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Abstract

diagnostic and prognostic biomarkers.

Esophageal cancer (EQ) is the sixth leading cause of cancer-related death worldwide. The lack of early diagnostic
biomarkers and effective prognostic indicators for metastasis and recurrence has resulted in the poor prognosis of
EC. In addition, the underlying molecular mechanisms of EC development have yet to be elucidated. Accumulating
evidence has demonstrated that IncRNAs play a vital role in the pathological progression of EC. LncRNAs may
regulate gene expression through the recruitment of histone-modifying complexes to the chromatin and through
interactions with RNAs or proteins. Recent evidence has demonstrated that the dysregulation of IncRNAs plays
important roles in the proliferation, metastasis, invasion, angiogenesis, apoptosis, chemoradiotherapy resistance,
and stemness of EC, which suggests potential clinical implications. In this review, we highlight the emerging
roles and regulatory mechanisms of INncRNAs in the context of EC and discuss their potential clinical applications as
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Background

Esophageal carcinoma (EC), a serious malignant cancer,
is the sixth leading cause of cancer-related death [1, 2].
Despite advances in multidisciplinary treatment, the 5-
year relative survival rate remains less than 20% [3]. EC
includes the following two primary pathological types:
esophageal adenocarcinoma (EAC) and esophageal squa-
mous cell carcinoma (ESCC) [2]. EAC is the leading
histological type observed in patients from western
countries, whereas ESCC has become the leading cause
of EC in Asian countries and predominates over EAC
worldwide [4, 5]. The pathogenesis of EC is complex
and differs between EAC and ESCC. For EAC, the
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primary predisposing cause is metaplasia that is likely
caused by chronic exposure to acid and bile reflux, such
as in the case of Barrett’s esophagus and chronic gas-
troesophageal reflux disease [6]. However, the origin of
ESCC carcinogenesis is not fully understood. Early-
stage EC can be effectively treated with curative sur-
gery, but for advanced cases, the therapeutic strategies
are limited [7]. Unfortunately, EC patients are usually
diagnosed at an advanced stage accompanied with
lymphatic metastasis, and therefore they are not eligible
for surgical resection [8]. The current standard treat-
ment for these patients is concurrent definitive chemo-
or radiotherapy, or a combination of both [9]. However,
therapy resistance and tumor recurrence are major ob-
stacles for EC therapy and are critical issues leading to
poor prognoses [10]. Within the EC, a small number of
cells termed cancer stem-like cells (CSCs) are consid-
ered to account for the initiation, recurrence, and
therapeutic resistance of EC [10]. In recent years, com-
pelling evidence has demonstrated the crucial roles of
long non-coding RNAs (IncRNAs) in the pathogenesis
and progression of EC.
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LncRNAs, which are an emerging focus of current
cancer research, are defined as endogenous cellular
RNAs that are more than 200 nucleotides in length
and are incapable of encoding protein [11, 12]. Ini-
tially, IncRNAs were considered as transcriptional
“noise,” given their relatively low expression levels
compared with mRNAs and their lack of protein-cod-
ing capacity [13]. However, in-depth studies in recent
years revealed that IncRNAs possess certain charac-
teristics of mRNAs; for instance, IncRNAs are tran-
scribed by RNA polymerase II, equipped with a 3’
polyA tail and a 5’ cap, and contain a promoter and
structure consisting of multiple exons [14, 15]. Accu-
mulating evidence suggests that the aberrant IncRNA
expression is associated with oncogenesis and the de-
velopment of various cancers [16, 17]. LncRNAs have
been shown to interact directly with DNA, RNA, and
proteins to regulate several mechanisms, including
the following: chromatin modification, RNA tran-
scription, pre-mRNA splicing, mRNA translation, and
other mechanisms that influence gene expression [18,
19]. Moreover, several IncRNAs have been function-
ally well-characterized in cancer pathogenesis and de-
velopment and may be potential novel biomarkers for
cancer diagnosis and prognosis, as well as therapeutic
targets.

In this review, we focused our efforts on the recent
findings regarding the molecular mechanisms and
functional roles of IncRNA in EC oncogenesis and de-
velopment. In addition, we discussed the potential im-
plications of IncRNAs as biomarkers for the diagnosis
and prognosis of EC.

Mechanisms of IncRNAs in EC

LncRNAs may act as signals or guides for the recruit-
ment of chromatin-modifying complexes to induce tran-
scription, and they may even act as decoys that bind to
transcription factors (TFs) to prevent the transcription
factors from binding to target gene promoter regions,
thereby suppressing transcription [20, 21]. In addition,
IncRNAs can hybridize to pre-mRNAs, block the recog-
nition of splice sites by spliceosomes, and regulate the
alternative splicing of pre-mRNAs to produce alternate
transcripts [17, 22]. An additional biological function of
IncRNAs may include serving as “miRNA sponges”
through interactions with miRNAs to inactivate these
small regulatory RNAs and hence increase the expres-
sion of the miRNA target genes [23-25]. Finally,
IncRNAs may be involved in the modulation of protein
localization, activity, and function [26]. In this section,
we highlight the molecular mechanisms of IncRNAs in
EC via their interactions with chromatin, DNA, RNA,
and regulatory proteins (Fig. 1 and Table 1).
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LncRNAs localized to the chromatin
LncRNA-dependent chromatin regulation involves the
recruitment and modulation of histone-modifying en-
zymes that induce chromatin modification at pro-
moters and enhancers [27, 28]. In this manner,
IncRNAs can regulate gene expression through histone
modification, DNA methylation, and chromatin struc-
ture alteration [29, 30].

