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Abstract

Background: We analyzed clinical associations of MET alterations in the plasma of patients with diverse malignancies.

Methods: Digital sequencing of circulating tumor DNA (ctDNA) (54-70 genes) was performed in 438 patients; 263
patients also had tissue sequencing (182-315 genes). The most represented tumor types were gastrointestinal (28.1%),
brain (24.9%), and lung (23.2%). Most patients (71.2%) had recurrent/metastatic disease.

Results: MET alterations were observed in 31 patients (7.1%) and correlated with bone metastasis (P = 0.007), with TP53
(P=0.001) and PTEN (P = 0.003) abnormalities, and with an increased number of alterations (median, 4 vs 1, P=0.001)
(all multivariable analyses). Patients with MET alterations demonstrated a significantly shorter median time to
metastasis/recurrence (1.0 vs 104 months, P=0.044, multivariable) and a poorer survival (30.6 vs 584 months,
P=0.013, univariate only). Of the 31 patients with MET alterations, 18 also had tissue testing; only two also
had tissue MET alterations (11.1%); MET alterations were detected at a lower frequency in tissue (1.14%) compared to
ctDNA (7.1%), with P =0.0002.

Conclusions: In conclusion, the detection of MET alterations by liquid biopsy is feasible. MET ctDNA alterations were
associated with a poorer prognosis, higher numbers of genomic abnormalities, and bone metastases. The correlation
with bone metastases may explain the higher frequency of MET alterations in blood ctDNA than in tissue (since bones
are rarely biopsied) and the previous observations of bone-predominant responses to MET inhibitors. The high
number of co-altered genes suggests that MET inhibitors may need to be combined with other agents to induce/

optimize responses.
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Background

MET, also called ¢c-MET or hepatocyte growth factor
(HGF) receptor, is a receptor tyrosine kinase discovered
as an oncogene in the 1980s [1, 2]. Independent research
found that HGF or scatter factor (SF) was a ligand for
MET [3]. Upon binding of HGF to MET, the kinase
domain phosphorylates growth factor receptor-bound
protein 2 (GRB2) and GRB2-associated binding protein
1 (GAB1) and activates diverse downstream signaling
pathways important in cancer, including the ERK/
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MAPK, PI3K-Akt/PKB, Crk-Rap, and Rac-Pak pathways
[4]. These pathways form distinct branches that interact
to regulate cell proliferation, invasion, migration, angio-
genesis, development, organ regeneration, and tumori-
genesis [4].

Activating MET mutations are found in diverse human
cancer [5]. For instance, activating mutations in the
kinase domain are a feature of both hereditary and some
non-hereditary forms of papillary renal cell carcinoma
[6]. MET amplification is seen in 5 to 20% of non-small
cell lung cancer (NSCLC) and gastric cancer [7]. MET
overexpression correlates with poor treatment outcome
in some malignancies [8].

Drugs that target MET include inhibitors of the HGF/
-MET pathway, MET antibodies, and MET kinase
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inhibitors [8]. Cabozantinib and crizotinib are both Food
and Drug Administration (FDA)-approved multikinase
inhibitors that are also potent suppressors of MET [9, 10].
Crizotinib induced responses in some patients with highly
MET-amplified lung cancer [11]. Studies with the
multi-target MET inhibitor cabozantinib have shown sig-
nificant activity against a variety of solid tumors including
melanoma, as well as renal and non-small cell lung, liver,
medullary thyroid, breast, and ovarian cancer, but this ac-
tivity is likely due to other targets of cabozantinib, such as
VEGER or RET [9]. In the phase I setting, patients with
MET amplification did not respond to MET inhibitors
(but the number of treated patients was small) [5].

Because of their non-invasive nature, liquid biopsies
are increasingly used in the clinical setting. Indeed, nu-
merous studies showed a relatively good correlation with
tissue sequencing and the potential to detect actionable
alterations [12—-16]. In this study, we analyzed MET al-
terations in the plasma-derived circulating tumor DNA
(ctDNA) of 438 patients with diverse malignancies and
explored the relationship between MET alterations,
demographics, as well as other molecular alterations and
clinical outcomes.

