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Abstract

Acute myeloid leukemia (AML) is a molecularly and clinically heterogeneous disease. Despite advances in understanding
the pathogenesis of AML, the standard therapy remained nearly unchanged over the past three decades. With the poor
survival for older patients and high relapse rate, multiple studies are ongoing to address this important issue.
Novel therapies for AML, including the refinements of conventional cytotoxic chemotherapies and genetic and
epigenetic targeted drugs, as well as immunotherapies, have been developed in recent years. Here, we present a
mechanism-based review of some promising new drugs with clinical efficacy, focus on targeted drugs that are
most potential to pave the road to success, and put forward the major challenges in promoting the precision
therapy for AML.
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Background
Acute myeloid leukemia (AML) represents a heteroge-
neous malignancy characterized by a clonal proliferation
and impaired differentiation of myeloid precursors with di-
verse outcomes. Despite the advances in understanding the
molecular heterogeneity and pathogenesis of AML, there
has been little progress in the standard therapy for AML
over the past four decades. The classic treatment ranges
from cytarabine-based chemotherapy to hematopoietic
stem cell transplantation (HSCT), with a 5-year overall
survival (OS) of 40% for patients younger than 60 years.
For those older than 60 years, who made up of the majority
of AML cases, the 5-year OS was only 10~20% [1, 2]. Few
of patients who relapsed after complete remission (CR)
could survive for more than 5 years [3].
Briefly, the treatment of AML consists mainly of

remission induction and post-remission therapy which
contains chemotherapy, targeted therapies, and HSCT.
In terms of induction therapy, for adult patients with
newly diagnosed AML, a combination of anthracycline
for 3 days and standard-dose cytarabine for 7 to 10 days
(“7 + 3” therapy) are recommended. For elder patients

(> 60 years), the best chemotherapy remains to be identi-
fied. Most of them recommended the same remission
induction regimen except those with unfavorable risk or
severe commodity who are too fragile to tolerate inten-
sive chemotherapy. When it comes to post-remission
treatment including consolidation and maintenance
therapy, risk stratification should be taken into consider-
ation. AML patients are categorized based on cytogen-
etic, molecular, and clinical characteristics that are
prognostic important. For younger patients, high-dose
cytarabine are recommended in patients with favorable
cytogenesis. While for those with adverse prognosis,
allogeneic HSCT (allo-HSCT) should be performed in
the first remission. For elder patients who fit for chemo-
therapy in the first complete remission (CR), consolida-
tion therapy could contain anthracycline and cytarabine
or intermediate-dose cytarabine alone. Likewise, those
with unfavorable risk should be considered for nonmye-
loablative HCT. Of note, for relapsed or refractory (R/R)
AML population, allo-HSCT provides the highest likeli-
hood of cure.
Among all AML subtypes, acute promyelocytic

leukemia (APL) contributes the highest proportion of cure
rate for patients undergoing targeted therapy such as all-
transretinoic acid (ATRA) and arsenic trioxide, which
implies a strong need for individualized medicine. With
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the advent in next-generation sequencing technologies,
novel therapies have emerged, including multiple molecu-
lar target inhibitors and immunotherapies [Table 1].

Heterogeneity of AML
Tumor heterogeneity refers to distinct morphological
and phenotypic features in tumors mainly arising from
gene alterations, which has been observed in all types of
tumors including leukemia. The heterogeneity of AML
involves both genomic and epigenomic changes, includ-
ing distinct sets of cytogenetic abnormalities and som-
atic mutations [4], resulting in a range of morphological,
immunophenotypic, cytogenetic, biomolecular, and clin-
ical features [5]. Moreover, in the course of the disease,
the leukemic clone may change from diagnosis to
relapse due to the heterogeneity of leukemia cells [6],
and transformation of hematopoietic stem cells (HSCs)

to leukemia initiating cells occurs at different stages
within primitive multipotent cells [7, 8]. Consequently,
the heterogeneity of AML brings about varied response
to treatment, as well as drug resistance and disease
relapse, posing a challenge to personalized therapeutic
regimens, likewise, known as precision medicine.