It has been demonstrated that many IncRNAs are as-
sociated with polycomb repressive complex 2 (PRC2),
which is responsible for the trimethylation of lysine 27
on histone 3 (H3K27me3) and mediates the silencing of
the target gene through local chromatin reorganization
[31]. Enhancer of zeste homolog 2 (EZH2) and SUZ12
are subunits of the PRC2 complex. Wu et al. [32]
demonstrated that cancer susceptibility candidate 9
(CASC9) downregulates the expression of PDCD4 via
the recruitment of EZH2 to alter H3K27me3 levels at
the promoter region of PDCDA4. In addition, SET-bind-
ing factor 2 antisense RNA1 (SBF2-AS1) was demon-
strated to bind to SUZ12 and guide PRC2 to the
promoter of CDKNI1A to decrease CDKNI1A expression
in ESCC [33].

The acetylation of histone H3 and H4 is another core
mechanism through which chromatin structure and
gene expression are altered [34]. In addition to recruit-
ing EZH2, CASC9 also associates with the transcrip-
tional coactivator CBP in the nucleus to increase the
enrichment of CBP and H3K27 acetylation in the pro-
moter region of LAMC?2, thereby increasing LAMC2 ex-
pression [35].

DNA methylation is one of the most common and
stable chromatin modification that is associated with
gene inactivation [36, 37]. Lung cancer associated tran-
script 1 (LUCAT1) was originally identified in smoking-
related lung cancer [38] and is also associated with colo-
rectal cancer [39], clear cell renal cell carcinoma, and
osteosarcoma [40]. A recent study demonstrated that
LUCAT1 binds to DNMT1, the most abundant DNA
methyltransferase in mammalian cells, and regulates its
stability by inducing the ubiquitination of DNMT1 in
ESCC [41]. The high levels of LUCAT1 in ESCC inhibit
the expression of certain tumor suppressors through
DNA methylation.

In addition, NMR, a novel IncRNA identified through
microarray assays, was found to be upregulated in
ESCC tissues and primarily located in the cell nucleus
[42]. NMR interacts with the chromatin regulator BPTF
[42], which was demonstrated to be involved in ATP-
dependent chromatin remodeling and transcriptional
regulation [43]. Hence, by recruiting BPTF to specific
loci of chromatin, NMR upregulates the expression of
MMP3 and MMP10 via ERK1/2 activation to promote
ESCC tumorigenesis.
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Fig. 1 The molecular mechanisms underlying esophageal cancer-related IncRNAs rely on interactions with cellular macromolecules. (@) LncRNAs
localize to the chromatin. LncRNAs recruit chromatin modification complexes to the promoter region of chromatin and the results in (1) histone
methylation or acetylation, (2) DNA methylation; INcRNAs recruit chromatin modification complexes to specific loci of chromatin and modulate
gene expression through (3) chromatin modification. (b) LncRNAs interacts with RNA. (4) LncRNAs interacts with pre-mRNA, affect alternative
splicing and help to produce mature mRNAs; (5) IncRNAs act as miRNA sponges or compete for endogenous RNAs (ceRNAs) and compete for
miRNAs to inactivate these small regulatory RNAs, followed by relief of the repression of the target gene. (c) LncRNAs interact with proteins.( 6)

LncRNAs regulates protein dephosphorylation and activity; (7) INcCRNAs regulate protein localization; (8) INcRNAs modulate protein—protein
interactions; (9) IncRNAs directly localize within cellular compartments to serve as structural components

LncRNAs target RNA

Following the transcription of RNA in the nucleus, a
series of conserved processes are essential for the pro-
duction of mature mRNAs that can be translated into
proteins. LncRNAs modulate gene expression at the
RNA level through the regulation of alternative splicing
and the stability of mRNAs; additionally, IncRNAs act as
miRNA sponges or competing endogenous RNAs (ceR-
NAs) [17, 26].

mRNA splicing

Alternative splicing is a regulated process that produces
different mRNA splice isoforms from a single mRNA pre-
cursor [44]. Alternative splicing produces different proteins
that are translated from alternatively spliced mRNAs. This
process results in proteins that have different biological
functions and phenotypes [45, 46]. LincRNA-uc002yug.2, a

IncRNA principally localized to the nucleus, is increased
significantly in ESCC tissues [47]. LincRNA-uc002yug.2
was shown to promote the recruitment of alternative spli-
cing factors and RUNX1 to the nucleus to produce more
RUNXIla (an inhibitor of RUNX1) relative to the other
two isoforms (RUNX1b and RUNXI1c) [48]. Moreover, de-
creased RUNX1 expression was shown to reduce the
mRNA levels of CEBPa, which promotes cell proliferation
[49]. Thus, LincRNA-uc002yug.2 may modulate cell prolif-
eration and the tumor growth of ESCC through the alter-
native splicing of RUNX1.