Methods

Patients

We reviewed the clinicopathology and clinical outcomes
of 438 consecutive patients with cancer for whom ctDNA
testing had been performed and who were seen at the UC
San Diego Moores Cancer Center from June 2014 to July
2016. Pathology was reviewed at UCSD. Data was ab-
stracted from the electronic medical record. This study
was performed and consents were obtained in accordance
with the UCSD Institutional Review Board guidelines
[PREDICT-UCSD (Profile Related Evidence Determining
Individualized Cancer Therapy); NCT02478931].

Next-generation sequencing

Digital sequencing of ctDNA (DNA) in all patients was
performed by Guardant Health, Inc. (Guardant360,
Redwood City, California, http://www.guardanthealth.-
com/guardant360/), a Clinical Laboratory Improvement
Amendment (CLIA)-certified and College of American
Pathologists (CAP)-accredited clinical laboratory. The
analytical and clinical validation of Guardant360 was
conducted in accordance with evidentiary standards
established by the Standards for Reporting of Diagnostic
Accuracy (STARD), REporting of tumor MARKer Stud-
ies (REMARK), Evaluation of Genomic Applications in
Practice and Prevention (EGAPP), and the recent
Next-generation Sequencing: Standardization of Clinical
Testing (Nex-StoCT) biomarker guidelines [17]. As de-
scribed in Lanman et al. [17], 5-30 ng of ctDNA was
isolated from plasma (two 10 ml Streck tubes drawn for
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each patient) and sequencing libraries were prepared
with custom in-line barcode molecular tagging and
complete sequencing at 15,000x read depth (~4000
unique double-stranded cfDNA fragments, each repre-
sented by 3-5 sequencing reads). The panels utilize hy-
brid capture followed by NGS of the critical exons in a
panel of 54-70 genes (Additional file 1: Table S1 to S3)
and report all four major types of genomic alterations
(point mutations, indels, fusions, and copy number am-
plifications). Post-sequencing bioinformatics matches the
complementary strands of each barcoded DNA fragment
to remove false positive results [17]. The variant allele
fraction (VAF) is computed as the number of mutated
DNA molecules divided by the total number (mutated
plus wild type) of DNA fragments at that allele; VAF is
reported as a percentage. The majority of cell-free DNA
is wild type (germline); thus, the median VAF of somatic
alterations is < 0.5%. The analytic sensitivity reaches de-
tection of one to two single-mutant fragments from a
10-ml blood sample (0.1% limit of detection), and the
analytic specificity is greater than 99.9999% [17].

For 144 patients, a 54-gene panel was used, which
identified potential tumor-related alterations in 54
cancer-related genes (Additional file 1: Table S1) includ-
ing copy number amplifications in ERBB2, EGFR, and
MET (indels and fusions were not detected as part of
this panel). For 272 patients, a 68-gene version of the
original panel (expanded to all four major alteration
types) was used, and for 22 patients, the most recent
70-gene panel version (further expanded to amplifica-
tions in 18 genes and fusions in 6 genes) was applied
(Additional file 1: Table S2 and S3). Only non-synonymous
alterations were included in our analysis.

In addition, 263 patients (~60%) of the 438 patients
with  ctDNA test also had CLIA/CAP-accredited
next-generation sequencing (NGS) performed on tumor
tissue (FoundationOne™, Cambridge, Massachusetts, http://
www.foundationone.com.) (N = 182 to 315 gene panels).

Statistical and outcome analysis

Patient characteristics were summarized using descrip-
tive statistics. Medians and respective 95% confidence
intervals and range were calculated, whenever possible.
Associations between categorical variables were tested
using a binary logistic regression model. Linear variables
were tested using the Mann-Whitney U test for univari-
able analyses and a multiple linear regression model for
multivariable analyses.

Time to metastasis/recurrence was defined as the time
interval between diagnosis and first metastasis/recur-
rence (whichever came first) or last follow-up date
(patients who had not recurred/developed metastases at
last follow-up were censored on that date). Overall sur-
vival (OS) was defined as the time from diagnosis to


http://www.guardanthealth.com/guardant360
http://www.guardanthealth.com/guardant360
http://www.foundationone.com
http://www.foundationone.com

Ikeda et al. Journal of Hematology & Oncology (2018) 11:76

death or last follow-up date for patients who were alive
(patients still alive at the last follow-up were censored
on that date). Estimations for the time to first metasta-
sis/recurrence and OS were done using Kaplan-Meier
analyses and were compared among subgroups by the
log-rank test for univariable analysis or Cox regression
models for multivariable analysis. All statistical analyses
were performed by author MS with SPSS version 24.0.