Refinements of conventional cytotoxic
chemotherapies
Conventional intensive chemotherapy has a cure rate of
only 30–50%, and the majority of patients aged 70 years
or older could not benefit from it due to poor tolerance
and high mortality [9]. Despite 40–80% patients achieving
CR, the median survival in elderly patients receiving in-
tensive chemotherapy is 4.6 months with a 1-year survival
rate of only 28% [10]. Besides, a high frequency of subse-
quent relapse remains the major obstacle to overcome. In
the past decades, studies have driven the improvements in
OS by novel formulations and refinements of conventional
chemotherapy.

Intensification of the standard induction therapy
The 7 + 3 regimen, consisting of 7 days continuous infu-
sion of cytarabine along with a short infusion or bolus of
an anthracycline given on days 1 through 3, has been
known as standard induction therapy in AML in the
past decades. Recently, the escalation of daunorubicin or
cytarabine dose have shown benefit in the induction
therapy. In adults under 60 years of age, previous trials
have suggested that a daunorubicin dose of 90 mg is su-
perior to 45 mg, with the former showing an improved
remission rate and survival benefit [11]. In older patients
(> 60 years), a Korea trial showed a significant benefit of
90 mg/m2 both in remission rate and OS [12], which
was particularly prominent in intermediate-risk patients
in the ECOG1900 trial. In a randomized AML17 trail
comparing 90 mg/m2 with 60 mg/m2, no significant dif-
ference was seen in remission rate or OS in any cytogen-
etic subgroup, with the 60-day mortality rate
significantly higher in the high-dose (HD) daunorubicin
group (90 mg/m2) (10 vs 5%, P = 0.001). However, it still
remains necessary to take notice of molecular subgroups
when it comes to longer follow-up, since in a recent
E1900 trial with a median follow-up of 80 months,
patients with Fms-like tyrosine kinase 3 (FLT3), nucleo-
phosmin (NPM1), and DNA methyltransferase
(DNMT)3A all benefited from HD daunorubicin [13].
In addition to daunorubicin, the administration of

cytarabine at a daily dose of 100 to 200 mg/m2 for 7 to
10 days is also an important part in the standard induc-
tion therapy. In the EORTC-GIMEMA AML-12 trial
with a median follow-up of 6 years in patients aged 15
to 60 years, higher remission and survival rate were
observed in high-dose cytarabine (3000 mg/m2 per 12 h

Table 1 Examples of targeted drugs for AML

Target Drug Phase of development

PLKs Volasertib 3

FLT3 Sorafenib 2

Midostaurin (PKC412) 3

Quizartinib (AC220) 3

Crenolanib (CP868596) 2

Gilteritinib (ASP2215) 3

Lestaurtinib (CEP-701) 3

DNMTs Azacitidine (5-Aza) Approved

Decitabine Approved

Guadecitabine (SGI-110) 3

Sapacitabine (CYC682) 3

IDH2 AG-221 3

IDH1 AG-120 2

HDACs Vorinostat 3

Entinostat 2

BET OTX015 1

DOT1L Pinometostat (EPZ-2676) 1

LSD1 GSK2879552 1

CD33 GO 3

SGN-33A 3

CD33 CART Preclinical

CD123 CSL362 Preclinical

SL-401 Preclinical

CD123 CART Preclinical

PD-1 Nivolumab 2

CTLA4 Ipilimumab 2

PLKs polo-like kinases, FLT3 Fms-like tyrosine kinase 3, DNMTs DNA methyl-
transferases, IDH isocitrate dehydrogenase, HDACs histone deacetylases, BET
bromodomain and extra-terminal motif, DOT1L disruptor of telomeric silencing
1-like, LSD1 lysine-specific histone demethylase 1A, PD-1 programmed cell
death protein 1, CTLA4 cytotoxic T-lymphocyte-associated protein 4
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on days 1, 3, 5, and 7) without significant toxicity. Par-
ticularly, for patients under 46 years old, the CR rate,
event-free survival (EFS), and OS in high-dose cytara-
bine arm were significantly higher than standard dose
cytarabine arm (100 mg/m2 per day continuously for
10 days) [14].
An alternative method to intensify standard induction

regimen is the addition of a purine analog such as flu-
darabine or cladribine. One study demonstrated that the
DAC regimen (DA plus cladribine), rather than DAF
regimen (DA plus fludarabine), is associated with im-
proved OS and CR in patients younger than 60 years
with newly diagnosed AML. It is worth mentioning that
both DAF and DAC increased CR rate in AML patients
with adverse karyotype. Thus, further trials focusing on
particular subgroups are needed [15]. Clofarabine is a
second-generation purine analog, which has shown
effectiveness in both R/R AML patients and newly diag-
nosed older patients [16, 17]. A phase III study in newly
diagnosed AML patients aged 18 to 65 years old con-
firmed the potent efficacy of clofarabine integrated in
standard induction treatment, which showed reduced re-
lapse probability without survival improvement. The
study only found the survival benefit of clofarabine in
subgroups of intermediate-risk AML and AML genotype
without NPM1 and FLT3-ITD mutations [18].