CeRNA

The ceRNA hypothesis is a novel theory regarding the
regulation of gene expression through post-transcriptional
processes [50]. According to this hypothesis, ceRNA acts
as a molecular sponge for common miRNAs through the
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Table 1 Molecular mechanisms of deregulated IncRNAs in EC
Mode of mechanism  LncRNA Expression Molecular mechanisms Ref.

Localizes to CASC9 Up Negatively regulates PDCD4 expression through recruiting EZH2 and altering H3K27me3 level [32]
chromatin
SBF2-AS1 Up Binds with PRC2 and guided PRC2 to the promoter of CDKNTA and decreased [33]
CDKN1A expression
CASC9 Up Activates the FAK-PI3K/Akt signaling pathways through upregulating LAMC2 expression  [35]
by interacting with the CREB-binding protein
LUCATI1 Binds to DNMT1 and regulates its stability, inhibits the expression of tumor suppressors  [41]
through DNA methylation
NMR, Interacts with BPTF and recruits it to chromatin, upregulates expression of MMP3 and  [42]
MMP10 via ERK1/2 activation
Interacts with RNA LincRNA-  Up Associates with alternative splicing of RUNX1 (48]
(MRNA splicing) uc002yug.2
Interacts with RNA  ATB Up Regulates miR-200b/Kindlin-2 axis (51]
(ceRNA)
SNHG16 Up Regulates miR-140-5p/ZEB1 axis [54]
HOTAIR Up Regulates miR-125/HK2 and miR-143/HK2 axis, miR-148a/Snail2 axis, miR-1/CCND1 axis  [61] [64]
(65]
CCAT1 Up Regulates miR-7/HOXB13 axis [69]
NEAT1 Up Regulates miR-129/CTBP2 axis (70]
PVT1 Up Regulates miR-203/LASP1 axis 71
SNHG1 Up Regulates miR-338/CST3 axis [72]
UCA1 Up Regulates miR-204/ Sox4 axis [73]
XIST Up Regulates miR-101/EZH2 axis [74]
TUSC7 Down Regulates miR-224/DESC1 axis [75]
Interacts with protein  LINCO1503 Up Activates ERK signaling via MAPK and increases AKT signaling [78]
EZR-AS1 Up Upregulates EZR expression by causing SMYD3 redistribution [85]

miRNA response elements (MREs) to regulate the expres-
sion of the target genes of the miRNAs. Several IncRNAs
have recently been found to act as ceRNAs by sponging
miRNAs to reduce their inhibitory effect on their target
protein-coding mRNAs.

There are numerous examples of IncRNAs functioning
as sponges and therefore oncogenes in EC. Transforming
growth factor f (ATB) may act as a ceRNA of miR-200b
and thereby promote the expression of kindlin-2 in ESCC,
as miR-200b potentially targets the 3'-untranslated region
(3’-UTR) of kindlin-2 [51]. Kindlin-2 was reported to act
as an oncogene by participating in cytoskeleton shaping
via RhoA/FAK signaling to modulate cell migration [52,
53]. Moreover, ATB is overexpressed in ESCC. The knock-
down of ATB resulted in the suppression of activated
RhoA and phosphorylated FAK and the inhibition of
ESCC cell proliferation, migration, and lung metastasis.
Hence, the dysregulation of the Inc-ATB/miR-200b/kin-
dlin-2 axis is involved in the development of ESCC. Small
nucleolar RNA host gene 16 (SNHG16) is significantly up-
regulated in ESCC, and this IncRNA is primarily distrib-
uted within the cytoplasm [54]. SNHG16 promotes the
progression of ESCC cells by binding with miR-140-5p to
positively regulate the miR-140-5p target gene ZEB1. The

transcription factor ZEB1 has been reported to promote
the epithelial-to-mesenchymal transition (EMT) in mul-
tiple tumors, including ESCC [55, 56]. Thus, SNHG16
functions as an oncogene by promoting tumor progres-
sion by competing with miR-140-5p to regulate ZEB1.
HOX transcript antisense RNA (HOTAIR) is a well-
studied IncRNA that was shown to have multiple ceRNA
regulatory roles in EC. HOTAIR is transcribed from the
antisense strand of the HOXC gene cluster [57] and has
been shown to be involved in reprogramming chromatin
organization and promoting cancer cell proliferation and
metastasis [58—60]. Ma et al. [61] reported that HOTAIR
upregulates the expression of HK2 by functioning as a
molecular sponge for miR-125 and miR-143, both of
which modulate HK2 expression by targeting the 3'UTR
of HK2. HK2 is overexpressed in a variety of cancers
and is well-known to play a key role in tumor growth
and metastasis [62, 63]. Hence, HOTAIR plays an onco-
genic role in ESCC. Another study by Xu et al. [64]
showed that HOTAIR promoted EC cell invasion and
metastasis by promoting the EMT through the upregula-
tion of Snail2, a transcription factor associated with the
EMT. Mechanistically, HOTAIR positively regulates
Snail2 by sponging miR-148a. HOTAIR has also been
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reported to bind directly to miR-1 and act as an endogen-
ous sponge to inhibit miR-1 expression [65], thereby posi-
tively regulating CCND1 expression. CCND1 functions as
an oncogene in various human cancers by promoting
G1-S progression to regulate the cell cycle [66—68]. Thus,
the HOTAIR/miR-1/CCND1 axis may promote ESCC
tumorigenesis.