Results

Patient demographic characteristics

The median age of patients at diagnosis was 57.5 years
(CI 95%, 54.5-59.1). Women comprised 52.1% (N = 228)
of the population. The majority of patients were Caucasian
(69.2%, N =303). The most represented tumor types were
gastrointestinal (28.1%, N=123), brain (24.9%, N =109),
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lung (23.2%, N =102), and breast (11.6%, N =51) cancers.
The majority of the patients had recurrent or metastatic
disease at the time of blood draw used for testing (71.2%,
N =312) (Table 1).

MET alterations and associations with patient characteristics
Overall, MET alterations were observed in 31 of the 438
patients whose ctDNA was tested (7.1%). Sixteen pa-
tients had a MET amplification only; 13 had a somatic
mutation only; and two had both an amplification and a
somatic MET mutation (Fig. 1a).

Univariate analyses

MET alterations were significantly (positively) associated
with lung cancers (11.8%) and the presence of metasta-
sis/recurrence at the time of blood draw and negatively

Table 1 Demographics comparison of 438 patients with or without MET alterations

Characteristics Total patients, MET wild type, MET alteration(s), P values*
N =438 (100%) N =407 (92.9%) N=31(7.1%)
Age at diagnosis (years) (median, Cl 95%) 57.5 (54.5-59.1) 57.7 (55.3-59.2) 53.8 (49.0-62.2) 0.791
Gender 0.288
Women 228 (52.1%) 209 (91.7%) 19 (8.3%)
Men 210 (47.9%) 198 (94.3%) 12 (5.7%)
Ethnicity
Caucasian 303 (69.2%) 284 (93.7%) 19 (6.3%) 0.326
Asian 52 (11.9%) 46 (88.5%) 6 (11.5%) 0.188
Hispanic 30 (6.8%) 28 (93.3%) 2 (6.7%) 0928
African American 9 (2.1%) 8 (88.9%) 1 (11.1%) 0.637
Middle Eastern 5(1.1%) 5 (100%) 0 (0%) 0.998
Unknown 39 (8.9%) 36 (92.3%) 3 (7.7%) 0.875
Type of cancer
Gastrointestinal 123 (28.1%) 118 (95.9%) 5 (4.1%) 0.132
Brain 109 (24.9%) 107 (98.2%) 2 (1.8%) 0.026**
Lung 102 (23.2%) 90 (88.2%) 12 (11.8%) 0.039**
Breast 51 (11.6%) 45 (88.2%) 6 (11.8%) 0.172
Genitourinary 18 (4.1%) 15 (83.3%) 3 (16.7%) 0.120
Head and neck 10 (2.3%) 9 (90.0%) 1 (10.0%) 0.717
Gynecologic 7 (1.6%) 6 (85.7%) 1 (14.3%) 0465
Melanoma 5(1.1%) 4 (80.0%) 1 (20.0%) 0.285
Hematologic 3 (0.7%) 3 (100%) 0 (0%) 0.998
Other® 10 (2.3%) 10 (100%) 0 (0%) 0.998
Presence of metastasis or recurrence at the time of blood draw
Yes 312 (71.2%) 284 (91.0%) 28 (9.0%) 0.024%*
No 126 (28.8%) 123 (97.6%) 3 (2.4%)

The percentages on the first column are expressed over the total number of patients (N =438); for the second and third columns, percentages are expressed over

the total number of patients for each variable

Lymphoma (n = 2), sarcoma (n = 2), thymoma (n = 2), desmoid tumor, neurofibromatosis, peripheral nerve sheath tumor, and carcinoma of unknown primary (each n=1)
*P values were computed using the independent sample Mann-Whitney U test for linear variables (age at diagnostic) and the logistic binary regression analysis for

categorical variables, as appropriate

**MET alterations were negatively associated with brain tumors but positively associated with lung tumors and metastasis or recurrence at the time of blood draw
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Fig. 1 a MET alterations representation. Pie chart representing the different types of MET alterations identified in our cohort comprising 438 patients.
b Overall survival and time to first metastasis/recurrence. Kaplan-Meier curves depicting the overall survival (left panel) and the time to first metastasis/
recurrence (both from diagnosis time). P values are from univariable analysis. For more details, refer to Tables 4 and 5

