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Basket trial of TRK inhibitors demonstrates
efficacy in TRK fusion-positive cancers
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Abstract

Unlike many conventional cancers with preferential patterns of oncogenic genetic alterations, TRK fusions resulting
from NTRK1/2/3 genetic alterations drive oncogenic transformations in more than 20 different malignancies over
diverse tissue/cell lineages, in both children and adults. A recent “basket” study of larotrectinib, a TRK inhibitor, has
demonstrated significant efficacy in TRK fusion-positive tumors of all types from infants to the elderly. Here, we
discuss the larotrectinib study and perspectives and challenges in developing “tumor-agnostic” targeted therapies
in rare tumors.

Background
Traditionally, cancers are classified and treated based on
their pathologic classification and tissue of origin.
Advances in sequencing technology and large-scale cancer
genomics effort (e.g., the International Cancer Genome
Consortium and The Cancer Genome Atlas (TCGA) have
identified many targetable driver genetic alterations across
different tumor types and have shifted the cancer
sub-classification based on driver genetic alterations. For
example, lung adenocarcinomas are further sub-classified
by KRAS and EGFR mutations and ALK and ROS1 trans-
location. Most “driver” genetic alterations are preferen-
tially found in certain cell/tissue lineages. For example, the
BRAFV600 mutation occurs at high frequencies in specific
tumor types, e.g., melanoma, thyroid cancer, hairy cell
leukemia, Langerhans cell histiocytosis, and colorectal
cancer, and at significantly lower frequencies in other
tissue lineages. The responses to BRAFV600-targeted ther-
apies are not uniform, with some cancer types (e.g., colo-
rectal cancer) exhibit tissue lineage-specific primary
resistance [1–3], underlining the importance of the tissue
lineage-specific cellular context.

TRK fusions are rare but drive oncogenesis in
diverse tissue lineages
The NTRK1, NTRK2, and NTRK3 genes, encoding the
tropomyosin receptor kinases (TRK), TRKA, TRKB, and
TRKC, respectively, are receptor tyrosine kinases that
are normally expressed in the nervous system [4].
Physiologically, TRK receptor tyrosine kinases are acti-
vated by binding of mature neurotrophins, which medi-
ate neuronal survival and synaptic plasticity in the
central nervous system [4]. NTRK genetic alterations
(e.g., translocations) resulting in TRK fusion proteins
can lead to ligand-independent activation of TRK
kinases and drive oncogenic transformation [5–7]. To
date, TRK fusions are found in more than 20 different
tumor types. With the exception of several rare tumor
types (e.g., secretory breast carcinoma, mammary analog
secretory carcinoma, congenital fibrosarcomas, and con-
genital mesoblastic nephroma), the majority of the TRK
fusions occur in low frequencies in a variety of common
cancers over a diverse tissue/cell lineages (e.g., lung
adenocarcinoma, sarcoma, acute myeloid leukemia,
colorectal cancer) [6, 7] (Table 1). The rarity of TRK
fusions and the heterogeneity of tumor types present
incredible challenges to clinically evaluate TRK inhibi-
tors. Diagnostically, because of large introns, these
fusions are difficult to detect using multiplex targeted
exome capture panels (e.g., FoundationOne®,
MSK-IMPACT™).
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Table 1 Rare TRK fusions in diverse tumor types
Tumor type NTRK1/2/3 involved (frequency) Detection methods

Ph-like acute lymphoblastic leukemia NTRK3 (1/154) RNA-seq, whole-genome seq, whole-exome seq [18]

Appendiceal adenocarcinoma NTRK (unspecified) (2/97) MALDI-TOF mass spectroscopy genotyping (Sequenom),
targeted NGS (MSK-IMPACT) [19]

Astrocytoma NTRK2 (3/96) RNA-seq, whole-genome seq [20]

Breast invasive carcinoma NTRK3 (1/1072) RNA-seq (TCGA) [21]

Intrahepatic cholangiocarcinoma NTRK1 (1/28) Targeted NGS [22]

Colon adenocarcinoma NTRK1 (8/1559) IHC, RT-PCR [23]

NTRK1 (1/66) IHC, RT-PCR [24]

NTRK3 (2/286) RNA-seq (TCGA) [21]

GIST NTRK3 (1/186) Targeted NGS (Foundation Medicine) [25]

NTRK3 (1/31) RNA-seq, FISH, RT-PCR [26]

Glioblastoma NTRK1 (1/157) RNA-seq (TCGA) [21]

NTRK1 (2/185) RNA-seq (TCGA and other) [27]

NTRK1 (3/115) Targeted NGS [28]

