A 20 20
0 - 0 - . 0+ 0 -
N LR\ ° o\ ° N v \Y °
0°“\;?\Q'\1\‘5 w3 e co(\'f‘sw\ ’L(\;e*\““ e* G°““:Q\ 'L(\::\‘.w““ o e c’o‘\;(‘\"“\.l\:‘\f’ © o e
(oks O 600‘ \ e eoo' ?o«\
Control
b c Tre:::gzni Bortezomib
p EDO-S101
S & 1 —4—EDO-S101 + Bortezomib
> N O
(\\(0 og’ bz'" x@
P & & <
Ac-a-tubulin - ! -
Ac H4 | -— | -
Time in days
d
1,01
: I Control
= 081 '
2 i ——. Bortezomib (Bor)
>
o] |
@ o, H | _ EDO-s101
> -
= [}
3 041 ' ___ EDO-5101 + Bor
: i
]
0] "
] *
1
0,07 l
0 20 40 60 80 100
Time in days
Fig. 6 EDO-S101 synergizes with bortezomib in in vitro and in vivo experiments, by potentiating acetylation and DNA damage. a MM15S cells
were treated with suboptimal concentrations of EDO-S101 and other drugs with anti-myeloma effect for 48 h. b Western blot evaluation of the
indicated proteins after treatment with bortezomib 3 nM and EDO-S101 2 uM, alone, and in combination for 48 h. ¢ Mice bearing a subcutaneous
plasmacytoma of MM1S cells were randomized to receive vehicle (control), EDO-S101 (30 mg/kg, iv, weekly), bortezomib (1.25 mg/kg, 2 days per
week), and bortezomib + EDO-5101. Differences in tumor growth inhibition were statically significant between the bortezomib + EDO-5101 group
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Discussion

EDO-S101 represents a new fusion principle in which
bendamustine and a deacetylase radical inhibitor have been
melted into a new molecule in which functional properties
cannot be separated. One hypothesis underlying the design
of EDO-S101 is that the combined administration of both
in the same compound would increase the efficiency of
both mechanisms, while decreasing toxicity and providing
more convenient administration. In our studies, EDO-S101
was demonstrated to be more potent than bendamustine,
retaining and increasing the alkylating activity with an

added deacetylase effect. Moreover, EDO-S101 showed ef-
ficacy in all MM cell lines tested (median IC5y=3.1 uM)
and fresh plasma cells from untreated and refractory
patients (median IC5o=5 pM), independently of the p53
mutational state. It was equally efficient in cell lines resist-
ant to conventional anti-myeloma treatments, such as
dexamethasone (MMIR) and melphalan (RPMI-LR5,
U266-LR7), indicating that this compound is, at least in
vitro, more potent than previous alkylators and could be
used to overcome drug resistance. Most importantly, our in
vivo data demonstrate that EDO-S101 is also active in in
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vivo MM models, including the genetically engineered
VI*MYC mouse model, recognized to predict drug response
and clinical efficacy in MM. Moreover, it is also remarkable
that EDO-S101 is the only drug identified with single-agent
activity in the multidrug-resistant Vk12653 transplant model
of relapsed/refractory MM (Fig. 5f).

Some previous preclinical studies have shown the syn-
ergy of HDACI and alkylators in MM [19, 42] and other
B cell lymphoproliferative disorders [43]. However,
toxicity has been a concern in the clinical settings. For
example, the serious hematological toxicity observed
with the combination of panobinostat and melphalan in
MM precluded the demonstration of clinical activity in
this particular clinical trial [21]. In our ex vivo experi-
ments, we observed a therapeutic window for plasma
cells as compared with lymphocytes, which is further
confirmed in in vivo studies, in which we showed the
clear efficacy of the compound with an acceptable tox-
icity. This balance was positive, as there was a significant
survival benefit in all settings, suggesting that potentially
associated secondary effects, such as infections, was not
a clear concern for this molecule. However, the safety pro-
file will only be completely defined in the currently on-
going phase I clinical trial in hematological malignancies.

The mechanistic rationale for EDO-S101 was that the
HDACi activity would lead to a less compacted structure
of the chromatin, making DNA more susceptible to the
action of the alkylating molecule. Our in vitro and in
vivo studies demonstrated the DNA damage with an in-
crease in H2AX phosphorylation and DNA fragmenta-
tion. Attending to the DNA damage pathway and DNA
damage response (DDR), EDO-S101 also resulted more
active and potent than its precursor, bendamustine, sup-
porting the initial rationale for development.

