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Abstract

malignancies.

T cell senescence has been recognized to play an immunosuppressive role in the aging population and cancer
patients. Strategies dedicated to preventing or reversing replicative and premature T cell senescence are required
to increase the lifespan of human beings and to reduce the morbidity from cancer. In addition, overcoming the

T cell terminal differentiation or senescence from lymphoma and leukemia patients is a promising approach to
enhance the effectiveness of adoptive cellular immunotherapy (ACT). Chimeric antigen receptor T (CAR-T) cell and
T cell receptor-engineered T (TCR-T) cell therapy highly rely on functionally active T cells. However, the mechanisms
which drive T cell senescence remain unclear and controversial. In this review, we describe recent progress for
restoration of T cell homeostasis from age-related senescence as well as recovery of T cell activation in hematological
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Background

The immune system plays a crucial role in the protec-
tion and fight against hematological malignancies and
cancer [1-3]. Impairment of the immune system due to
a decrease in immunological diversity of naive T cells
and an increasing number of senescent T cells with age
leads to a higher susceptibility to disease and potentially
promotes progression of malignant tumor in elderly
[4, 5]. Moreover, human cytomegalovirus (HCMV) per-
sistence occurs upon repeated T cell activation due to
chronic infections with CMV and is considered a driver
of immune senescence in humans, starting from puberty
after thymic involution [6]. Nevertheless, cellular senes-
cence can also act as a protective mechanism of the im-
mune system against cancer by deactivating T cells
which show excessive or aberrant proliferation [7-9]. T
cell senescence is triggered in a variety of biological pro-
cesses including tumor prevention, immune response to
infections, and aging. It leads to distinctive phenotypic
and functional alteration and can be caused by
tumor-associated stresses, telomere damage, and regula-
tory T (Treg) cells [4, 10]. Here, we summarize recent
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findings of the role of senescent T cells in hematological
malignancies as well as possibilities to restore function
of senescent and exhausted T cells for immunotherapies,
such as CAR-T cell therapy.

Discovery and concept of T cell senescence

Cellular immune senescence was firstly described in the
late 70s and was mainly focused on age-dependent
changes in macrophages and lymphocytes in mice.
Previous findings show less influence of aging on mac-
rophages, while lymphocytes show considerable
changes during aging. Especially, T cells due to their
relatively long lifespan of 4—6 months have time to ma-
ture and express different functions with age [11, 12].
Recently, immunosenescence and T cell senescence are
described as the degeneration of innate and adaptive
immunity and specifically as a depletion of naive and
effector T cells during aging. Nearing the end of their
lifespan, T cells can become senescent, characteristically
leading to a cell-cycle arrest while staying viable and
metabolically active [13]. T cell senescence can be dis-
tinguished from T cell anergy and T cell exhaustion
which share similar characteristics but have different
origins. T cell anergy is a hyporesponsive state in T cells
which is triggered by excessive activation of the T cell
receptor (TCR) and either strong co-inhibitory
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molecule signaling or limited presence of concomitant
co-stimulation through CD28. T cell exhaustion occurs
after repeated activation of T cells during chronic infec-
tion or tumor progression. In acutely cleared infections,
a part of activated T cells develops into highly func-
tional memory T cells, while in chronic infections and
the tumor microenvironment, the persistent activation
of T cells can lead to a gradual development into an
exhausted phenotype. This phenotype is defined by
poor effector function and sustained expression of
inhibitory receptors [14]. While both T cell anergy and
T cell exhaustion in natural occurrence are considered
reversible, T cell senescence until recently was consid-
ered irreversible [15—18]. Recent studies challenge this
distinction by showing that senescent T cells are in fact
able to regain function by inhibiting the p38
mitogen-activated protein kinase (MAPK) pathway and
show relationships between T cell exhaustion and sen-
escence [19, 20].

Mechanisms of T cell senescence

T cell senescence can be triggered by two major cellular
mechanisms: replicative and premature senescence.
Replicative senescence is the natural age-related process
that occurs after several rounds of proliferation leading
to a shortening of telomeric ends. The cell is then put
into a senescent state to prevent a potential degeneracy
into a cancerous cell. The second mechanism is prema-
ture senescence which is a telomere-independent senes-
cence induced by outside factors such as cellular stress
[21-23]. For example, effector T cells, CD4" helper, and
CD8" cytotoxic T cells can be forced by Treg cells into
senescence, by inducing DNA damage using metabolic
competition during cross-talk [22].