associated with brain tumors 1.8% (all P < 0.05) (Table 1).
We then examined the associations with other genomic
alterations and found that MET alterations correlated in
univariable analysis with alterations in 7TP53, EGFR,
PIK3CA, BRAF, ARIDIA, ALK, and PTEN genes (all P<
0.05, Additional file 1: Table S4). We also investigated
the potential associations between MET alterations and
the location of metastatic sites and showed a significant
correlation with lymph nodes and bone metastasis (both
P <0.02, Additional file 1: Table S4). Of note, patients
with MET alterations had a median of two metastatic
sites versus a single site for patients without MET alter-
ations (P =0.001). The latter conclusions remained un-
changed if the patients with brain tumors, lymphoma/
leukemia, thymoma, and NF were excluded, with P values
of <0.05 for association between MET alterations and
lymph node or bone metastases and increased number of
metastases.

Multivariate analyses

In the multiple logistic regression model (that included any
parameters that were significant (P<0.05) in univariate
analysis), the only variables that remained statistically
associated with MET alterations were aberrations in TP53
(P=0.001) and PTEN (P=0.003) genes, as well as an in-
creased incidence of bone metastasis (P =0.007) (Table 2).

The univariate association between MET alterations and
lung cancer, the negative association with brain tumors,
and the correlation with metastases at the time of blood
draw did not remain significant in multivariate analysis.
Multivariable analysis also demonstrated that MET alter-
ations correlated with an increased number of alterations
(median of 4 alterations vs 1, P=0.001) (Table 3). These
conclusions remained valid if the patients with brain tu-
mors, lymphoma/leukemia, thymoma, and NF were ex-
cluded, with P values of <0.01 for association between
MET alterations and TP53 or PTEN alterations, bone me-
tastases, and increased number of metastases.

The other variables that were significantly associated
with a higher number of alterations in the multivariable
analysis were alterations in TP53, PIK3CA, BRAF, KRAS,
or MYC genes as well as the presence of metastasis in
the lymph node or adrenal tissue (Table 3).

MET alterations and survival outcomes

Overall survival

Overall, 213 patients (213/438, 48.6%) had died at the
time of our analysis (20/31 with MET alterations; 193/
407 without MET alterations detected in their ctDNA).
A log rank test demonstrated a poorer survival (time
from diagnosis until death or last follow-up date) for pa-
tients bearing MET alterations (30.6 months vs 58.4,
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Table 2 Multivariable analysis of the variables associated with MET alterations*

MET wild type, MET altered,  Univariable Multivariable
N=407 N=31
Characteristics Wald  Odds ratio (Cl 95%) P value Wald Odds ratio (Cl 95%) P value
Type of cancer
Brain (n = 109)** 107 (26.3%) 2 (6.5%) 494 0.9 (0.05-0.83) 0.026** - - -
Lung (n=102) 90 (22.1%) 12 (38.7%) 426 222 (1.04-4.76) 0.039 - - -
Presence of metastasis or recurrence 284 (69.8%) 28 (90.3%) 513 40 (1.2-143) 0.024 - - -
at the time of blood draw (n=312)
Genetic alteration type
TP53 (n=149) 129 (31.7%) 20 (64.5%) 122 3.85(1.82-833) <0001 109 37(1.7-83) 0.001
EGFR (n=53) 43 (10.6%) 10 (32.4%) 112 40(1.79-9.1) 0.001 - - -
PIK3CA (n=42) 5 (8.6%) 7 (22.6%) 593 31(1.25-7.7) 0.015 - - -
BRAF (n=27) 2 (54%) 5(16.1%) 514 33(1.2-10.0) 0.023 - - -
ARIDTA (n=19) 5(3.7%) 4 (12.9%) 514 385(1.2-125) 0.023 - - -
ALK (n=14) 11 (2.7%) 3 (9.7%) 394 385(1.02-143) 0.047 - - -
PTEN (n=9) 6 (1.5%) 3 (9.7%) 772 7.1 (1.7-333) 0.007 9.12 11.1 (2.3-50.0) 0.003
Metastatic sites
Lymph node (n=139) 123 (30.2%) 16 (51.6%) 577  24(1.2-53) 0.016 - - -
Bone (n=102) 88 (21.6%) 14 (45.2%) 826 29 (14-63) 0.004 734 29(1.35-6.25) 0.007
No metastases (n = 147)** 145 (35.6%) 2 (6.5%) 796  0.13 (0.03-0.5) 0.005** - - -

The Wald statistics test the unique contribution of each variable; the higher the Wald statistics, the higher the association/contribution in the model
*Only variables that were significant in the univariable models (logistic regression) were included in the multivariable analysis, with the final model containing only

significant covariates in the multivariable analyses (forward stepwise selection model)

**Brain tumors” and “no metastases” were negatively associated with MET alterations in univariate analysis. These variables were not significant in the final multivariate

analysis model

P =0.013). In the multivariable analysis, only lung cancer
as well as the presence of ARIDIA, KRAS, ALK, and MYC
alterations and liver metastasis remained significant pre-
dictors of a poorer survival (all P < 0.50, Fig. 1b) (Table 4).