The pan-HDAC:I effect of EDO-S101 was also demon-
strated by the hyperacetylation of a-tubulin (substrate of
the class II deacetylase HDAC6) [44] and histones 3 and
4 (substrates of the class I deacetylases HDAC1 and
HDAC2). Moreover, we have also demonstrated that
EDO-S101 inhibits DSB repair by HR, which is consist-
ent with previous reports showing a reduction in HR
efficiency after treatment with HDAC:is. In this regard, it
has been recently demonstrated the role of HDACS in
DSB repair, as it co-localizes with RAD51 at DNA damage
sites after irradiation, and HDACS inhibition resulted in a
decrease in RAD51 promoter activity [45]. This could
explain the defect in the recruitment of RAD51 to DSBs
in irradiated cells pretreated with EDO-S101 as has been
shown in this work.

One important consideration for any new agent is
whether it synergizes with other standards of care in
MM. In this regard, EDO-S101 showed synergy with
bortezomib in vitro and in vivo. Several studies have previ-
ously reported the preclinical and clinical synergy of
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alkylating agents plus bortezomib [5, 41] and of bortezo-
mib plus HDACi [17]. Two main mechanisms may ex-
plain, at least partially, this synergy: first, the potentiation
of the DNA damage induction evidenced by higher
YH2AX levels, and second, the simultaneous inhibition of
the proteasome induced by bortezomib and the aggre-
some inhibition exerted by EDO-S101; last, one event evi-
denced by the increase in «-tubulin acetylation [46].
These circumstances would lead to a great accumulation
of unfolded and misfolded proteins [47] which would con-
tribute to cell death.

Conclusions

In summary, our results demonstrate the in vitro, ex vivo,
and in vivo anti-myeloma efficacy of EDO-S101 through
its HDACi and alkylating activity. The particular mechan-
ism of action of EDO-5101, involving interlaced pathways
of potent induction of DNA damage, deacetylase inhibi-
tory activity, and the simultaneous impairment of DNA
damage repair, supports the clinical evaluation of this
agent in MM patients both in monotherapy and in com-
bination with bortezomib.

Additional files

Additional file 1: Figure S1. U266, RPMI-8226, and their derivatives,
U266-LR7 and RPMI-LR5 partially resistant to melphalan, were incubated
with increasing doses of EDO-5101, and cell viability was analyzed by
MTT metabolization. Figure S2. EDO-S101 toxicity, on PCs and B lymphocytes
derived from bone marrow samples from 3 MM patients, was evaluated after
48 h of incubation by flow cytometry. Figure S3. EDO-5101 dose response
(48 h) of different proteins implicated in DNA damage repair in U266 cell
line. Figure S4. Dose response (48 h) of different proteins implicated in DNA
damage repair and HDAC inhibitory effect after treatment with EDO-5101 of
MM1S in the presence or absence of stromal components of the bone
marrow microenvironment. MM1S was incubated with EDO-S101 alone, in
co-culture with the human stromal cell line h(MSC-TERT, and in co-culture
with bone marrow mesenchymal stromal cells from a patient with MM
(PBMSQ). In all cases, the alkylating and the HDACi effect of EDO-5101 were
preserved. Figure S5. Different MM cell lines were incubated with 1 and

2.5 uM EDO-S101 for 48 h. After propidium iodide staining, the cell cycle
profile was analyzed by flow cytometry. Calculation of percentages of cells
at each phase did not consider cells at GO. Figure S6. Bcl-2 family proteins
studied by Western blot after treatment of MM1S with the indicated doses
of EDO-5101 for 48 h. Figure S7. Toxicity profile of mice bearing a subcutaneus
plasmacytoma and treated with the indicated drug. The EDO-S101 group
showed a reversible 10-20% loss of body weight. Each point represents the
mean = SD. Figure S8. The combination of EDO-5101 plus bortezomib was
also able to improve the effect of single treatments in RPMI-8266, JJN3,

and U266 cell lines. Figure S9. Toxicity profile of mice bearing a subcutaneus
plasmacytoma and treated with the indicated drugs. The EDO-5101 +
Bortezomib group showed a reversible 10-20% loss of body weight. Each

point represents the mean + SD. (PPTX 348 kb)

Additional file 2: Supplemental material and methods. (DOCX 127 kb)
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