Biomarkers for T cell senescence and T cell exhaustion

Although in recent years molecular and cellular bio-
markers of effector T cell differentiation have been stud-
ied extensively, many of the molecular and signaling
pathways related to maturation and senescence of ef-
fector T cells are still unknown. T cells in replicative sen-
escence tend to lose co-stimulatory molecules such as
CD27 and CD28 while expressing killer cell lectin-like
receptor subfamily G (KLRG-1) and CD57. Interfering
with the ligation of KLRG-1 on T cells has shown en-
hanced proliferation capability. CD57 was shown to be
associated with severe proliferation impairment and thus
is considered the most reliable surface marker for T cell
senescence. Furthermore, G1-regulating proteins such as
p15, p16, and p21 which are involved in cell cycle regu-
lation and are associated with cellular stress response
are upregulated in senescent T cells, with evidence of in-
creased levels of bound p16/Cdké and p21/WAF, down-
regulation of Cdk2 and cyclinD3 expression, and
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decreased Cdk2 and Cdké6 kinase activity. These mole-
cules inhibit the transition from G1 to S phase forcing
cells into a replicative senescence [24—29]. Additionally,
CD27 and CD28 downregulation is associated with loss
of human telomerase RNA component (hTERC) expres-
sion, leading to a decrease in telomerase activity and
subsequent impaired buildup of telomeric ends [29, 30].
In a recent study, the T cell immunoreceptor with Ig
and tyrosine-based inhibitory motif (ITIM) domains
(TIGIT) was suggested to be a novel T cell senescence
marker. TIGIT was shown to be upregulated in CD8" T
cells of elderly in comparison to young individuals.
Moreover, TIGIT"'CD8" T cells exhibited a senescence
immunophenotype including high expression of KLRG1
and CD57 while retaining cytotoxicity and function, thus
linking the mechanisms of T cell senescence to previous
findings pertaining to the role of TIGIT in the mechan-
ism of T cell exhaustion [31, 32]. Furthermore, the nega-
tive checkpoint receptor TIGIT was described as a novel
marker in exhausted CD4+ and CD8+ T cells after HIV
infection [33, 34]. Exhausted T cells hierarchically lose the
production of IL-2, their high proliferative capacity and
ability for ex vivo killing, followed by loss of production of
tumor necrosis factor (TNF), and in the last stage, partial
or complete loss of the ability to produce large amounts
of interferon-y which ultimately leads to physical deletion.
This decline of effector function is accompanied by a pro-
gressive loss of CD4+ T cell help and increased expression
of inhibitory receptors, e.g., PD1, CTLA4, TIGIT, LAG-3,
CD244, CD160, or TIM3 [35, 36].

T cell senescence progression in aging healthy individuals
Many countries face demographic changes in their
population with an over-proportional increase in the eld-
erly in comparison to the young. T cell senescence
impairs life-long immune protection and effective vac-
cination by limiting variability. T cell composition is
shifted from undifferentiated naive T cells to determined
memory T cells and further to senescent T cells [4, 13].
The output of naive T cells decreases after puberty and
thymic involution, leading the remaining naive T cells to
progressively become determined and differentiated dur-
ing lifetime. While the proportion of naive T cells de-
creases in early life, the proportion of differentiated
memory T cells increase until it reaches a stable plateau
during adulthood. After the age of 65, a shift to senes-
cence and an accumulation of highly differentiated
CD28™ T cells are observed [37]. This accumulation oc-
curs especially strong with respect to the CD8"CD28™ T
cell subset which expresses enhanced cytotoxicity and
regulatory functions while having a shorter replicative
lifespan and defective antigen-induced proliferation
[28, 37]. There is a growing body of evidence that
age-related T cell senescence is not only caused by
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thymic involution but is also accelerated by memory
inflation caused by HCMV infection. HCMYV infection is
significantly associated with changes in both naive CD4"
T cell composition as well as memory T cells of the
CD8" subset. Memory inflation leads to an accumulation
of HCMV-specific CD8'CD28~ T cells which also
express typical senescence marker such as KRLG1 and
CD57 while remaining highly cytotoxic. This excess
expansion of a single HCMV-specific repertoire can
occupy up to 50% of the entire CD8" T cell and 30% of
CD4" T cell compartment of the peripheral blood in
HCMV-infected elderly individuals [38—40]. This might
indicate a joint responsibility of age-related and
HCMV-related T cell senescence in the impaired im-
mune response to vaccination as well as an increased
susceptibility towards disease and hematological malig-
nancies in elderly individuals. Factors which contribute
to T cell senescence and altered T cell subset distribution
from young to elderly individuals are shown in Fig. 1.