CPX-351
CPX-351 is designed as a liposomal formulation of 7 + 3
combination in a 5:1 ratio of cytarabine and daunorubi-
cin, which was proved to be an optimal combination,
with the highest level of synergy and the lowest level of
antagonism [19, 20]. Two phase II randomized studies
in 127 and 125 patients both confirmed a higher rate of
CR (66.7 vs 51.2%, and 49.3 vs 40.9%, respectively) for
patients treated with CPX-315 compared with those re-
ceiving 7 + 3 regimen, and no difference in EFS or OS
has been found in both phase II trials [21, 22]. However,
it is worth mentioning that a phase III study, in which
the studying group was not strictly limited, demon-
strated an increased OS with daunorubicin in AML
patients between the age of 60 and 65 years [23]. An-
other phase III study to confirm the efficacy of CPX-351
as first-line therapy in elderly patients (60–75 years) with
high-risk (secondary) AML is ongoing (NCT01696084),
which may make CPX-351 a better induction therapy for
elderly patients who are not suitable for chemotherapy.

Vosaroxin
Vosaroxin is a quinolone derivative that intercalates
DNA and inhibits topoisomerase II without producing
oxygen free radicals, which has been confirmed to have
better efficacy and lower cardiac toxicity than traditional
anthracyclines [24]. Most recently, a large multicenter

randomized phase III trial with 711 patients named
VALOR demonstrated that the addition of vosaroxin to
cytarabine resulted in a significant improvement in CR
(30.1 vs 16.3%, P < 0.0001) and OS (6.7 vs 5.3 months, P
= 0.024) when censored for HSCT in R/R AML patients
≥ 60 years [25]. With favorable efficacy and tolerability
among older patients as well as notable survival benefits
in subsets, vosaroxin stands a nice choice for novel com-
binatorial regimens, which will be further confirmed by
future trials.

Molecular targeted inhibitors
Volasertib
Volasertib (also known as BI 6727), which was awarded or-
phan drug status for AML in 2014, is a small-molecular in-
hibitor of polo-like kinases (PLKs), particularly PLK-1
(which was listed on Table 1). Inhibition of PLK1 overex-
pression in AML cell lines can bring about disorganized
centrosome maturation, spindle assembly and cytokinesis
during mitosis [20], and then cellular apoptosis subse-
quently. A phase II study made a comparison between the
combination of volasertib with low-dose cytarabine (LDAC)
and LDAC alone. The result confirmed greater clinical effi-
cacy in the combination arm, statistically significant in CR
(30 vs 13.3%, P = 0.052), median EFS (5.6 vs 2.3 months, P
= 0.021), and median OS (8 vs 5.2 months, P = 0.047) [26].
Meanwhile, there is also an ongoing phase III trial
(NCT01721876) and a phase II trial of intensive chemo-
therapy with or without volasertib (NCT02198482).

FLT3 inhibitors
FLT3 is a class III tyrosine kinase receptor that stimu-
lates normal hematopoiesis and cell proliferation in
primitive hematopoietic stem and progenitor cells [27].
Although activating mutations in FLT3 are reported in
only 30% of AML adults [28], FLT3 is constitutively
expressed by autocrine signaling on leukemic cells in
70–100% of AML patients [29]. There are two types of
FLT3 mutations, including approximately 20% of
internal tandem duplications (FLT3/ITD) and 5~10% of
point mutations in activating loop of tyrosine kinase
domain (FLT3/TKD), constitutively activating cell prolif-
eration and survival of leukemia blasts. Both mutations
are associated with poor prognosis and outcome, par-
ticularly FLT3/ITD, with an estimation of 2-year disease-
free survival (DFS) rates of 20% and 4-year OS of 20%
[30]. Of note, ITD mutations are associated with a poor
prognosis due to a high relapse rate, and higher allelic
ratios of mutated/wild-type variants confer a worse
prognosis [31], suggesting a greater clinical response to
selective FLT3-inhibitors [32]. Recent years have wit-
nessed a growing development of several FLT3 inhibitors
tested in clinical trials as either single agent or in com-
bination with conventional chemotherapies, with the
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former usually associated with modest anti-tumor activ-
ity, transient reduction of blasts, and increased toxicity
[33]. Though more tolerated than traditional cytotoxic
agents, drug resistance has still posed a major challenge
to patients treated with single FLT3 inhibitor, including
F691, N676, and D835 mutation with kinase domain of
FLT3-ITD [34].