Several other IncRNAs have also been shown to func-
tion as oncogenes through sponging miRNAs and posi-
tively regulating their target tumor-promoting genes,
including CCAT1 [69], NEAT1 [70], plasmacytoma vari-
ant translocation 1 (PVT1) [71], small nucleolar RNA
host gene 1 (SNHG1) [72], UCAL1 [73], and XIST [74].

In addition to these oncogenic IncRNAs sponges, there
are also IncRNA sponges involved in tumor suppression.
Tumor suppressor candidate 7 (TUSC7) is downregu-
lated in ESCC tissues and is associated with shorter OS
time in ESCC patients [75]. TUSC7 was shown to bind
to and negatively regulate the expression of miR-224,
which specifically binds to the 3"UTR region of DESC1
to negatively regulate DESC1 expression. DESC1 is an
epithelial-specific enzyme and exerts tumor suppressive
roles by promoting cell apoptosis via the downregulation
of the EGFR/AKT pathway in ESCC [76, 77]. Thus,
TUSC7 promotes cell apoptosis and suppresses the pro-
liferation and chemotherapy resistance of ESCC cells by
regulating the DESC1/EGFR/AKT pathway through
miR-224. These findings indicate that TUSC7 may act as
a tumor suppressor in ESCC.

LncRNAs interact with proteins

Several IncRNAs have been reported to interact with
specific proteins to participate in global cellular pro-
cesses in EC by regulating protein activity and function,
modulating protein—protein interactions or directing the
localization of proteins within cellular compartments to
serve as structural components [26].

Through RNA pull-down assays and chromatin isolation
by RNA purification (ChIRP), Xie and colleagues [78]
demonstrated that LINC01503 could bind with both EBP-
1 and ERK2 in the cytoplasm. Further analysis revealed
that both basal and EGF- and IGF-induced phosphoryl-
ation of ERK1/2, Akt, p70S6K, and mTOR were signifi-
cantly decreased following the knockdown of LINC01503.
In addition, silencing LINC01503 expression increased the
binding of EBP-1 to the PI3K subunit p85, suggesting that
LINCO01503 inhibits PI3K deubiquitination to activate the
PI3K/Akt signaling pathway. Taken together, these findings
suggest that LINC01503 contributes to ESCC cell prolifer-
ation, migration, and invasion through the activation of
the ERK/MAPK and PI3K/Akt signaling pathways.

Snail, an important transcription factor influencing
the EMT, binds to the E-box site in the promoter re-
gion of E-cad to suppress E-cad expression [79, 80].
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This suppression triggers the EMT in a variety of can-
cer types, including ESCC [81, 82]. Thus, the nuclear
localization of Snail is crucial for its role in the EMT
progression [83]. A study by Zhang et al. [84] showed
that Sprouty4-Intron 1 (SPRY4-IT1) directly increased
the transcription and expression of Snail, as well as its
nuclear localization, by directly binding with Snail in
ESCC cells. SPRY4-IT1 is highly expressed in ESCC tis-
sues, and overexpression of SPRY4-IT1 promotes the
EMT in ESCC cells. This finding demonstrates that
SPRY4-IT1 may act as an oncogene in ESCC progres-
sion via the regulation of Snail.

EZR-antisense 1 (EZR-AS1) interacts with and is part
of the RNA polymerase II complex [85]. RIP assays have
revealed that EZR-AS1 directly binds with SMYD3, a
histone H3-lysine 4 (H3K4)-specific methyltransferase,
causing SMYD3 redistribution and recruiting SMYD3 to
the binding site in GC-rich regions downstream of the
EZR promoter in ESCC cells. This recruitment results in
the localized enrichment of SMYD3 and H3K4me3 in
the EZR promoter. Lastly, EZR-AS1 was shown to pro-
mote ESCC cell migration via enhancing EZR transcrip-
tion and expression.

Functions of IncRNAs in EC

Increasing evidence in the last decade indicates that
IncRNAs function in a plethora of biological processes,
including cell survival and apoptosis, cell cycle progres-
sion and proliferation, migration and invasion, stemness,
and chemoradiotherapy (CRT) resistance (Table 2).

Involvement of IncRNAs in the hallmarks of
cancer

Although cancer is a complex and heterogeneous dis-
ease, one of the common features of cancer is that ab-
normal cells grow beyond control. In 2000, Hanahan
and Weinberg proposed six properties that are the hall-
marks of cancer [86]. These basic hallmarks include sus-
taining growth signaling, evading growth inhibitors,
uncontrolled replicative immortality, tissue invasion and
metastasis, promoting angiogenesis, and resisting cell
death.

