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Abstract

Background: Long non-coding RNA (lncRNA) expression has been implicated in a range of molecular mechanisms
that are central in cancer. However, lncRNA expression has not yet been comprehensively characterized in acute
myeloid leukemia (AML). Here, we assess to what extent lncRNA expression is prognostic of AML patient overall
survival (OS) and determine if there are indications of lncRNA-based molecular subtypes of AML.

Methods: We performed RNA sequencing of 274 intensively treated AML patients in a Swedish cohort and
quantified lncRNA expression. Univariate and multivariate time-to-event analysis was applied to determine
association between individual lncRNAs with OS. Unsupervised statistical learning was applied to ascertain if
lncRNA-based molecular subtypes exist and are prognostic.

Results: Thirty-three individual lncRNAs were found to be associated with OS (adjusted p value < 0.05). We
established four distinct molecular subtypes based on lncRNA expression using a consensus clustering approach.
LncRNA-based subtypes were found to stratify patients into groups with prognostic information (p value < 0.05).
Subsequently, lncRNA expression-based subtypes were validated in an independent patient cohort (TCGA-AML).
LncRNA subtypes could not be directly explained by any of the recurrent cytogenetic or mutational aberrations,
although associations with some of the established genetic and clinical factors were found, including mutations in
NPM1, TP53, and FLT3.

Conclusion: LncRNA expression-based four subtypes, discovered in this study, are reproducible and can effectively
stratify AML patients. LncRNA expression profiling can provide valuable information for improved risk stratification of
AML patients.
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Background
Acute myeloid leukemia (AML) is a heterogeneous dis-
ease on both the molecular- and phenotypic level,
caused by malignant transformation of hematopoietic
progenitor cells. During pre-leukemic evolution and dis-
ease progression, affected hematopoietic cells gradually
accumulate a range of molecular alterations, including
somatic mutations, cytogenetic abnormalities, epigenetic
alterations, and transcriptomic changes [1, 2]. Numerous
recurrent point mutations, epigenetic changes, and cyto-
genetic abnormalities have been identified through next

generation sequencing technology [1, 3]. Cytogenetics
together with mutation status of NPM1, CEBPA, and
FLT3 internal tandem duplications (FLT3-ITD) form
the basis of the European LeukemiaNet (ELN) risk
classification system [4], which provides means for
risk stratification of AML patients. However, almost
half of patients are classified into the intermediate
risk group. Further improvements of the risk stratifi-
cation of AML patients would provide the potential
for improved therapy decisions.
LncRNAs are defined as RNA molecules longer than

200 nucleotides that are transcribed while not protein
coding. It has been estimated that more than 58,000
lncRNAs are encoded in the human genome [5, 6].
LncRNAs are involved in a multitude of biological
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processes that are central in tumorigenesis and progres-
sion of cancer, including cell cycle regulation, prolifera-
tion, apoptosis, migration, and genomic stability [5, 7].
LncRNAs have multiple modes of action, including in-
volvement in controlling chromatin condensation, regu-
lation of transcription, regulation of RNA splicing,
controlling RNA stability, and promoting or inhibiting
translation of mRNAs to proteins [8].
Most large-scale genomic analyses of cancer patient data

have focused on the protein coding region of the genome.
However, estimates from the ENCODE study suggest that
up to 75% of the human genome gets transcribed into
RNA, whereas only about 3% of the human genome is
protein coding [9, 10]. LncRNAs are a group of non-
coding RNAs that have several recent discoveries linked
to cancer [11–13]. For example, HOX transcript antisense
intergenic RNA (HOTAIR) is known to act as an epigen-
etic regulator in breast and colorectal cancer [14–16].
Several other lncRNAs are known to play a functional role
as oncogenes or tumor suppressors and have clear prog-
nostic potential [14, 17]. Multiple studies have highlighted
the role of lncRNA in hematopoietic cellular development
and malignancies. In T cell acute lymphoblastic leukemia
(T-ALL), the lncRNA LUNAR1 (leukemia-induced non-
coding activator RNA) promotes cell growth via enhanced
IGF1R expression [18]. The IRAIN lncRNA, located
within IGF1R locus, directly interacts with the IGF1R pro-
motor [19]. IRAIN is shown to be downregulated in
leukemia cell lines and in high-risk AML patients. Garzon
et al. [7] have previously reported lncRNA expression
results from a study consisting of cytogenetically normal
acute myeloid leukemia (CN-AML) patients using a cus-
tom microarray platform for lncRNA expression profiling,
with a focus on assessing association with routine clinical
phenotypes and mutations. In that study, lncRNAs were
reported to be associated with recurrent mutations in sev-
eral genes in CN-AML patients, including NPM1, CEBPA,
IDH2, ASXL1, and RUNX1, and FLT3-ITD [7, 20].
LncRNA expression has previously also been shown to be
associated with treatment response and survival in several
other cancer types [5, 21–23].
Despite growing evidence for the potential importance