Sorafenib
Sorafenib is a potent first-generation multikinase inhibi-
tor with activity against FLT3/ITD receptor, which has
been evaluated as either single agent [35–41] or in com-
bination with chemotherapies [42–45]. SORAML is a
placebo-controlled randomized study of adding sorafenib
to daunorubicin and cytarabine (7 + 3) in 267 newly
diagnosed patients aged 18–60 years. The addition of so-
rafenib resulted in a significantly prolonged 3-year EFS
(40 vs 22%, P = 0.013) and RFS (56 vs 38%, P = 0.017)
without improvement in OS and CR [46]. In contrast to
this study, a second randomized study in 201 older pa-
tients aged 61–80 years showed no improvement in EFS,
CR, and OS, with a higher early mortality (17 versus 7%,
P = 0.052) compared with placebo [44]. It can be seen
from the difference of two studies that the combination
of sorafenib with intensive chemotherapy may be too
toxic for older patients, who have a poor prognosis
mainly due to more resistance and less tolerance. Thus,
for older patients, combining multikinase inhibitors with
lower intensity therapies like hypomethylating agents
(HMAs) may be an alternative choice [47]. Recent stud-
ies also suggest potential benefit of post-HSCT sorafenib
in patients with FLT3-ITD [48].

Midostaurin (PKC412)
Midostaurin is a first-generation multi-target agent that
inhibits FLT3, c-kit, platelet-derived growth factor recep-
tor (PDGFR), vascular endothelial growth factor receptor
(VEGFR), and protein kinase C [3]. As a well-tolerated
and orally bioavailable agent, it enhances the response to
induction chemotherapy and represents the potential to
bridge mutant and wild-type (WT)-FLT3 AML patients
to transplantation [49]. In two phase IIB studies of
single-agent midostaurin administered in FLT3-mutated
and FLT3-WT AML patients, there is a blast decrease ≥
50% in the majority of R/R or vulnerable/frail patients,
especially those with FLT3 mutation, but CRs are rare
and transient [50, 51]. When it comes to combination, a
phase IB trail adding midostaurin of two doses during
(concomitant) or after (sequential) standard induction
therapy confirmed a higher CR and lower toxicity in the
lower-dose group (50 mg daily), as well as a higher CR
rate in FLT3-mutated patients (92 vs 74%) [52]. In the
meantime, there was a multicenter, randomized phase
III trial (RATIFY) in 717 younger adult patients, which

demonstrated a significant improvement in OS and EFS
among AML patients with FLT3 mutation, when adding
midostaurin to standard induction therapy. In particular,
the benefit of midostaurin was observed in patients
undergoing transplantation during the first remission
[53]. Thus, the combination regimen could be consid-
ered as first-line treatment in younger AML patient,
while it is still uncertain whether the combination regi-
men might benefit older patients or those with wild-type
FLT3. As is reported, combination with histone deacety-
lase (HDAC) inhibitors is also associated with a higher
CR [54–56], and most recently, whether midostaurin
improves RFS after transplant is under investigation
(NCT01883362).

Quizartinib (AC220)
Quizartinib selectively inhibits FLT3/STK1, CSF1R/FMS,
SCFR/KIT, and PDGFRs. A phase I trial in R/R AML pa-
tients determined the maximum tolerated dose (MTD)
of 200 mg per day with the dose-limiting toxicity (DLT)
of grade 3 QTc prolongation [57]. Subsequently, several
phase II trials studying with lower doses demonstrated
prominent composite CR (CRc) rate ranging from 44 to
54% and ORR (CRc + PR) ranging from 61 to 72% in
FLT3-ITD-positive patients [58–60]. Combination stud-
ies are ongoing (NCT01892371). As mentioned, single
agent is proved to have limited efficacy due to drug
resistance. Though active against FLT3-ITD mutation,
most of tyrosine kinase inhibitors (TKIs) including qui-
zartinib had no activity against FLT3-TKD mutation
[34], the effect of which on the outcome remains
unsettled.