Sustaining growth signaling

Tumor cells acquire the capability to sustain growth sig-
naling through autocrine and paracrine growth factor
pathways [87]. LncRNAs mediate tumor growth signals
primarily by acting on the regulation of growth factors
or receptors. Epidermal growth factor receptor (EGFR)
is a crucial regulator in tumor growth [67]. LINC00152
has been reported to directly bind to EGFR and activate
the downstream PI3K/AKT signaling pathway in gastric
cancer [88]. Recently, Yang and colleagues [89] demon-
strated that both LINC00152 and EGFR were highly
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Table 2 Functions of deregulated IncRNAs in EC
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Function LncRNA Expression  Targets Ref.
Sustaining growth signaling LINC00152 Up EGFR [89]
Evading growth inhibitors AK001796 Up MDM2/p53 signaling [93]
CASC2 Down miR-18a-5p/PTEN axis [99]
Uncontrolled replicative immortality CDKN2B-AS1 Up hTERT [104]
BC032469 Up hTERT [105]
Activating invasion and metastasis PVT1 Up - [106]
SNHG16 Up miR-140-5p/ZEB1 axis [54]
HOTAIR Up miR-148a/Snail2 axis [64]
SNHG1 Up Notch pathway [112]
MALAT1 Up Ezh2-Notch1 signaling, miR-200a/ZEB1, and miR-200a/ZEB2 axis [113] [114]
CASC9 Up - [115]
GHET1 Up - [116]
TTN-AS1 Up miR-133b/Snail1 axis, miR-133b/FSCNT axis HuUR [117]
HOTTIP Up miR-30b/HOXA13 axis [118,119]
Promoting angiogenesis HNFTA-AST Up VEGF [123]
Resisting apoptosis TP73-AS1 Up BDH2 [126]
POUG6F2-AS2 Up Ybx1 [127]
AFAP1-AST Up - [128]
LET Down - [129]
Chemoradiotherapy resistance AFAPT-AST Up - [132]
LOC285194 Up - [136]
BOKAS Up WISP1 [47]
TUSC7 down miR-224/DESC1 [75]
Regulation of EC stem cells MALAT1 Up OCT4 and Nanog [147]

expressed in the subtype 1 of ESCC. By performing dif-
ferential coexpression analysis (DCEA) and traditional
differential expression analysis (DEA), the authors de-
tected the “gain” of miRNA-mediated crosstalk between
EGFR and LINCO00152 in ESCC. However, the exact
regulatory relationship between LINC00152 and EGFR
needs further clarification.

Evading growth inhibitors

Several tumor suppressors that regulate the cell cycle
and inhibit cellular growth have been discovered, such
as p53 and PTEN [87]. Certain IncRNAs regulate EC cell
growth through altering the expression of these tumor
suppressors. P53 is a master “gatekeeper” of the cell and
functions as a tumor suppressor gene [90]. P53 regulates
the expression of numerous target genes, which leads to
the suppression of tumor growth through the induction
of cell cycle arrest and apoptosis. Mouse double minute
2 (MDM2), which acts as a primary regulator of p53, in-
hibits the transcription of p53 via promoting its ubiquiti-
nation and degradation [91, 92]. Thus, the MDM2/p53
axis is an important signaling pathway that regulates cell
growth and the cell cycle. The expression of IncRNA

AKO001796 was shown to be positively associated with
MDM2 levels in ESCC tissues [93]. Knockdown of
AKO001796 downregulated the expression of MDM2
and upregulated the expression of p53 along with its
target gene, p21. Taken together, these findings indi-
cate that AK001796 mediates the cell cycle and cell
proliferation by activating p53 signaling.

Another important tumor suppressor is PTEN, which is
a crucial inhibitor of the PI3K/AKT/Mtor pathway [94,
95]. This signaling pathway is a well-known regulator of
the cell cycle, proliferation, migration, and apoptosis [96—
98]. Zhang et al. [99] reported that miR-18a-5p directly
binds to the 3'UTR regions of PTEN, thereby inhibiting
the expression of PTEN in EC cells. In addition, IncRNA
cancer susceptibility candidate 2 (CASC2) was demon-
strated to directly interact with miR-18a-5p and modulate
the expression of PTEN by targeting miR-18a-5p. These
data revealed that CASC2 may inhibit the proliferation of
EC cells.

Uncontrolled replicative immortality
The telomeres, located at the chromosome ends, are im-
portant for limiting cell division cycles and replication.
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Telomerase was shown to regulate the expression of a var-
iety of growth-controlling genes and promote cell prolifer-
ation [100, 101]. As a catalytic subunit of telomerase,
human telomerase reverse transcriptase (hWTERT) main-
tains the telomere length and plays crucial roles in cell
proliferation [102, 103]. Hu et al. [104] reported that
hTERT expression is mediated by IncRNA cyclin-
dependent kinase inhibitor 2B-antisense 1 (CDKN2B-
AS1). Thus, the knockdown of CDKN2B-AS1 rescued the
slow proliferation of EC109 cells induced by [-elemene,
an anticancer drug. BC032469, another IncRNA that is
overexpressed in ESCC tissues, was positively associated
with a larger tumor size and shorter OS [105]. Silencing
BC032469 expression in ESCC cells resulted in the inhib-
ition of cell proliferation. Mechanical assays revealed that
BC032469 induced cell cycle arrest in the GO/G1 phase by
regulating the expression of hTERT.