Time to metastasis/recurrence

Patients with MET alterations had a significantly shorter
median time to metastasis/recurrence, with a median of
1.0 months (95%CI could not be computed) versus
10.4 months (95%CI 6.9-14.0) (P =0.003) (Table 5).
MET alterations remained significantly associated with a
shorter time to metastasis/recurrence in a multivariable
analysis (P =0.044), along with the presence of liver
(P=0.022) or lymph node metastases (P<0.001). In-
versely, breast cancer correlated with a longer time to
metastasis/recurrence (P < 0.001) (Fig. 1b and Table 5).

Comparison with tissue testing
As noted, 438 patients had ctDNA testing; 263 of these
patients also had tissue NGS performed.

Of the 31 patients with MET alterations in ctDNA, 18
also had tissue testing (Foundation Medicine see the
“Methods” section). The median time interval between
the blood draw and the tissue biopsy for these 18 patients
was 6.1 months (95% CI (2-13.7); range (0.2-32.6)). In

most of the patients with both types of testing, the ctDNA
test was performed after the tissue testing (16/18 cases).
Only two patients who had a MET alteration identified in
their ctDNA also had a MET alteration found in their tis-
sue testing (11.1%; MET amplification and MET Y501C,
one patient each). In these two patients, the time interval
between the ctDNA and tissue biopsies was 1.8 and
15.3 months, and both tissues used for the testing were
from the primary tumor.

In only one patient, a MET amplification was de-
tected in the tissue and not in ctDNA (1 of 263 total
patients who had NGS tissue testing). The tissue test
was performed on a pancreatic tumor that was surgi-
cally removed, and the ctDNA test was done more
than 1 year later (recent scans showed appearance of
new pulmonary and liver nodules 2 months prior the
ctDNA testing).

Opverall, MET alterations were detected at a significantly
lower frequency in tissue (3/263 patients, 1.14%) com-
pared to ctDNA (31/438, 7.1%), P=0.0002. Further, of
eight patients who harbored MET alterations in ctDNA,
and had ctDNA and tissue testing within 2 months of
each other, only one patient showed a similar MET alter-
ation in the tissue. Six of the seven patients with only
ctDNA positive for MET alterations had bone metastases.
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Table 3 Association with the number of alterations*
Variables Median N of alterations P value t statistic P value
(95% CI) (range) (univariable) (multivariable) (multivariable)
Overall 1(1-1) (0-26)
Tumor type
Gastrointestinal 2 (1-2) (0-26) 0.031 - -
Brain 0 (0-0) (0-5) <0.001 - -
Lung 2 (2-3) (0-21) <0.001 - -
Genomic alterations
MET 4 (3-6) (1-21) <0.001 335 0.001
TP53 3 (3-3) (1-21) <0.001 6.86 <0.001
EGFR 3 (3-4) (1-26) <0.001 - -
PIK3CA 5 (4-6) (1-26) < 0.001 7.31 <0.001
BRAF 5 (4-6) (1-26) <0.001 6.54 <0.001
KRAS 4 (3-4) (1-26) <0.001 6.01 <0.001
MyYC 5(3-6) 2-7) <0.001 2.70 0.007
Metastatic/recurrence at the time of blood draw 2 (1-2) (0-26) <0.001 - -
Metastatic sites
Lymph node 2 (2-3) (0-21) <0.001 2.05 0.041
Bone 2 (2-3) (0-26) <0.001 - -
Liver 2 (2-3) (0-26) <0.001 - -
Lung 2 (1-3) (0-19) 0.010 - -
Brain 2 (1-3) (0-21) <0.001 - -
Adrenal 2 (2-4) (0-20) <0.001 2.06 0.040