of lncRNAs as prognostic and diagnostic markers across
a multitude of cancers, including AML, lncRNA expres-
sion in AML has not been comprehensively character-
ized to date with a focus on ascertaining the potential
presence of prognostic lncRNA-based AML subtypes. In
this study, we applied whole-transcriptome RNA-
sequencing (RNA-seq) with the aim to identify prognos-
tic lncRNAs, to define novel lncRNA-based AML sub-
types and to ascertain their prognostic value and
relevance for risk stratification of AML patients. Fur-
thermore, novel lncRNA expression-based subtypes were
validated in independent patient cohort.

Results
We applied RNA sequencing to characterize lncRNA ex-
pression in 274 intensively treated AML patients from
the Clinseq-AML cohort (see the “Methods” section).
The detailed characteristics of the Clinseq-AML cohort
are shown in Table 1. LncRNAs were annotated using
the MiTranscriptome database [6]. Using the consensus
cluster [24] approach, four lncRNA expression-based
subtypes were discovered in the Clinseq-AML cohort
and validated in an independent (TCGA-AML) cohort.
The distribution of molecular and clinical data by the
lncRNA-based consensus clusters is shown in Fig. 1.

Individual lncRNAs are prognostic of overall survival in
AML
First, we investigated to what extent individual lncRNAs
were associated with overall survival in the Clinseq-
AML cohort. Individual Cox proportional hazards re-
gression models were fitted for each lncRNA using time-
on-study as the time scale, adjusting for age, sex, ELN
risk score, mutation status of CEBPA, NPM1, TP53,
WT1, TET2, ASXL1, DNMT3A, RUNX1, IDH1, IDH2,
and FLT3-ITD, and chromosomal abnormalities as co-
variates in the models. We found 33 prognostic (overall
survival) lncRNAs (adjusted p value < 0.05, Fig. 2). These
results suggest that there are individual lncRNAs that
provide prognostic information beyond established risk
classification scores (ELN risk score) and typical somatic
aberrations in AML. We analyzed the association
between lncRNA expression and overall survival in the
TCGA-AML cohort (Additional file 1: Figure S1).
However, none of the association have significant p value
(< 0.05). A possible reason might be the small sample
size of the TCGA-AML dataset.

Novel lncRNA-based molecular subtypes of AML
Next, we investigated if subgroups of AML patients were
present in the Clinseq-AML cohort that shares common
multivariate lncRNA expression patterns. We applied an
unsupervised consensus clustering approach (see the
“Methods” section) to the lncRNA expression profiles
and discovered four distinct lncRNA-based subtypes.
Consensus clustering results indicated a high degree of
co-clustering of subjects within these four groups (Fig. 3
and Additional file 1: Figures S2–S4). This indicates that
AML patients in the Clinseq cohort could be stratified
into four distinct subtypes based on their lncRNA
expression abundances.

LncRNA AML subtypes are prognostic
We assessed the prognostic information of the lncRNA-
based subtypes in respect to overall survival (Fig. 4 and
Additional file 1: Figure S5) and event-free survival
(Additional file 1: Figure S6). The prognostic value of
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the four lncRNA-based subtypes was found to be signifi-
cant (n = 274, p = 0.04 (log-rank test)). Among patients
in cluster G1 (N = 65), the mean (±SE) overall survival at
60 months (5 years) was 61 ± 7%. Patients in clusters G2
and G3 had an intermediate rate of overall survival of
36 ± 8% and 26 ± 5% respectively. The cluster G4 has the
worst survival outcome with an overall survival at
60 months of 18 ± 5%. The prognostic performance was
also evaluated in the subset of cytogenetically normal pa-
tients (N = 130), which confirmed that the lncRNA-based
subtypes were significantly associated with overall survival
also in this subpopulation (Fig. 4b, p value = 0.02, log-rank
test). Event-free survival for the lncRNA-based subtypes
(Additional file 1: Figure S6) also provides a significant
prognostic value (p = 0.015 (log-rank test)).
We validated the lncRNA expression-based subtypes in