Activating invasion and metastasis

The process of EMT has been confirmed to play a crit-
ical role in cell invasion in various types of cancer. This
process transforms adherent and polarized epithelial
cells into invasive and motile mesenchymal cells, accom-
panied with the loss of epithelial markers E-cadherin
and the acquisition of mesenchymal markers N-cadherin
and vimentin. Multiple IncRNAs have been demon-
strated to be involved in EC development through the
regulation of the EMT and metastasis. PVT1 has been
identified as an oncogene, and high PVT1 expression
was shown to be associated with the development of EC.
Upregulation of PVT1 in EC cells resulted in increased
N-cadherin and vimentin expression and decreased
E-cadherin expression [106]. Thus, PVT1 induced the
EMT and promoted the invasion of EC cells.

The EMT is also induced by several signaling path-
ways, such as the TGF-f and Notch signaling pathways
[107-109]. The Notch signaling pathway is important
for the development and progression of some tumors
[110, 111]. The IncRNA SNHG1 was shown to be over-
expressed in ESCC tissues and correlated with lymph
node metastasis, depth of invasion, and shorter OS time
in ESCC patients [112]. Silencing the expression of
SNHGL in ESCC cells was demonstrated to inhibit cell
proliferation and cell invasion capacity, as well as the
EMT phenomenon, through suppressing the Notch sig-
naling pathway.

Additional IncRNAs involved in the EMT and invasion
of EC include SNHG16 [54], HOTAIR [64], SNHG1
[112], metastasis associated in lung adenocarcinoma
transcript 1 (MALAT1) [113, 114], CASC9 [115], gastric
carcinoma highly expressed transcript 1 (GHET1) [116],
TTN-antisense 1 (TTN-AS1) [117], and HOXA tran-
script at the distal tip (HOTTIP) [118, 119].
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Promoting angiogenesis

Angiogenesis is a universal characteristic of EC progres-
sion, as it supplies the tumor with nutrients and oxygen
and facilitates proliferation and migration [120, 121].
Vascular endothelial growth factor (VEGF) is the most
potent activator of angiogenesis [122]. LncRNAs may
regulate angiogenesis primarily by regulating VEGF.
HNF1A-antisense 1 (HNF1A-AS1) is the sole IncRNA
reported to modulate VEGF thus far. Recently, Wang re-
ported that the knockdown of HAS1 suppressed the ex-
pression of VEGF in ESCC cells [123]. However, direct
supporting evidence that HAS1 inhibits angiogenesis re-
quires further studies.

Resisting cell death

The following three major pathways lead to cell death:
apoptosis, autophagy, and necrosis [124]. Currently, few
IncRNAs are known to be associated with the latter two
pathways of cell death in EC, but several IncRNAs are
involved in apoptosis via regulating the transcription of
key apoptotic factors. For instance, BDH2, which func-
tions as an anti-apoptotic factor, is regulated by survivin
via the caspase-3-independent pathway [125]. P73 anti-
sense RNA 1T (TP73-AS1), a IncRNA mapped to
chromosome 1p36.32, was shown to mediate apoptosis
via BDH2 [126]. The knockdown of TP73-AS1 sup-
pressed BDH2 expression and induced the expression of
pro-apoptotic proteins, which subsequently induced
apoptosis in EC cells. POU6F2-antisense 2 (POU6-
F2-AS2) is a IncRNA that is especially overexpressed in
ESCC tissues and cells other than EAC [127]. POU6F2-
AS2 knockdown induced prolonged DNA tails in ESCC
cells following ionizing radiation (IR) and caused sensi-
tivity to IR, indicating that POU6F2-AS2 is involved in
the DNA damage response. Mechanical assays revealed
that POU6F2-AS2 interacts with DNA repair-related
protein Ybxl and mediates the recruitment of Ybx1 to
the promoter region of target genes, such as p53 and
CCNBI. Finally, the dysregulation of POU6F2-AS2 ex-
pression in ESCC cell lines regulates cell survival after
IR. However, the exact underlying mechanism of several
other IncRNAs involved in apoptosis of EC cells, such as
AFAP1-AS1 [128] and Low Expression in Tumor (LET)
[129], warrants further investigation.

LncRNAs related to chemoradiotherapy resistance
Acquired CRT resistance is one of the major obstacles in
the treatment of EC [130]. Studies have shown that less
than 50% of patients benefit from CRT treatment, and
the remaining half patients present resistance to CRT
[131]. Recently, several lines of evidence have suggested
that IncRNAs are likely to play vital roles in CRT resist-
ance in EC. Zhou et al. [132] examined 18 IncRNAs that
were previously reported to be dysregulated in EC or
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involved in CRT resistance in cisplatin-resistant ESCC
cell lines and samples from patients treated with dCRT.
The authors detected that three IncRNAs (AFAP1-ASI,
UCAL, and HOTAIR) were dysregulated in cisplatin-re-
sistant cells compared with the parent cell line. More-
over, AFAP1-AS1 was significantly overexpressed in
tumor tissues compared to the adjacent paired tissues.
Furthermore, the overexpression of AFAP1-AS1 was
strongly related to the response to dCRT and to the
shorter progression-free survival (PES) and OS of ESCC
patients. High AFAP1-AS1 expression could predict re-
sistance to CRT in patients with ESCC. Another
IncRNA, LOC285194, also known as LSAMP antisense
RNA 3, has been reported to be downregulated in sev-
eral cancers, including EC and was found to be closely
associated with a poor patient prognosis [133-135].
Additionally, the low expression of LOC285194 could
predict resistance to CRT [136]. As mentioned above,
TUSC7 promotes cell apoptosis and inhibits chemother-
apy resistance through the miR-224-dependent regula-
tion of DESC1 [75].