Crenolanib (CP868596)
To maximize tolerability and response duration, novel
FLT3 inhibitors like crenolanib, which is potent, select-
ive, and invulnerable to resistance-conferring kinase do-
main mutation, are developed [61]. In addition to FLT3-
ITD mutation in nearly one third of AML patients [62],
nowadays with the progress of more powerful FLT3
inhibitors being tested in many clinical trials, resistance-
conferring point mutations like D835 and F691 have
emerged during disease progression [63]. Crenolanib is a
selective pan inhibitor active against both FLT3-ITD and
FLT3-TKD D835 mutations, whereas most agents only
have limited activity against the former. Crenolanib is a
benzamidine quinolone derivative and currently a repre-
sentative of the potent next-generation FLT3 TKIs.

Gilteritinib (ASP2215)
As potent as crenolanib, gilteritinib is also a selective
next-generation FLT3 inhibitor with activity against both
FLT3-ITD and FLT3-TKD mutations. A preclinical study
compared gilteritinib with four other FLT3 inhibitors
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using immunoblotting and drew a conclusion that its in
vitro efficacy is equal to or greater than the other TKIs
(midostaurin, sorafenib, quizartinib, and crenolanib) and
may be the most useful FLT3 inhibitor to date [64].
Worth mentioning, due to less activity against c-kit than
quizartinib, gilteritinib has little myelosuppression.

Lestaurtinib
Lestaurtinib (CEP-701) is an orally bioavailable first-
generation FLT3 inhibitor, as well as a potent inhibitor
of JAK2 [65, 66]. Recently, a randomized assessment
from UK AML 15 and AML 17 trials confirmed no sta-
tistically significant benefit observed in the combination
of lestaurtinib with standard chemotherapy for newly di-
agnosed AML patients mostly younger than 60 years.

NPM1 mutation
NPM1 mutations represent the most frequent genetic al-
teration in AML, which are found in approximately 25%
of patients with de novo AML. It is associated with im-
proved outcomes, and the mechanisms have not been
clearly elucidated. NPM1 is a promising therapeutic
target for AML, since NPM1 mutations represent
founder genetic lesions in leukemogenesis. Some recent
studies have shown conflicting results on the association
between NPM1 mutation and the response to ATRA or
arsenic trioxide (ATO) adjunct to standard chemother-
apy [67–69]. Interestingly, it has also been suggested
that ATRA and arsenic trioxide combination can select-
ively induce apoptosis and differentiation in NPM1-
mutated cells, as well as promote leukemia regression in
elderly patients unfit for induction chemotherapy [70,
71]. Furthermore, since NPM1-mutated leukemia cells
are associated with increased CD33 expression [72],
CD33 antibodies like gemtuzumab ozogamicin (GO)
could be a targeted therapy for those NPM1-mutated
patients with high CD33 expression. Finally, recent evi-
dence has emerged that drugs such as dactinomycin,
triggering a nucleolar stress response, may target
NPM1-mutated AML [73].

Epigenetic mutations and alterations
Lately, epigenetic alterations that are heritable and re-
versible in contrast to genetic changes represent a focus
of interest with respect to therapeutic targets in AML.
With a rapid advance in all kinds of sequencing, recur-
rent mutated genes involved in epigenetic regulation
have been identified, including TET2, IDH1, IDH2,
DNMT3A, and EZH2. Abnormal DNA methylation and
histone modification are two main modes of epigenetic
dysregulation.