the independent TCGA-AML cohort (Fig. 4c, d). In the
TCGA-AML cohort, the prognostic value of the lncRNA-
based subtypes is significant (Fig. 4c, n = 172, p = 0.01, log-
rank test). However, for cytogenetically normal patients in
the TCGA-AML cohort, the prognostic performance is
not significant (Fig. 4d, p value = 0.2, log rank) which po-
tentially might have occurred due to the low sample size
(n = 78). Details of validation using the TCGA-AML
cohort are provided in the following section.
To ascertain if the subtypes were prognostic beyond

established prognostic factors, we also fitted a multi-
variable Cox proportional hazards models, adjusting
for established prognostic markers (Fig. 5), and this
model was also found to provide a significant
prognostic value (p value = 7.0 × 10−7). In particular,
cluster G3 in this model was significantly different in
overall survival compared with the reference group
G1 (p value = 3.2 × 10−3, Fig. 5a).

Nested cross-validation and independent validation of the
lncRNA subtype
To determine consistency of the subtype discovery, we
implemented a nested cross-validation procedure that is
analogous to repeatedly splitting our cohort into a
training set (for model fitting, including parameter
estimation) and an independent subset of patients for
model evaluation in respect to prognostic value (test
set). The misclassification rate of test set samples (nested
cross-validation) was low, with overall classification
accuracy in the nested cross-validation procedure of 85%
(Additional file 1: Figure S7), using class labels assigned
in the primary subtype discovery phase as reference. Cross-
validation of lncRNA subtypes also revealed significant
prognostic value (overall survival, Additional file 1: Figure
S8) (p value = 0.012). These results indicate that the
lncRNA subtypes, prediction model, and the prognostic
value of the subtypes are robust.

Table 1 Description of Clinseq-AML cohort

Number of patients 274

Sex: no. of patients (%)

Male 133 (48.5%)

Female 141 (51.4%)

Age

Median (range) 64.5 (18–85)

No. of the patients aged < 60 109 (39.7%)

Etiology

De novo AML 222

s-AML 24

t-AML 26

Missing 2

Median follow-up (days) 346.5

Bone marrow blast: median (range, %) 53.5% (14–100%)

WBC counts: median (range, per mm3) 20.5 (0.5–298.4)

ELN

High 53

Intermediate 142

Low 73

Cytogenetic aberrations: N (%)

t(15;17) 8 (2.9%)

t(8;21) 5 (1.8%)

inv(16)/t(16;16) 9 (3.3%)

Normal 130 (47.4%)

inv(3)/t(3;3) 5 (1.8%)

Complex 32 (11.7%)

del(5) 17 (6.2%)

del(7) 27 (9.9%)

t(11q23) 7 (2.6%)

Mutation: N (%)

ASXL1 28 (10.22%)

CEBPA 39 (14.23%)

CEBPA (double) 17 (6.2%)

DNMT3A 63 (22.99%)

FLT3-TKD 77 (28.1%)

FLT3-ITD 68 (24.82%)

IDH1 28 (10.22%)

IDH2 50 (18.25%)

KRAS 11 (4.01%)

NPM1 83 (30.29%)

RUNX1 39 (14.23%)

TET2 62 (22.63%)

TP53 24 (8.76%)

WT1 9 (3.28%)

Abbreviations: WBC white blood cell, ELN European LeukemiaNet, FLT3-ITD
internal tandem duplication of the FLT3 gene, FLT3-TKD tyrosine kinase
domain mutation in the FLT3 gene, t-AML therapy-related acute myeloid
leukemia, s-AML secondary acute myeloid leukemia
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Fig. 1 LncRNA expression patterns for four lncRNA-based novel AML subtypes together with clinicopathological factors, cytogenetic risk classification,
mutation, and karyotype status. FLT3 represents FLT3-TKD