*Only variables with > 20 patients in the overall population were tested. Only significant variables in the univariable analysis (non-parametric Mann-Whitney U test)
were included in the multivariable model (multiple linear regression), with the final model containing only significant covariates (stepwise model selection).
The t statistics test the unique contribution of each variable; the higher the t statistics, the higher the association/contribution in the model

Discussion

This is the largest study interrogating the feasibility and
utility of MET alteration detection through blood-derived
ctDNA. Liquid biopsy is a non-invasive method to find
genomic aberrations and is increasingly utilized in the
clinical setting as reflected by the non-small cell lung can-
cer National Comprehensive Cancer Network (NCCN)
guidelines [18, 19]. Our study demonstrated that MET
ctDNA alterations were detected in 7.1% of patients with
solid tumors. This detection rate is higher compared to
previous tissue studies [5, 20, 21]. For instance, a study of
MET tissue amplification determined by fluorescent in
situ hybridization (FISH) demonstrated that 2.6% of 1115
solid tumor specimens were positive [5]. Furthermore, the
MSKCC-IMPACT study showed that 3% of patients had
MET tissue alterations [20, 21]. The differences in rate of
MET alterations between our study and the other studies
could be due to following reasons: (i) our technology de-
tected both single nucleotide substitutions and amplifica-
tions, while the previous investigation by Jardim et al. at
MD Anderson Cancer Center [5] discerned only amplifi-
cations (though the MSKCC study would have discerned
both single nucleotide substitutions and amplifications

[21]); (ii) our study used blood-derived ctDNA, which
could capture shed tumor DNA from multiple sites, while
the previous reports used tissue-based testing, which
would only detect aberrations in the piece of tissue biop-
sied. Consistent with the above observations, our tissue
NGS testing also showed significantly lower rates of MET
alterations than the ctDNA NGS: 3 of 263 patients (1.1%)
(who also had ctDNA tests) were positive for MET alter-
ations in tissue versus 31 of 438 ctDNA-tested patients
(7%) being positive for MET alterations (P = 0.0002). Fur-
ther, of 18 patients positive for MET ctDNA alterations
who also had tissue NGS, only 2 (11.1%) were also positive
for a MET alteration by tissue NGS. The biologic under-
pinnings of discordance between ctDNA and tissue NGS
results have been previously documented and include
spatial (intra-tumor and inter-tumor) and temporal het-
erogeneity in genomic anomalies in cancers along with
the fact that ctDNA is comprised of DNA that has leaked
into the circulation from diverse metastatic sites while tis-
sue NGS reflects only the tissue specimen analyzed [14].
The question that arises is whether or not biological
explanations can specifically account for the higher rate
of MET alterations in ctDNA. Of interest in this regard,
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Table 4 Overall survival analysis (N =438 patients)*
Univariable Multivariable
Characteristics Median time (months) (std. error) P value Wald Hazard ratio P value
(Cl 95%)
Type of cancer

Gastrointestinal (n = 123) vs not 363 (4.5) vs 71.6 (6.5) 0.002 - - -

Brain (n=109) vs not** 95.0 (50.1) vs 51.5 (5.9) 0.003 - - -

Lung (n=102) vs not 31.8 (6.0) vs 61.0 (7.4) 0.002 9.59 1.7 (1.21-4.04) 0.002

Breast (n=51) vs not 104.8 (20.3) vs 50.0 (5.6) 0.027
Genetic alteration type

MET (n=31) vs not 306 (6.2) vs 584 (6.3) 0.013 - - -

TP53 (n=149) vs not 42.1 (6.1) vs 66.5 (10.3) 0.003 - - -

PIK3CA (n=42) vs not 432 (106) vs (584 (6.3) 0.013 - - -

ARID1A (n=19) vs not 24.8 (6.2) vs 584 (6.8) 0.002 7.98 2.7 (1.25-4.0) 0.005

KRAS (n=50) vs not 3 (7.3) vs 59.7 (6.5) <0.001 1568 2.1 (15-3.12) <0001

ALK (n=14) vs not 31.3(9.0) vs 583 (6.7) 0.015 5.76 2.04 (1.14-37) 0016

SMAD4 (n=12) vs not 7 (8.2) vs 58.3 (6.2) 0.007 - - -

MYC (n=20) vs not 222 (39) vs 59.1 (6.5) <0.001 759 217 (1.24-3.77) 0.006
Metastatic/recurrence at the time of 53.6 (4.9) vs NR 0.011 - - -
blood draw vs not
Metastatic sites