DNMT inhibitors
DNA methylation is catalyzed by DNMTs. Recurrent
mutations in DNMT3A are found in 6 to 36% of AML
patients, which is hypothesized to act as dominant nega-
tives in leukemogenesis [74]. HMAs inhibiting DNMTs
are options for older patients who cannot tolerate inten-
sive chemotherapy with lower toxicities and equal effi-
cacy. As known, azacitidine (5-Aza) and decitabine are
two HMAs currently approved for clinical use, both
of which have shown clinical benefit in clinical trials
[75–78]. A phase II study of older patients who were
unfit for intensive chemotherapy treated with 10-day
schedule of decitabine yielded a CR rate of 47%, with-
out certain benefit observed in the combination of
decitabine with HDAC valproic acid. Interestingly,
patients harboring monosomy 7 or del(7q) had a
higher response rate of 91% [79]. This study also pro-
posed that higher pretreatment levels of miR-29b
were associated with response (P = 0.02) to decitabine,
allowing it to be a predictive marker and stratification
tool in selection of older AML patients for this regi-
men. Further multicenter studied should be per-
formed. Another single-institution trail suggested
patients with unfavorable risk or TP53 mutations had
significantly higher response rates to 10-day decita-
bine therapy despite their poor prognosis after cyto-
toxic chemotherapy [80]. In addition to this, the OS
rate was similar among patients with unfavorable-risk
and intermediate-risk cytogenetic profiles. It is worth
mentioning that patients with TP53 mutations may
not always be sensitive to single-agent decitabine
treatment owing to the emergence of resistant sub-
clones and incomplete mutation clearance. Still, deci-
tabine should be considered as an important agent in
the treatment of AML patients with TP53 mutations
unfit for cytotoxic chemotherapy. To date, there are
no therapies specifically targeting against DNMT3A.
Guadecitabine (SGI-110), as a second-generation

HMA, is a dinucleotide of decitabine and deoxyguano-
sine resistant to cytidine deaminase and can prolong the
exposure to decitabine in vivo. A phase I study assessed
three treatment schedules of guadecitabine: daily sched-
ule for 5 days continuously, weekly, and twice-weekly
schedule. It was identified that the maximum demethyla-
tion was achieved with a dose of 60 mg/m2 per day for
5 days consecutively [81]. Likewise, a multicenter ran-
domized phase I/II study accessing the safety and activ-
ity of two doses and schedules of guadecitabine in older
AML patients also recommended the 60 mg/m2 guade-
citabine in a 5-day regimen. A phase II study randomiz-
ing among 5-day regimen, 10-day regimen, and a
combination of the 5-day schedule with idarubicin or
cladribine is ongoing (NCT02096055), as well as a phase
III study in progress to compare this 5-day schedule of

Yang and Wang Journal of Hematology & Oncology  (2018) 11:3 Page 5 of 11



guadecitabine with standard care. Also, another phase
III randomized study of guadecitabine versus treatment
choice in R/R AML has been initiated (NCT02920008).
Anyway, therapeutic efficacy of guadecitabine will ultim-
ately rely on a demonstrable improvement in OS; only
then SGI-110 can be expected to become an alternative
choice for patients ineligible for traditional induction
chemotherapy due to old age, comorbidities, etc. [82].
Sapacitabine (CYC682) is a novel oral nucleoside ana-

log. It is metabolized into the active metabolite CNDAC
and incorporated into cellular DNA to exert anticancer
activity by interfering with DNA synthesis and inducing
cell cycle arrest. In a phase II trial, sapacitabine was ad-
ministered to 60 AML patients aged 70 years or older
from 12 centers in the USA, studying three dose sched-
ules of sapacitabine: (A) 200 mg bid for 7 days, (B)
300 mg bid for 7 days, and (C) 400 mg bid on days 1–3
for 2 weeks. One-year OS was 35, 10, and 30% in three
groups, respectively. The 30-day mortality was 13% and
the 60-day mortality doubled [83]. In addition, SEAM-
LESS, a multicenter, randomized, phase III study of com-
paring sapacitabine alternating with decitabine to single
agent decitabine in approximately 485 elderly patients
aged 70 years or older, is ongoing (NCT01303796).