T cell senescence in hematological malignancies

Malignant tumors utilize many different strategies to evade
anti-tumor immunity of the adaptive immune system by
creating immunosuppressive microenvironments [39, 40].
Mechanisms of immune evasion include alteration of
G1-regulating protein expression, production of suppressive
factors like interleukin-10 (IL-10), transforming growth fac-
tor beta (TGF-p), and indoleamine-pyrrole 2,3-dioxygenase
(IDO) as well as expression of immune inhibitory receptors,
eg, programmed cell death ligand 1 (PD-L1) and
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recruitment of Treg cells [41-43]. An accumulation of sen-
escent CD8"CD28™ T cells was observed in several solid tu-
mors, indicating the use of the suppressive activity of
senescent T cells as a strategy for immune evasion [44—47].
Tumor-derived cAMP was shown to be responsible for the
direct induction of senescence in T cells and is also a key
component of the Treg cell mechanism of forcing T cells
into senescence [48]. These findings correlate with
re-occurring observations of Treg cell accumulations in
hematological malignancies such as acute myeloid leukemia
(AML), acute lymphoblastic leukemia (ALL), chronic
lymphocytic leukemia (CLL), multiple myeloma (MM), and
B cell lymphomas [49-52]. Conclusively, reduced Treg cell
accumulation significantly prognosticated low relapse risk
and leukemia-free survival (LFS) in AML patients [48,
49]. Recently, senescent T cells including clonally
expanded CD8'T cells with a CD28 KLRG1*CD57" or
CD28 CD57PD-1*phenotype were characterized in MM
patients. Remarkably, these T cell clones showed
telomere-independent senescence with upregulated tel-
omerase activity indicating reversibility of senescence [50,
51]. Moreover, higher numbers of CD28 CD57'PD-1*T
cells were associated with early relapse in patients with
MM after autologous stem cell transplantation (ASCT)
[50]. In addition, senescent and exhausted T cells in
patients negatively affect T cell immunotherapy.

Senescence and exhaustion of CAR-T cells
Currently, ACT is emerging as a potentially curative
therapy for patients with advanced hematological
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Fig. 1 Schematic model of age and HCMV infection related T cell immunosenescence in the peripheral blood of human. Memory inflation due to
latent HCMV infections and thymic involution lead to a shift in T cell distribution from mainly naive and memory T cells towards effector and
senescent T cells with progressing age. Senescent T cells are characterized by shortening of telomeric ends, decrease in telomerase activity, and
loss of CD27 and CD28 expression. Markers of T cell senescence include KRLG1, CD57, and the recently identified receptor TIGIT
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malignancies. CAR-T and TCR-T cell therapy makes use
of functionally active T cells isolated from patients.
These T cells are reconstructed and expanded ex vivo to
recognize specific antigens on target cells and are now
widely trialed to treat leukemia, lymphoma, and several
solid tumors [52-58]. However, there are functional
challenges of engineered T cell therapy in regard to T
cell senescence and exhaustion. Firstly, the exposure of
T cells from patients to the tumor microenvironment,
thus acquiring a senescent and exhausted phenotype,
can lead to a progression towards terminal differenti-
ation [59, 60]. PD-1 upregulation within the tumor
microenvironment was shown to significantly inhibit T
cell function indicating that CAR-T cells, which are pro-
duced from T cells with impaired function, might show
less effectiveness in targeting leukemia and tumor cells
[61-63]. Additionally, the endogenous TCR of T cells
can have a negative influence on the persistence of
CAR-T cells. Presence of TCR antigen when CAR is in-
troduced into T cells with distinct TCR specificity was
shown to provoke a loss in CD8" CAR T cell efficacy as-
sociated with T cell exhaustion and apoptosis [64].
Lastly, as demonstrated by Long et al., some signaling
from CAR can increase differentiation and exhaustion of
T cells, in that tonic CAR CD3{ phosphorylation, trig-
gered by antigen-independent clustering of CAR
single-chain variable fragments, will force early exhaus-
tion of CAR-T cells [65, 66]. Overall, revision of the
tumor-related T cell immune senescence and exhaustion
are key points in enhancing anti-tumor function in gen-
etically modified T cells.