Brain low-grade glioma NTRK2 (2/461) RNA-seq (TCGA) [21]

Pediatric DIPG and non-brainstem
high-grade glioma

NTRK1 (3/127) RNA-seq, whole-genome seq [29]

NTRK2 (3/127) RNA-seq, whole-genome seq [29]

NTRK3 (2/127) RNA-seq, whole-genome seq [29]

Head and neck squamous cell carcinoma NTRK2 (1/411) RNA-seq (TCGA) [21]

NTRK3 (1/411) RNA-seq (TCGA) [21]

Congenital mesoblastic nephroma NTRK3 (5/6) RT-PCR, FISH [30]

NTRK3 (10/15) RT-PCR [31]

NTRK3 (13/19) FISH [32]

Infantile (congenital) fibrosarcoma NTRK3 (10/11) RT-PCR, IHC [33]

NTRK3 (5/5) RT-PCR, FISH [30]

Lung adenocarcinoma NTRK1 (3/91) Targeted NGS (Foundation Medicine), FISH [34]

NTRK2 (1/513) RNA-seq (TCGA) [21]

Breast secretory carcinoma NTRK3 (12/13) RT-PCR, FISH [35]

NTRK3 (9/9) FISH, targeted NGS [36]

Mammary analogue secretory carcinoma
(MASC) of salivary glands

NTRK3 (13/14) RT-PCR, FISH [37]

NTRK3 (15/15) FISH [38]

NTRK3 (5/6) FISH, targeted NGS [36]

NTRK3 (16/20) RT-PCR, FISH [39]

Melanoma (skin cutaneous) NTRK3 (1/374) RNA-seq (TCGA) [21]

Spitz tumors and spitzoid melanoma NTRK1(23/140) Targeted NGS(Foundation Medicine), FISH, IHC [40]

Sarcoma (NOS) NTRK1 (1/103) RNA-seq (TCGA) [21]

Uterine sarcoma NTRK1 (3/97) RNA-seq, FISH, IHC, targeted NGS [41]

NTRK3 (1/97) RNA-seq, FISH, IHC, targeted NGS [41]

Thyroid carcinoma NTRK1 (5/498) RNA-seq (TCGA) [21]

NTRK3 (7/498) RNA-seq (TCGA) [21]

Papillary thyroid carcinoma NTRK1 (15/119) RT-PCR [42]

NTRK1 (2/38) Southern [43]

NTRK1(pediatric) (1/27) Targeted NGS [44]

NTRK3(radiation-associated) (2/26) RNA-seq [45]

NTRK3(radiation-associated) (9/62) RNA-seq [46]

NTRK3(sporadic) (3/151) RNA-seq [46]

NTRK3(pediatric) (6/27) Targeted NGS [44]
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TRK inhibitor larotrectinib demonstrates efficacy
in a basket trial
Recently, Drilon and colleagues reported a phase I/II
clinical trial to evaluate the safety and efficacy of laro-
trectinib, a highly selective small-molecule inhibitor of
all three TRK proteins, using a novel “basket” trial
design that enrolled patients based on NTRK genetic al-
terations regardless of age or tumor types [8]. A total of
55 patients (ages 4 months–76 years old) with 16 differ-
ent tumor histologies were treated on three protocols,
and the results were pooled. The investigators found
that larotrectinib was generally well-tolerated with < 5%
treatment-related grade 3 or 4 adverse events. The over-
all RECIST response rate was 75% (95% confidence
interval, 61–85) by independent review and 80% (95%
confidence interval, 67–90) by investigator assessment.
At 1 year, 71% of patients are with ongoing responses
and 55% of patients remain progression-free. The me-
dian duration of response and progression-free survival
has not been reached after 8.3 and 9.9 months of median
follow-up, respectively. Importantly, responses were
observed in nearly all tumor types and age groups. Three
of the six patients who did not response to larotrectinib
(primary resistance) had undetectable TRK proteins by
immunohistochemistry (IHC) despite molecularly identi-
fied TRK fusion at a screening in local laboratories. In
the ten patients who progressed after an initial response
for at least 6 months, nine had identifiable secondary
resistant mutations in NTRK1 or NTRK3, including sub-
stitutions in the solvent front position (NTRK1 G595R
or NTRK3 G623R), gatekeeper mutation (NRTK1
F589 L), and the xDFG position NTRK1 G667S or
NTRK3 G696A). The acquired resistance mechanisms
have been described for other oncogenic kinase-targeted

therapies [9–11]. The next generation of TRK inhibitors
is in development to overcome the acquired resistance
in TRK [7, 12] (see Table 2).