Liver (n=111) vs not 493 (8.2) vs 59.1 (7.9) 0.023 4.85 14 (1.03-1.89) 0.028

Lymph node (n=139) vs not 399 (74) vs 741 (11.1) <0.001 - - -

Only variables that were significant in the univariable models (log rank test) were included in the multivariable analysis (Cox regression model), with the final
model containing only significant covariates in the multivariable analyses (forward stepwise selection model). The Wald statistics test the unique contribution of

each variable; the higher the Wald statistics, the higher the association/contribution in the model

NR not reached

*Overall survival was defined as the time from diagnosis to death or last follow-up date
**Brain tumors (N =109) included n =50 glioblastoma cases, while the rest of the tumors were lower grade astrocytomas or other lower grade brain tumors

our study showed that bone metastases were independ-
ently correlated with MET alterations (Additional file 1:
Table S2 and Table S4). Indeed, 14 of 31 patients (45%)
positive for MET ctDNA alterations had bone metastases
(Additional file 1: Table S4). Of possible relevance in this
regard, MET inhibitors are known to show efficacy in
bone lesions [22, 23]. In the COMET-1 trial, 682 patients
with castrate-resistant prostate cancer who progressed
after docetaxel and androgen modulators (abiraterone
and/or enzalutamide) were randomly assigned to either
cabozantinib (MET inhibitor) or prednisone. Although
there was no difference in overall survival, 42% of cabo-
zantinib-treated patients showed bone scan response com-
pared to 3% of prednisone-treated patients (P < 0.001),
albeit without prostate surface antigen (PSA) response [24].
In the METEOR trial, 658 patients with advanced renal cell
carcinoma who progressed with at least one VEGFR small
molecule inhibitor were randomized to the MET inhibitor
cabozantinib or the mTOR inhibitor everolimus [25]. In a
sub-group analysis, patients randomized to cabozantinib
arm with bone metastasis were associated with better over-
all survival (OS) (hazard ratio (HR) 0.54, 95% confidence
interval (CI) 0.34-0.84) compared with non-bone

metastasis (HR 0.71, 95% CI 0.55-0.91) [25]. These data to-
gether with our results raise the possibility that cancer
clones with MET alterations preferentially localize to bone
and may therefore explain bone responses after MET in-
hibitor therapy. Tissue biopsies are rarely performed
on bones (none of our 18 patients with MET alter-
ations in ctDNA who also had tissue NGS had a bone
biopsy). Of interest in this regard, MET is promin-
ently expressed (as determined by immunohistochem-
istry) at the site of bone metastases in renal cell
cancer [26]. It is therefore conceivable that the high rates
of ctDNA positivity for MET alterations, which strongly
and independently correlated with bone metastases in our
study, reflect shed MET alteration-bearing DNA from
bone lesions (Additional file 1: Table S2 and Table S4).
Our study also found that MET ctDNA alterations are
associated with poor prognosis, including decreased sur-
vival and shorter time to recurrence/metastasis (Tables 4
and 5, Fig. 1b). These results are consistent with those
found by correlating MET alterations found in tissue
NGS with outcome in specific malignancies, such as as-
trocytomas [27], breast cancers [28], genitourinary ma-
lignancies [29], and ovarian [30] or gastric/esophageal
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Table 5 Time to metastasis/recurrence from diagnosis (N =438 patients)*
Univariable Multivariable
Characteristics Median time (months) (95% Cl) P value Wald Hazard ratio P value
(Cl 95%)
Type of cancer
Gastrointestinal (n = 123) vs not 0.67 (0-1.9) vs 14.1 (8.3-19.8) <0.001 - - -
Brain (n=109) vs not 42.8 (19.0-66.7) vs 2.5 (0.49-4.4) <0.001 - - -
Lung (n=102) vs not 0.6 (0-1.3) vs 14.0 (9.5-186) <0.001 - - -
Breast (n=51) vs not 304 (14.3-464) vs 7.0 (3.8-10.2) 0.001 40.03 0.33 (0.23-047) <0001
Genitourinary (n=18) vs not 0 (=) vs 10.1 (6.8-13.4) 0.020 - - -
Head and neck (n=10) vs not 0 (=) vs 9.8 (6.2-134) 0.015 - - -
Genetic alteration type
MET (n=31) vs not 1.0 () vs 104 (6.9-14.0) 0.003 4.05 147 (1.01-2.13) 0.044
TP53 (n=149) vs not 4.1 (0.5-7.7) vs 12.7 (6.1-19.3) 0.001 - - -
EGFR (n=53) vs not 3.6 (0-8.2) vs 11.4 (7.9-14.8) 0.003 - - -
ARIDIA (n=19) vs not 3.6 (0-10.1) vs 10.0 (6.3-13.7) 0013 - - -
KRAS (n=50) vs not 0(=)vs 114 (83-13.7) <0.001 - - -
SMAD4 (n=12) vs not 0 (=) vs 10.1 (6.7-13.4) 0.040 - - -
MYC (n=20) vs not 0.2 (0-0.75) vs 104 (7.0-13.9) <0.001 - - -
Metastatic sites
Adrenal (n=29) vs not 0 (=) vs 11.3 (8.0-146) 0.002 - - -
Bone (n=102) vs not 15 (0-6.7) vs 114 (8.2-14.5) 0.049 - - -
Liver (n=111) vs not 0.9 (0-2.6) vs 1323 (9.7-16.9) <0.001 10.04 149 (1.16-1.92) 0.022
Lymph node (n=139) vs not 0.3 (=) vs 20.1 (14.3-25.9) <0.001 1341 154 (1.22-1.92) <0.001
Peritoneal (n=49) vs not 0 (=) vs 11.3 (8.1-14.5) <0.001 - - -
Brain (n=63) vs not 3.6 (0-7.8) vs 104 (7.0-13.9) 0.045 - - -
Lung (n=90) vs not 1.2 (0-8.0) vs 11.3 (7.7-15.0) 0.003 - - -