Tumor radioresistance is very complex and heteroge-
neous. Although the mechanism underlying radioresis-
tance is not well-understood, several signaling pathways
have been demonstrated to be involved in radioresis-
tance. The Wnt/B-catenin pathway is well-known to
promote cell growth and survival and has been proven
to modulate radioresistance in various cancers [137,
138]. WISP1, a Wnt- and [-catenin-responsive gene,
mediates radioresistance primarily through suppressing
irradiation-induced DNA damage and activating PI3K
kinase [139]. Zhang and colleagues [47] reported that
ESCC patients with high WISP1 expression had a sig-
nificantly poorer prognosis compared with those with
low WISP1 levels after radiotherapy. The authors further
assayed the expression of 94 cancer-related IncRNAs in
WISP1-overexpressed EC cells that received radiation,
and they identified 14 upregulated IncRNAs and 5
downregulated IncRNAs. Among these IncRNAs,
BOKAS was strongly associated with the irradiation-in-
duced upregulation of WISP1. BOKAS is a natural anti-
sense transcript of BOK, a member of the pro-apoptotic
Bcl-2 family. Moreover, the downregulation of BOKAS
decreased WISP1 expression and greatly enhanced
irradiation-induced DNA damage in EC cells. Taken to-
gether, these findings indicate that BOKAS induces
radioresistance via promoting the upregulation of
WISP1.

LncRNAs in the regulation of cancer stem cells

CSCs only represent a small portion of cells within a
given cancer, but they are believed to be responsible for
self-renewal, metastatic ability, tumorigenicity, and
therapeutic resistance [140-143]. Although ECSCs play
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a critical role in EC, only a few IncRNAs have been dis-
covered to be associated with the functions of these
cells. As an example, MALAT1 has been demonstrated
to be associated with tumor stem regulation in several
cancer types [144—146]. A recent study by Wang et al
[147] reported that the downregulation of MALAT1 re-
pressed the cancer stem cell-like traits of ECSS through
decreasing the expression of tumor stem genes OCT4
and Nanog.

Clinical applications of IncRNAs in EC

It is recognized that the delayed diagnosis of EC results
in metastasis and recurrence and is therefore a major
obstacle for EC therapy. Recent studies have demon-
strated that IncRNAs play a vital role in the pathological
progression of EC. More importantly, IncRNAs have tis-
sue and cell-type specificity. These patterns make
IncRNAs attractive as potential biomarkers for the diag-
nosis and prognosis of EC (Table 3).

Tumor diagnosis

Emerging evidence has demonstrated that early diagno-
sis and effective intervention improves the survival of
EC patients. LncRNAs are involved in EC oncogenesis
and progression, and the presence of IncRNAs in the
peripheral blood and body fluids of EC patients suggests
that IncRNAs could serve as diagnostic biomarkers [89,
90]. Tong et al. [148] analyzed the levels of ten IncRNAs
in 48 plasma samples and found that POU class 3
homeobox 3 (POU3F3), HNF1A-AS1, and SPRY4-IT1
were markedly higher in ESCC patients compared to
healthy controls. In addition, in a cohort of 147 ESCC
patients and 123 healthy volunteers, the receiver operat-
ing characteristics (ROC) curves demonstrated a strong
separation between ESCC patients and healthy volun-
teers, with an area under the curve (AUC) of 0.842 (95%
CI 0.794-0.890; p <0.001) for POU3F3, with a 72.8%
sensitivity and 89.4% specificity. In another study, Hu
and colleagues [149] found that Linc00152, CASP8- and
FADD-like apoptosis regulator-antisense 1 (CFLAR-
AS1), and POUS3F3 were significantly upregulated in a
large cohort of 205 ESCC patients and 82 esophagus
dysplasia patients compared to 210 healthy controls,
with an AUC of 0.698, 0.651, and 0.584, respectively.
The merged AUCs of the three IncRNAs were 0.765,
while the AUC increased to 0.955 after merging the
three factors with CEA. The circulating levels of the
three IncRNAs were associated with poor postsurgery
prognoses of ESCC patients in Kaplan—Meier curves.
The authors also demonstrated the stability of the
IncRNAs that were expressed in the human plasma,
which is a crucial prerequisite for a biomarker. HOTAIR
was shown to be significantly upregulated in ESCC tis-
sues [150, 151]. A recent study demonstrated that the
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Table 3 The potential clinical applications of deregulated IncRNAs in EC
Potential LncRNA Expression  Clinical significance Sample size Ref.
application
Diagnostic POU3F3 Up - Plasma of 147 ESCC patients and 123 healthy  [148]
biomarker donors
Linc00152, CFLAR-AST, Up Poor post-surgery prognosis Plasma of 205 ESCC patients, 82 esophagus [149]
and POU3F3 dysplasia patients and 210 healthy donors
MIR3THG Down TNM stage, lymphatic metastasis, and poorer OS  Plasma of 205 ESCC patients and 39 healthy  [153]
donors
Prognostic ATB Up TNM stage and poor DFS 150 paired ESCC tissues [51]
biomarker
XIST Up Shorter DFS and OS 127 paired ESCC tissues [74]
AK001796 Up TNM stages, lymph node metastasis, and 50 paired ESCC tissues [93]
shorter OS
ZEB1-AS1 Up Tumor grade, depth of invasion, lymph node 87 paired ESCC tissues [145]
metastasis, and shorter DFS and OS
MALAT1 Up Lymphatic invasion, distant metastasis, tumor 106 paired ESCC tissues [147]
differentiation, and shorter OS
PCAT-1 Up Lymph node metastasis, TNM stage, and 130 paired ESCC tissues [161]
poorer OS
NKILA Down Tumor size, TNM stage, poor DFS, and OS 137 paired ESCC tissues [162]
SPRY4-IT1 Up Clinical stage and shorter OS 92 paired ESCC tissues [163]
ZFAS1 Up Poor OS 50 paired ESCC tissues [164]