Future perspectives
The study by Drillon et al. [8] comes on the heels of sev-
eral basket trials, including the AKT inhibitor AZD5363
in AKT1 E17K-mutant tumors [13], the PD1 inhibitor
pembrolizumab in mismatch repair deficient tumors [14],
and the pan-HER kinase inhibitor neratinib in HER2- and
HER3-mutant tumors [15], with variable clinical success.
This current study provides a compelling case for
tumor-agnostic, molecular-driven “basket” approaches for
clinical investigations of rare driver mutations across
diverse tumor types. It paves a clinical pathway to effective
therapeutics for patients with rare tumors and rare driver
mutations. In addition to larotrectinib, there is a variety of
TRK inhibitors currently in clinical development (Table 1),
including next-generation TRK inhibitors that can over-
come acquired resistance (e.g., LOXO-195, TPX-0005).
Despite the early clinical success with new generations

of TRK inhibitors and novel trial design, the challenges
remain for real-time identification of rare TRK fusions.
What would be the ideal diagnostics methodology?
DNA-based next-generation sequencing (NGS) assays
have relatively high false-negative and false-positive rate
and do not identify novel fusions. RNA-based NGS
assays (e.g., Archer Dx) can detect novel fusions and has
reasonable sensitivity. However, both DNA- and
RNA-based NGS assays can be costly and effort inten-
sive. Alternatively, IHC of TRK is a sensitive and
efficient method for identification of TRK expression
[16, 17]. Nevertheless, it would not readily discriminate
TRK fusion arising through genetic alterations where

Table 2 TRK inhibitors currently in clinical development

Drug name Targets Development
stage

Clinical trial
identifier

Company

LOXO-101 (larotrectinib) NTRK1/2/3 Phase II NCT02122913
NCT02637687
NCT02576431
NCT03213704

Loxo Oncology

LOXO-195 NTRK1/2/3 (resistant) Phase I/II NCT03215511 Loxo Oncology

RXDX-101 (entrectinib) NTRK1/2/3, ALK, ROS1 Phase I/II,
Phase II,
Phase I/Ib

NCT02097810
NCT02568267
NCT02650401

Ignyta

TPX-0005 (ropotrectinib) NTRK1/2/3, ALK, ROS1 (resistant), JAK2, SRC,
DDR1, FAK

Phase I/II NCT03093116 TP Therapeutics

LY2801653 (merestinib) NTRK1/2/3, MET, MST1R, FLT3, AXL, MERTK, TEK,
ROS1, DDR1/2, MKNK1/2

Phase II NCT02920996 Eli Lilly and Company

DS-6051b NTRK1/2/3, ROS1 Phase I NCT02675491
NCT02279433

Daiichi Sankyo

PLX7486 NTRK1/2/3, CSF1R Phase I NCT01804530 Plexxikon/Daiichi Sankyo

MGCD516 (sitravatinib) NTRK1/2/3, MET, KIT, PDGFRA, KDR, DDR2, RET, CBL Phase I/Ib NCT02219711 Mirati Therapeutics
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TRK inhibitors can be highly effective from full-length
TRK expression in tumors inherited through develop-
ment where the functional significance of TRK expres-
sion and clinically impact is unknown. TRK IHC can
also be associated with false positives in certain tissue
and tumor types. Furthermore, unlike NGS-based assays,
IHC cannot be easily multiplexed into a panel without
added cost and effort. While TRK IHC can be easily jus-
tified for high-prevalence tumors (e.g., congenital fibro-
sarcoma or secretory breast carcinoma), its role in
low-prevalence common tumors such as colorectal can-
cer becomes more debatable. Importantly, it is unclear
which diagnostic modality, NGS of NTRK alterations or
IHC of TRK expression, is more predictive of response
to TRK inhibitors. In the NEJM by Drilon et al., three
out of the six non-responders to larotrectinib did not
have centrally confirmed TRK expression by pan-TRK
IHC, despite the detection of NTRK rearrangement by
NGS in the local laboratory [8]. This observation sug-
gests that TRK expression by IHC may be necessary for
response. Currently, Pan-TRK IHC and Illumina NGS
(RNA and DNA assays in one design) are both being
developed as companion diagnostics to larotrectinib and
other TRK inhibitors.
With a shifting paradigm of identifying genetic alter-

ations in a tumor-agnostic manner, the development of a
single assay that can identify multiple types of actionable
genetic alterations would be paramount. In the mean-
time, TRK IHC would be a reasonable initial diagnostics
for rare tumors where TRK fusions are frequent, and
possibly common tumors where driver mutations are
absent.
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