Mer et al. Journal of Hematology & Oncology  (2018) 11:52 Page 4 of 13



Next, we assessed the reproducibility of newly discovered
AML subtypes using independent TCGA-AML cohort. To
handle intrinsic batch differences between the Clinseq and
TCGA studies, we applied batch correction on Clinseq and
TCGA lncRNA expression data [25]. We trained a random
forest model [26] for subtype classification based on the
Clinseq data and subsequently predicted subtypes in the
TCGA-AML cohort. A list of lncRNAs selected using ran-
dom forest models can be found in Additional file 2. Based
on the predicted subtype labels in the TCGA cohort, we
then assessed the prognostic information in respect to over-
all survival (Fig. 4c and Additional file 1: Figure S5B). In the
TCGA-AML cohort, the prognostic value of the four
lncRNA-based subtypes was found to be significant (n =
172, p = 0.01, log-rank test). In concordance with Clinseq-

AML cohort, in TCGA-AML cohort, subtype G1 (n = 30)
has the best survival outcome with mean (SE) overall sur-
vival at 60 months (5 years) which is 40 ± 12%. Similarly,
subtypes G2 (n = 43) and G3 (n = 69) show intermediate
survival with mean (SE) overall survival at 60 months which
are 31 ± 8% and 22 ± 87% respectively. Similar to Cliniseq,
subtype G4 (n = 30) has the worst survival outcome in
TCGA cohort, where no patient survive at 60 months (Fig.
4c). We also fitted a multivariable Cox proportional hazards
models, adjusting for age, sex, and established prognostic
markers using TCGA clinical and mutation data (Fig. 5b).
Prognostic value of this model was also found to be signifi-
cant value (p value = 1.25 × 10−9). When compared with the
reference group G1, in this model, subtype G4 was
significantly different in overall survival (p value = 4.48 ×
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Fig. 2 Multivariate time-to-event analysis (overall survival) of individual lncRNA (adjusting for established risk factors) in the Clinseq-AML cohort
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10−3). We also evaluated the prognostic performance in the
subset of cytogenetically normal patients in the TCGA-
AML cohort. In this subset of patients, the association to
overall survival was not significant (Fig. 4d, p value =
0.2, log rank). However, this might be due to the low
sample size (n = 78).

LncRNA expression subtypes are partially associated with
clinicopathological factors
To determine if the lncRNA-based subtypes were associ-
ated with known cytogenetic or mutational aberrations,
we applied association tests between subtypes and key
genetic aberrations and clinical phenotypes (Table 2).

G1
G2
G3
G4

Fig. 3 Consensus clustering matrix for 4 groups. Comparing different number of clusters indicates K = 4 is the optimal number of clusters in lncRNA
expression dataset. (Model selection results for K = 2 to 8 is provided in Additional file 1: Figures S2–S4)
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Neither of the subtypes was found to be highly concord-
ant with any of the conventional clinical or genetic fac-
tors (for details, see Additional file 1: Tables S1 to S20).
Patients belonging to group G1 are enriched for CEBPA

mutations (2.56 and 1.46% single and double mutation re-
spectively). CEBPA double mutations have been associated
with favorable outcome in AML [27, 28]. Cluster G2 is
enriched in NPM1 mutation (6.93%) but has low percentage
of TP53 mutations (1.09%). The cluster G3 contains a sub-
stantial number of FLT3-ITD. This cluster is also enriched in
CEBPA single and double mutations. Cluster G4 harbors a
high percentage of TP53 mutations (4.75%). This cluster also
contains the highest percentage (8.08%) of patients classified
as high-risk category using ELN risk classification system.
We found that lncRNA expression-based subtypes

were independent from the European LeukemiaNet
(ELN) risk classification system [4] and the distribution

of the ELN risk score is fairly even in all four groups
(Fig. 1 and Additional file 1: Table S19). For each ELN
risk type, we further stratified it using lncRNA subtypes
(Additional file 1: Figure S9). These results indicate that
for each ELN risk score, lncRNA subtypes can provide
further stratification of patients. Although lncRNA-
based subtypes were not found to be highly concordant
with any specific mutations, cytogenetics, or clinical fac-
tors, we found that mutations in NPM1 and TP53 were
associated with the lncRNA-based subtypes (Chi-square
test p value is 1.09 × 10−5 and 2.99 × 10−3 respectively,
see Additional file 1: Tables S1 to S20 for details).