IDH inhibitors
IDH is one kind of enzyme that catalyzes the oxidative de-
carboxylation of isocitrate to alpha-ketoglutarate (α-KG),
and the enzyme TET2 co-works with a-KG to convert 5-
methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmc),
which promotes DNA demethylation. Mutant IDH
(mIDH) enzymes convert α-KG to (R)-2-HG, which com-
petitively inhibits a-KG-dependent enzymes including
TET2. Besides, inactivating mutation in TET2 can lead to
loss of function. Thus, both IDH and TET2 mutations can
result in accumulation of 5mc and DNA hypermethylation
and consequently promote AML.
Though prognostic impact of IDH gene mutations

remains controversial, inhibitors targeted mIDH have
been developed these days. Small-molecule mIDH inhib-
itors include AG-221, AG-120, AG-881, and IDH305,
among which AG-221 and AG-120 have shown evidence
of efficacy and are being tested in clinical trials. The first
IDH2 inhibitor AG-221 is developed to inhibit mutant
IDH2, reduce 2HG levels, and restore TET2 activity,
thereby reversing 5mC accumulation in mouse mIDH
AML models [84]. In ASH 2015, a phase I dose escal-
ation and expansion study of AG-221 demonstrated an
ORR of 41% and a true CR of 18% in patients with R/R
AML [85]. AG-120 monotherapy was associated with an
ORR of 35% in a similar study [86]. Additionally, methy-
lation inhibitors like 5-Aza can inhibit the conversion of
cytosine to 5mC in TET2-mutant AML in mice, thereby
preventing 5mC from accumulation. In a study, a

comparison was drawn between the effects of preventing
DNA hypermethylation induced by genetic loss of TET2
and restoring TET2 activity by inhibiting mutant IDH2
in AML [87]. Both AG-221 and 5-Aza induced differen-
tiation of leukemic cells, but neither significantly killed
mutant cells. Therefore, targeting epigenetic dysregula-
tion could be an effective therapeutic strategy in AML,
while dual-pronged therapies such as combining epigen-
etic inhibitors with kinase-targeted therapies may be a
better choice [88]. Nowadays, both AG-120 and AG-221
are being investigated in newly diagnosed AML patients
with IDH mutations, in combination with induction and
consolidation chemotherapy (NCT02632708) and azaci-
tidine (NCT02677922).

HDAC inhibitors
Histone modifications include acetylation and methylation
which are reversibly mediated by histone acetyltransfer-
ases, HDACs, HMTs, and histone demethylases, respect-
ively. Histone acetylation increases the accessibility of
transcription factors to gene regions and consequently
promotes gene expression. Conversely, deacetylation leads
to transcriptional repression and impaired hematopoietic
differentiation, which can be inhibited by HDAC inhibi-
tors (HDACIs). When used as a single agent in MDS and
AML, HDACIs seem to be modest [89]. Considering the
disappointing results of combined clinical trials recently
[55, 90–93], it remains a challenge to find an optimal
combination regimen of HDACIs with other agents. Other
histone modifiers like BET inhibitors (OTX015), DOT1L
inhibitors (EPZ-2676), and LSD1 inhibitors (GSK2879552)
are being investigated as monotherapy in clinical trials
and still need further exploration.

Immunotherapy for AML
Cancer immunotherapy aims to stimulate the immune
system to destroy tumors. Novel immunotherapies for
AML mainly consist of monoclonal antibodies (mAbs),
chimeric antigen receptor-engineered T cells (CAR T
cells), and checkpoint inhibitors.

Monoclonal antibodies
Currently, the most encouraging therapeutic targets for
AML are CD33 and CD123, which are both expressed in
leukemic cells and normal hematopoietic cells. Due to
off-tumor effects of aplasia and neutropenia, it is rela-
tively more difficult to find an ideal target for AML than
ALL. It was wildly known that GO, the first anti-CD33
mAb approved by the FDA in 2000, was withdrawn from
market in 2010 due to early toxicity and little clinical
benefit. Nevertheless, recent studies have demonstrated
an improved survival in populations with favorable/
intermediate-risk cytogenetics [94–97]. Since older AML
patients are not suited to cytotoxic chemotherapy, best
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supportive care (BSC) including hydroxyurea or low-
dose cytarabine is considered despite dismal outcomes
[98]. A randomized phase III EORTC-GIMEMA AML-
19 trial demonstrated a significant improved OS in older
AML patients with single-agent low-dose GO (6 mg/m2

on day 1 and 3 mg/m2 on day 8), compared with BSC
group (4.9 vs 3.6 months, P = 0.005). Subgroup analysis
confirmed the prediction that GO would be most effect-
ive in patients with high CD33 expression [99]. Phase IV
clinical trials for patients with relapsed AML are now
ongoing (NCT02312037). Given the above, GO mono-
therapy could embody a new choice for elderly patients.
Besides, the combination of azacitidine and GO in phase
II studies also revealed encouraging remission and sur-
vival rates in elderly patients [100, 101].
At ASH 2015, another CD33 antibody known as SGN-