The Wald statistics test the unique contribution of each variable; the higher the Wald statistics, the higher the association/contribution in the model
*Only variables that were significant in the univariable models (log rank test) were included in the multivariable analysis (Cox regression model), with the final
model containing only significant covariates in the multivariable analyses (forward stepwise selection model). For some values, the 95% Cl could not be computed (-)

cancers [31]. Specific genes that were co-altered with
MET in multivariate analysis of our study participants
include PTEN and TP53 (Table 2); previously, another
study has also shown the association between MET and
PTEN abnormalities [5]. Overall, MET alterations signifi-
cantly correlated with a higher number of alterations,
which may explain—at least in part—the relatively lim-
ited efficacy of MET inhibitors as single agents for the
treatment of AMET-altered advanced malignancies ob-
served in prior studies [5, 29-31]. Indeed, if patients
with MET alterations generally have multiple genomic
abnormalities, it is likely that combination therapy, ra-
ther than monotherapy with a MET inhibitor, may be
necessary to achieve salutary effects.

Our study has several limitations. First, only 60% of
our patients (N = 263) with ctDNA analyses also had tis-
sue sequencing and the median time between the two
tests in the patients with MET-altered ctDNA was about
6 months. Second, our patients did not have bone biop-
sies done, which would be of interest to determine if

MET alterations are found in such biopsies, since ctDNA
MET alterations correlate independently with the pres-
ence of bone metastases. Third, though our study with
438 patients is the largest to date, the rarity of MET
alterations suggests that investigations of even greater num-
bers of patients may be worthwhile in order to best under-
stand the biology and correlations of MET alterations.

Conclusions

In summary, our study demonstrated that assessment of
MET genomic aberrations by liquid biopsy is feasible. We
found that MET ctDNA anomalies were associated with
bone metastases, multiple genomic alterations, and a poorer
prognosis, including poorer overall survival and a shorter
time to recurrence/metastases. Further studies are needed
to better understand the biologic relationship between MET
alterations and bone lesions, and next-generation trials with
MET inhibitors may require combinations of drugs that ad-
dress the genes such as PTEN that are frequently co-altered
in these patients.
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Additional file

Additional file 1: Table S1. 54-gene panel (N =122 patients)— identifies
potential tumor-related genomic alterations within 54 cancer-related genes
including amplifications in ERBB2, EGFR, and MET. Only non-synonymous
alterations were analyzed. Table S2. 68-gene panel (N =272 patients),
comprising amplifications in 16 genes as well as some fusions and
indels. Only non-synonymous alterations were analyzed. Table S3. 70-gene
panel (N =22 patients). Only non-synonymous alterations were analyzed.
Table S4. Comparison of clinical characteristics in 438 patients with
or without MET alterations (univariate analysis). (DOCX 20 kb)
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