Pathway analysis of genes associated with lncRNA-based
subtypes
LncRNAs have very limited functional assignments. In
order to gain some overview of potential molecular
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Fig. 4 LncRNA expression subtypes and overall survival (OS). a OS (Kaplan-Meier) in the full Clinseq-AML cohort (p value = 0.04, log-rank test). b
OS (Kaplan-Meier) in cytogenetically normal patients in the Clinseq-AML cohort (p value = 0.02, log-rank test). c OS (Kaplan-Meier) in the TCGA-AML
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mechanism related to the lncRNAs that define the
lncRNA-based subtypes, we performed pathway analysis.
First, we determined which mRNA transcripts were
associated with the lncRNA-based subtypes, and subse-
quently, we utilized this set of mRNAs for pathway en-
richment analysis (see the “Methods” section for details).
This analysis revealed multiple significant pathways (Fig.
6) include “immune system” (adjusted p value = 0.01),
“chromosome organization” (adjusted p value = 0.03),
“mRNA processing” (adjusted p value = 0.01), and “trans-
membrane receptor protein tyrosine kinase signaling
pathway” (adjusted p value = 0.02). List of all pathways
and differentially expressed genes in four clusters can be
found in Additional files 3 and 4 respectively.

LncRNA-based subtypes are not concordant with
mRNA-based subtypes
Since lncRNA expression levels can in some cases be cor-
related to the expression levels of cis-located mRNAs [29]
and potentially also be correlated with the global mRNA
expression profile, we evaluated to what extent lncRNA-
based subtypes were reflected in mRNA-based expression
clusters. We applied an identical unsupervised consensus
clustering methodology to determine mRNA-based clus-
ters as for the lncRNA analysis (see Additional file 5 sup-
plementary methods for details). Despite stratifying
patients into groups that are substantially different (Fig. 7)
, a Chi-square test of dependence between mRNA and

lncRNA subtype models did allow us to reject the null
hypothesis of no relationship between the models (p value
= 2.56 × 10−68; Additional file 1: Table S21). For instance,
mRNA subtype C2 is almost fully subsumed in lncRNA
subtype G1, which might be a substantial contributor to
the Chi-square statistic in this case. However, despite that
mRNA and lncRNA models cannot be considered as inde-
pendent, we note that mRNA and lncRNA expression
profiling data stratify patients into markedly different
groups (Fig. 7), suggesting that the information in mRNA
and lncRNA expression profiles are different.

Discussion
The present study is the most comprehensive lncRNA
expression study in AML to date. We characterized
lncRNA expression using RNA sequencing in a cohort
of 274 AML patients (data included in Additional file 6)
with the aim to determine if individual lncRNAs were
associated with AML outcome and if lncRNA-based
prognostic subtypes of AML could be defined. The find-
ings were subsequently validated in the independent
TCGA-AML cohort (Additional file 7).
In the Clinseq-AML cohort, 33 individual lncRNAs

were found to have independent prognostic information
and four robust lncRNA-based subtypes of AML were
discovered that are prognostic of overall survival. Some
of the established clinical and genetic factors of AML
were found to be associated with the lncRNA expression
subtypes, although subtypes did not display a high
degree of concordance with any of the clinical or genetic
factors. Similarly, lncRNA-based subtypes were not
found to be concordant with mRNA-based subtypes,
suggesting that lncRNA expression represents an inde-
pendent source of molecular information. Subtype G1
was characterized by displaying the longest overall sur-
vival. This group is also dominated by intermediate level
of ELN risk and normal karyotypes. It also harbors high
frequency of CEBPA double mutations. In de novo
AML, CEBPA double mutations are known to have a fa-
vorable prognostic significance [27, 28]. Subtypes G2
and G3 represent prognostically poorer AML subtypes.
Both of these subtypes have a high frequency of patients
with intermediate risk level based on ELN risk classifica-
tion. In comparison to subtype G1, they possess more
cytogenetic abnormalities. Subtype G4 represents a
group of AML patients with poor prognosis, with the
highest frequency of TP53 single and double mutations.
When ascertaining the independent prognostic value of
lncRNA subtypes, given ELN risk classification (which
includes cytogenetic classification), and genetic muta-
tions, the lncRNA subtype model was confirmed to pro-
vide a significant prognostic value. We have also
developed a subtype prediction biomarker panel consist-
ing of 35 lncRNAs (Additional file 2), which provided