Strategies to reverse T cell senescence and restore T cell
homeostasis in response to aging

There are three main strategies to rejuvenate T cell pools
including replacement, reprogramming, and restoration
of senescent cells. (1) Replacement strategies include the
physical removal of senescent cells from the circulation
with the aim of homeostatic expansion of memory and
effector T cells. A possible approach is to target and pro-
mote selective apoptosis in senescent T cells. In a recent
study, an engineered peptide was used to interfere with
FOXO4/p53 causing targeted apoptosis in senescent fi-
broblasts [67], whether this also can be used in inducing
apoptosis of senescent T cell remains unknown. Never-
theless, homeostatic expansion in form of autologous
stem cell transplantation (ASCT) was shown to success-
fully reconstitute functional naive, memory, and effector
T cell pools in autoimmune diseases and hematological
malignancies [68—71]. In addition, isolation and banking
of cord blood HSCs has been used to reconstitute the
immune system for treatment of hematological disorders
and may provide hope for homeostatic expansion of
functional T cells [72-74]. (2) Reprogramming is a
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promising method to differentiate T cells away from
exhausted and senescent states by redifferentiation from
T-induced pluripotent stem cells (T-IPSCs) into naive
and cytotoxic T cells or dedifferentiation within their
own lineage [75-77]. Although generation of T cells
from human embryonic stem cells (hESCs) and iPSCs
was shown to be possible, the TCR repertoire due to
seemingly random VD] gene rearrangements remains
unpredictable. Nevertheless, human iPSC-derived T cells
transduced with engineered TCRs and CARs specific for
tumor antigens were able to infiltrate and delay tumor
progression in xenograft models of solid tumors [78].
Moreover, reprogramming can potentially be used for
reversion of replicative T cell senescence by enhancing
telomerase activity and telomere-length restoration to
extend cellular lifespan and prevent telomere-dependent
T cell senescence [79, 80]. (3) Restoration strategies aim
to restore and maintain the thymic environment thus re-
versing effects of thymic involution with help of bioengi-
neered thymus organoids in combination with
growth-promoting factors and cytokines such as IL-21,
which recently was identified as a thymostimulatory
cytokine and showed significant immunorestorative
function and rejuvenation of the peripheral T cell pool
by triggering de novo thymopoiesis in aged mice [81,
82]. Similarly, intrathymic injection of allogenic
hematopoietic cells restored functional T cell develop-
ment after the thymic reconstitution in a mouse model
of severe combined immunodeficiency [83]. Preclinical
studies have shown generation of thymic organoids from
decellularized matrices as an effective approach to
rejuvenate the function of T cells and the adaptive im-
mune system. Yet, donor-specific immune tolerance,
reproduction of the complex thymic extracellular matrix
(ECM), and support of thymic epithelial cells, as well as
T cell maturation, remain major challenges [84, 85].
Possible strategies for reversion of T cell senescence and
exhaustion to restore T cell homeostasis in response to
aging are summarized in Fig. 2.