33A, presented promising results in a phase I study in
combination with hypomethylating drugs in older
patients [102]. These encouraging results have promoted
the phase III CASCADE study (NCT019002329) which
attempts to evaluate SGN-33A combined with 5-Aza or
decitabine for older adults with newly diagnosed AML.
In comparison with GO, vadastuximab seems to have
effective therapeutic results in poor-risk group in on-
going studies [103]. Other drugs like CSL362 and SL-
401 that target CD123 are now being investigated in
various studies and have shown some promising data
[104, 105].

CAR T therapy
Closely linked with graft-versus-host disease (GvHD),
graft-versus-leukemic (GvL) effect appears after HSCT,
via which the donor T cell plays an important role in
killing leukemia cells. Elderly patients are not suitable
candidates for HSCT due to high toxicity and relapse
rate [106], and the efficacy of HSCT could be enhanced
by infusion of CAR T cells [107]. CARs targeting CD19
have demonstrated remarkable potency in B cell malig-
nancies such as B-ALL. The success of CD19 CAR T lies
in two factors: (1) massive expansion and persistence of
infused CAR T cells with costimulators and (2) tolerabil-
ity of CD19 B cell aplasia due to its limited expression
on mature B cells [108]. As mentioned, it remains chal-
lenging to find an ideal AML target owing to its pro-
found and intolerable hematopoietic toxicity. Most of
the current antigens in AML treatment are just over-
expression antigens, rather than true AML-specific sur-
face antigens, which brings about fatal off-tumor toxicity
[109]. Several studies have proved in mouse models that
targeting with anti-CD123 CAR T-cells (CD123 CART)
and anti-CD33 CAR T-cells (CD33 CART) had some
anti-AML potency but severe myeloablation was inevit-
able [110–112]. Particularly, a preclinical study in a
mouse model using CD123 CART showed that CD123

expressed more frequently than CD33, and CD123
CART mediated potent in vivo antileukemic effect as
well as increased survival of the majority of animals
[110]. Furthermore, it is worth mentioning that the
persistence of CAR T cells is associated with both
anti-tumor efficacy and prolonged myeloablation,
which suggests that a following rescue HSCT strategy
is imperative. Future investigations in CAR T therapy
warrant more focus on selection of specific AML-
related surface targets.

Checkpoint inhibitors
In normal situations, immune checkpoints act as protect-
ive mechanism against autoimmunity, while tumor cells
take advantage of them to evade immune system response
and mediate immune resistance [113]. Thus, checkpoint
inhibitors work via unleashing suppressed immune
responses [114]. Two key checkpoint receptors are pro-
grammed cell death protein 1 (PD1) and cytotoxic T-
lymphocyte-associated antigen 4 (CTLA4), both of which
have been used in preclinical AML models [115]. One
group treated three relapsed AML patients after allo-
HSCT with the PD-1 inhibitor nivolumab. Among these
three patients, one achieved an ongoing CR, one experi-
enced stabilization, and the third failed to respond. It sug-
gested that targeting PD-1 might be an effective salvage
therapy for relapsed AML after allo-HSCT, though the
optimal dose of nivolumab to restore GvL effects without
leading to severe GvHD still remains studying [116].
Phase II trials using single nivolumab or in combination
with CTLA4 antibodies after allo-HSCT and chemo-
therapies are ongoing (NCT02532231, NCT02846376,
NCT02464657).

Conclusion
The fundamental goal of precision medicine is to inte-
grate population-based molecular, clinical, and other
data to make individual-based clinical decisions for pa-
tients [117]. It has been demonstrated that the new for-
mulated chemotherapies, molecular targeted agents, and
immunotherapies all have clinical activity as single
agents, but the activity seems limited. Recent studies
have confirmed that combining with chemotherapy or
other new drugs may bring more benefit for AML pa-
tients. The treatment of AML remains a tough challenge
despite advances in our understanding of molecular
mechanism and prognostic impact. Therefore, many
questions are still unsolved in the use of these new
drugs, which indicates that both patient and disease sta-
tus should be taken into consideration. Massive efforts
are required to pave the way for precision medicine in
the foreseeable future.
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