Fig. 5 Multivariate survival analysis (Cox proportional hazards model)
of lncRNA subtypes including age, sex, ELN risk score, mutation
status of CEBPA, NPM1, TP53, WT1, TET2, ASXL1, DNMT3A, RUNX1,
IDH1, IDH2, and FLT3 internal tandem duplications, and chromosomal
abnormalities as covariates for a Clinseq-AML cohort and b
TCGA-AML cohort
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equivalent classification as the full set of lncRNA fea-
tures considered in this study and could be seen as a
candidate biomarker panel for lncRNA-based subtyping
in AML.
We have validated our lncRNA expression-based

subtype model in independent TCGA-AML cohort. Our
results show that similar to Clinseq-AML cohort, in the
TCGA-AML cohort, the lncRNA-based subtypes are
significantly associated with overall survival. In particu-
lar, it is evident that subtype G1 is associated with more

favorable outcome and subtype G4 indicates worse
outcome. These associations are evident in both the
cohort even after adjusting for known prognostic factors
through multivariate analysis.
Both Clinseq-AML and TCGA-AML cohorts have

similar percentage of cytogenetically normal patients, 47.
4 and 45.1% respectively. Cytogenetic abnormalities,
such as del7 (9.9% in Clinseq-AML, 9.9% in TCGA-
AML) and del5 (6.2% in Clinseq-AML, 5.6% in TCGA-
AML), have very similar distribution in both the cohorts.

Table 2 Association analysis of lncRNA-derived molecular subtypes with established somatic aberrations and other risk factors

Cluster G1 G2 G3 G4 p value Adjusted p value

Patients 65 (23.72%) 56 (20.44%) 86 (31.39%) 67 (24.45%)