Targets for recovery of T cell activation in hematological
malignancies

Tumor sites in hematological malignancies were shown
to recruit Treg cells and use direct and indirect induc-
tion of senescence in their tumor microenvironments as
a mechanism of immune suppression [86—89, 48, 49].
Therefore, one possible target of immunotherapy is the
inhibition of tumor-related T cell senescence as well as
the possible restoration of senescent T cell function. In
cases of increased numbers of CD28 CD57"PD-1"T cells
in MM patients, PD-1 blockade was shown to restore pro-
liferation and cytokine secretion in exhausted/senescent
CD8+ T cells [87]. Elevated levels of transcription factor B
lymphocyte-induced maturation protein 1 (Blimp-1) in
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patients suffering from AML correlated with upregulation
of multiple inhibitory receptors including PD-1 and
TIGIT on exhausted, functionally impaired T cells. More
importantly, siRNA knockdown of Blimp-1 has shown to
reverse the functional defect [90]. cAMP, which is also a
key component of Treg cell suppression in aging, is
accumulated in tumor sites creating hypoxic microenvi-
ronments. Treg and tumor cells in these microenviron-
ments directly induced human naive T cells and
tumor-specific effector T cells to become senescent by
increasing cAMP levels using transfer via gap junctions
[91, 92]. Due to their inherent suppressive function,
dysfunctional senescent T cells then can indirectly
maintain the tumor microenvironment and amplify im-
munosuppression [93], thus indicating that regulation
of cAMP level might be a potential approach to revise
T cell senescence and disrupt the tumor microenviron-
ment in patients. Recent studies implicate metabolic
regulation of tumor cells by Toll-like receptor 8 (TLR8)
signaling.  Specifically, TLR8 ligands, such as
third-generation polyamidoamine dendrimers (poly-G3)

and ssRNA40, were shown to enhance antitumor
immunity by modulation of endogenous cAMP in
tumor cells through the activation of the protein kinase
A (PKA) type I-COOH-terminal Src kinase (Csk)-LCK
inhibitory pathway [94]. Moreover, ERK1/2 and P38
signaling was identified as regulators of Treg-induced
senescent T cells [19, 25]. These results open a possibil-
ity to reverse the suppression by tumor microenviron-
ments, creating effector microenvironments by
modulation of specific factors in tumor-related T cell
senescence. Interestingly, a common alteration in
childhood T cell acute lymphoblastic leukemia (T-ALL)
cells is the deletion of pl6 and pl5 and in some cases
hypermethylation of a 5" CpG island in the p15 gene.
The accumulation of both proteins is strongly associ-
ated with T cell aging and senescence, and thus, their
deletion might indicate a role in immortalization and
the mechanism of senescence avoidance by some
leukemic T cells [24]. Although this indicates that inter-
ference with the accumulation of p16 can possibly slow
down aging or prevent senescence of T cells, it also
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potentially harbors an increased risk of provoking T
cells to become cancerous and hence should be ex-
plored further. Mechanisms of T cell senescence induc-
tion in the tumor microenvironment and strategies for
revision of T cell senescence for TCR- and CAR-T cell
therapy are shown in Fig. 3.

To improve persistence and effectiveness of CAR-T
cells, it is necessary to establish assays to characterize
the T cell status in patients who are selected for CAR-T
cell therapy. Next, depending on the immune alterations
in these patients, different targeting approaches can be
chosen to revise senescence and exhaustion as depicted
in Figs. 2 and 3. Finally, therapies including PD-1 check-
point blockade, which can overcome the immune eva-
sion of tumor cells from CAR-T cells within the tumor
microenvironment, and the use of apoptosis inhibitor
blockade agents, to increase the effect of CAR-T cell
therapy, can significantly improve CAR-T cell effect-
iveness [58, 61, 95, 96].

Conclusion

T cell senescence is playing a key role in immune suppres-
sion and evasion of both hematological and solid tumors.
Understanding the underlying mechanisms of Treg cell
recruitment as well as direct and indirect induction of T
cell senescence by tumor microenvironments will open

new immunotherapeutic strategies for restoration and
recovery of TCR-T and CAR-T cell activation after senes-
cence and exhaustion. Specifically, replacement, repro-
gramming, and restoration of the immune system as well
as modulation of signaling in tumor sites, shifting im-
munosuppressive microenvironments to become effector
microenvironments, are promising approaches. Further,
occurrence of potentially reversible telomere-length inde-
pendent senescent T cells in hematological malignancies
has to be investigated more extensively. Understanding of
its occurrence might potentially give insight into reversion
of replicative T cell senescence for optimized CAR-T or
TCR-T cell immunotherapy.
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