expression level of HOTAIR in the serum of ESCC pa-
tients (n=50) was significantly higher compared to
healthy controls (n = 20), with an AUC of 0.793 (95% CI
0.692 to 0.895, P<0.01) and optimal cutoff values of
0.094 (sensitivity 56.0%, specificity 90.0%) [152]. In
addition, the serum level of HOTAIR was positively cor-
related with the distant metastasis and TNM stage.
MicroRNA-31 host gene (MIR31HG) is another EC-re-
lated IncRNA that is significantly upregulated in EC tis-
sues compared to the adjacent normal tissues, as well as
in ESCC plasma, compared to the healthy individuals
[153]. In addition, plasma MIR31HG was found to dif-
ferentiate between ESCC patients and healthy individ-
uals by AUC analysis (95% CI 0.656 to 0.841, P<0.01).
These findings indicated that POU3F3, HOTAIR, and
MIR31HG may be potential biomarkers for EC diagno-
sis. However, given that these IncRNAs have been shown
to be dysregulated in cancers other than EC [154-160],
they may best serve as effective diagnostic biomarkers in
EC in combination with other variables.

Tumor prognosis
In recent years, great advances have been made in re-
search into IncRNA-related prognostic biomarkers. The
aberrant expression of several IncRNAs has been signifi-
cantly associated with EC prognosis and may serve as
potential prognostic predictors.

The expression of prostate cancer-associated ncRNA
transcript 1 (PCAT-1) was markedly upregulated in 130
cancerous tissues compared to matched noncancerous

tissues in ESCC [161]. High expression levels of PCAT-1
have been correlated with the depth of tumor invasion,
lymph node metastasis, and TNM stage. Kaplan—Meier
analysis has revealed that patients in the high PCAT-1
group (n = 65) had shorter survival times compared with
those in the low PCAT-1 group (n =39). The expression
of IncRNA ZEB1-AS1 (ZEB1 antisense 1) was signifi-
cantly upregulated in 87 ESCC tissues compared to the
adjacent noncancerous tissues and was significantly as-
sociated with the depth of invasion and lymph node me-
tastasis [145]. In addition, from the Kaplan—Meier
survival curves, it was observed that the 5-year overall
survival (OS) and disease-free survival (DFS) of ESCC
patients with high levels of ZEB1-AS1 were shorter com-
pared with those with low levels of ZEB1-AS1.

Additionally, the dysregulation of IncRNAs ATB [51],
XIST [74], AK001796 [93], MALAT1 [147], nuclear
transcription factor NF-kB interacting IncRNA (NKILA)
[162], SPRY4-IT1 [163], and zinc finger antisense 1
(ZFAS1) [164] has also been demonstrated to be mark-
edly associated with advanced lymph node metastasis,
aggressive TNM stage, and shorter survival time. These
IncRNAs may also serve as potential prognostic bio-
markers for EC.

Conclusions

EC is the eighth most frequently diagnosed malignancy
worldwide. Due to typically late diagnoses at the ad-
vanced stage, combined with lymphatic metastasis, the
prognosis of EC patients is poor. Despite advancements
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in surgery, chemo- and radiotherapy treatment over the
past decades, few encouraging improvements in the 5-year
OS rate of EC patients have been achieved. Moreover, the
molecular mechanisms underlying EC tumorigenesis and
development are still elusive. Hence, a comprehensive un-
derstanding of the molecular pathogenesis and identifica-
tion of potential biomarkers of this disease are urgently
needed. It is now recognized that aberrant expression of
IncRNAs is a crucial determinant for human cancer. In
this review, we have summarized the molecular mecha-
nisms of IncRNAs and how they function in EC by localiz-
ing to the chromatin and interacting with proteins and
RNAs. Uncovering the underlying mechanisms of
IncRNAs may help us to understand the pathogenesis and
progress of EC, including cell apoptosis, proliferation, mi-
gration, stemness, and therapy resistance. Furthermore,
IncRNAs have the potential to serve as promising bio-
markers for diagnosing EC and predicting prognosis and
relapse, and they may even be novel attractive targets for
clinical therapy of EC. However, there remain significant
gaps in our understanding of the functions of IncRNAs in
EC; these gaps must be bridged before IncRNAs can be
used in clinical practice.
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