Mutation

FLT3_ITD 15(5.47%) 12(4.38%) 37(13.50%) 4(1.46%) 2.88E−06 3.60E−05

NPM1 18(6.57%) 19(6.93%) 40(14.60%) 6(2.19%) 1.09E−05 9.08E−05

TP53 5(1.82%) 3(1.09%) 3(1.09%) 13(4.75%) 3.95E−03 1.98E−02

KRAS 3(1.09%) 5(1.82%) 0(0.00%) 3(1.09%) 5.81E−02 1.45E−01

IDH1 12(4.38%) 2(0.73%) 8(2.92%) 6(2.19%) 5.25E−02 1.45E−01

RUNX1 14(5.11%) 7(2.56%) 7(2.56%) 11(4.01%) 1.19E−01 2.70E−01

WT1 1(0.36%) 1(0.36%) 6(2.19%) 1(0.36%) 1.36E−01 2.83E−01

FLT3-TKD 15(5.47%) 15(5.47%) 41(14.96%) 6(2.19%) 1.92E−06 3.60E−05

ASXL1 6(2.19%) 8(2.92%) 5(1.82%) 9(3.29%) 3.02E−01 4.19E−01

CEBPA 11(4.01%) 6(2.19%) 15(5.47%) 7(2.56%) 4.82E−01 5.48E−01

CEBPA (double) 4(1.46%) 1(0.36%) 8(2.92%) 4(1.46%) 3.63E−01 4.78E−01

IDH2 16(5.84%) 9(3.29%) 16(5.84%) 9(3.29%) 3.93E−01 4.91E−01

TET2 14(5.11%) 16(5.84%) 21(7.66%) 11(4.01%) 4.22E−01 5.02E−01

DNMT3A 16(5.84%) 14(5.11%) 17(6.20%) 16(5.84%) 8.59E−01 8.67E−01

Cytogenetic aberrations

Normal karyotype 36(13.79%) 31(11.88%) 45(17.24%) 18(6.90%) 3.96E−03 1.98E−02

inv(16)/t(16;16) 0(0.00%) 2(0.77%) 1(0.38%) 6(2.30%) 9.05E−03 3.23E−02

del5 5(1.92%) 2(0.77%) 1(0.38%) 9(3.45%) 7.85E−03 3.23E−02

del7 7(2.68%) 1(0.38%) 7(2.68%) 12(4.60%) 1.53E−02 4.78E−02

t(8;21) 0(0.00%) 1(0.38%) 1(0.38%) 3(1.15%) 2.32E−01 3.75E−01

+ 8 2(0.77%) 5(1.92%) 4(1.53%) 7(2.68%) 2.40E−01 3.75E−01

t(11q23) 0(0.00%) 3(1.15%) 2(0.77%) 2(0.77%) 2.94E−01 4.19E−01

t(15;17) 3(1.15%) 1(0.38%) 4(1.53%) 1(0.38%) 6.60E−01 7.17E−01

inv(3)/t(3;3) 1(0.38%) 1(0.38%) 1(0.38%) 2(0.77%) 8.67E−01 8.67E−01

ELN risk

High 16(6.15%) 10(3.85%) 16(6.15%) 21(8.08%) 2.11E−01 3.75E−01

Intermediate 37(14.23%) 32(12.31%) 53(20.39%) 27(10.38%)

Low 9(3.46%) 13(5.00%) 14(5.38%) 12(4.62%)

Etiology

De novo 48(17.65%) 45(16.54%) 73(26.84%) 56(20.59%) 1.52E−01 2.92E−01

s-AML 4(1.47%) 4(1.47%) 8(2.94%) 8(2.94%)

t-AML 11(4.04%) 7(2.57%) 5(1.84%) 3(1.10%)

Percentages refer to entire cohort
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However, frequency of recurrent genetic abnormalities such
as inv(16) (3.3% in Clinseq-AML, 7.7% in TCGA-AML)
and inv(3) (1.8% in Clinseq-AML, 0% in TCGA-AML) are
not similar. Interestingly, the Clinseq-AML cohort contains
both de novo and non-de novo AML patients; however, the
TCGA-AML cohort is completely comprised of de novo

AML cases. We performed differential gene expression
analysis between de novo and non-de novo samples in the
Clinseq-AML cohort (Additional file 8). However, we did
not find any significant difference in lncRNA expression
pattern between de novo and non-de novo AML as no
lncRNA is significantly differentially expressed (fdr < 0.05).

Fig. 6 Top ten pathways uniquely enriched in each subtype. Count represents the number of genes found in each pathway, and p.adjust is the
Benjamini and Hochberg FDR-corrected p value of the overrepresentation test. A list of all pathways, corresponding p values, and FDR-adjusted
p value can be found in Additional file 3
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We would like to stress the fact that there are several
differences between the Clinseq and TCGA cohort such
as difference is sequencing protocol, batch effect, and
frequency of recurrent genetic abnormalities, as dis-
cussed above. Our analysis shows that despite the vari-
ous sources of heterogeneity and cohort differences,
lncRNA expression-based subtypes are consistent and
have significant association with survival. Previously,
Garzon et al. [7] studied lncRNA expression in cytoge-
netically normal acute myeloid leukemia (CN-AML) pa-
tients using a custom microarray platform with a focus
on assessing lncRNAs association with routine clinical
phenotypes and mutations. In contrast, present study
contains a more representative set of AML patients and
ascertains the presence of lncRNA-based molecular sub-
types in AML. Furthermore, the present study is almost
twice in compared to the previously published results
[7], which only include CN-AML patients. We also note
that RNA sequencing, which is employed here, provide
an unbiased and comprehensive approach to lncRNA
profiling compared to targeted microarray-based expres-
sion profiling which may be limited by selection bias
during design of the array. Despite such differences,
similar to Garzon et al. [7], our results show that path-
ways such as mRNA processing, immune system
process, and chromosome organization are enriched in
lncRNA subtypes G1, G3, and G4 respectively (Fig. 6
and Additional file 3).
We have also compared lncRNA expression-based

subtypes with mRNA expression-based subtypes (C1 to
C7). The mRNA subtypes were generated using the

same methodology as lncRNA expression-based sub-
types (for details, see Additional file 5). Our analysis
shows that lncRNA-based subtypes are not directly cor-
related with mRNA-based subtypes and lncRNA sub-
types provide independent prognostic information.
Although the present study is the largest lncRNA ex-

pression study reported to date, the sample size in this
study might represent a limiting factor to establishing
potential additional lncRNA subtypes that are rare (i.e.,
present in a low proportion of AML patients), since
there would be too few principal examples present in
this cohort. Furthermore, the RNAseq-based lncRNA
profiling method applied in this study has limitations in
quantifying lncRNA molecules at very low abundances.
These limitations can be overcome by using a larger
sample size and deeper sequencing technology.

Conclusions
Expression profiles of lncRNAs have previously been
studied in several cancer types, including proposed
lncRNA subtypes [30–33]. However, in the context of
hematological malignancies, only a few studies have fo-
cused on the role of lncRNA expression. Moreover, these
studies have focused on risk prediction and were limited
to a specific subset of AML. Our analysis is the first to
provide lncRNA-based stratification of AML patients by
means of lncRNA subtypes. The proposed subtypes are
characterized by distinct molecular profiles defined by
lncRNA expression, which also provide prognostic
information. LncRNA expression and related molecular
subtypes provide a promising avenue for improved
patient stratification in the future and information about
lncRNA expression that offer a starting point for func-
tional studies.

Methods
For detailed material and method, refer to the supple-
mentary information provided in Additional file 5. A
brief description is as follows:

Patient cohorts
We used Clinseq-AML cohort, consist of 274 AML pa-
tients, treated according to the national guidelines in
Sweden. The study was approved by the regional ethical
review board in Stockholm, Sweden. All samples from
the Clinseq-AML cohort were collected prior to the ini-
tiation of treatment. For detail characteristics of patients
in Clinseq-AML cohort, see Table 1. In this study, we
used data from 142 patients of the TCGA-AML study
[1], who have received intensive induction treatment
(chemotherapy) analogous to the Clinseq-AML cohort.
Clinical and mutational data was retrieved from the data
portal of TCGA (https://gdc.cancer.gov) and TCGA-

Fig. 7 Sankey diagram of the relationship between mRNA-defined
subtype classification (right) and lncRNA-defined subtypes (left) in
AML. Each block on the left side represents the lncRNA subtypes
with bar height proportional to the number of patients in each
group. Each block on the right side represents mRNA subtypes,
and lines connecting right and left side indicate the relationship
between lncRNA and mRNA subtypes
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AML study publication [1]. Detailed characteristics of
TCGA-AML cohort can be found in Additional file 7.

Sequencing and bioinformatics processing
Transcriptomic RNA and somatic mutation panel of
genes were sequenced using the Illumina HiSeq-2500
platform. Ribosomal RNA depletion was performed
using the Ribo-Zero gold kit. HTSeq count version 0.6.1
[34] was used for gene expression estimation. RNAseq
count data normalization was performed using the
TMM method [35]. A total of 3030 lncRNAs were anno-
tated using MiTranscriptome database [6].

Subtype discovery and validation
Consensus clustering-based unsupervised learning was ap-
plied for subtype discovery [24]. Optimal number of clus-
ter (k = 4) was determined using weighted silhouette
index. For validation, first, we performed 10-fold cross-
validation on Cliniseq-AML data. At each cross-validation
round, data was randomly divided into train and test set.
Unsupervised learning was performed on training set, and
labels were used to train random forest model [26]. Labels
for test dataset were predicted using this model.
For independent validation, common lncRNA in Clinseq

and TCGA dataset were selected as features and batch
correction was applied [25]. We trained random forest
classifier [26] on batch-corrected Clinseq-AML data and
subtype labels were predicted for TCGA-AML data.

Clinical association and survival analysis
For association analyses, Chi-square test was used. Over-
all survival was measured from the date of diagnosis to
the date of death. Kaplan-Meier curve and non-
parametric log-rank statistic were used for comparison.
Uni-variable and multivariable Cox’s proportional haz-
ards regression models were fitted to the survival data.
In multivariate analysis, we adjusted for age, sex, eti-
ology, ELN score, and mutational status of genes. Ana-
lysis was carried out using R (version 3.1.1).
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