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Abstract

Background: In spite of major advances in treatment, multiple myeloma (MM) is currently an incurable malignancy
due to the emergence of drug-resistant clones. We previously showed that MM cells upregulate the transcriptional
repressor, growth factor independence 1 (Gfi1), in bone marrow stromal cells (BMSCs) that induces prolonged
inhibition of osteoblast differentiation. However, the role of Gfi1 in MM cells is unknown.

Methods: Human primary CD138+ and BMSC were purified from normal donors and MM patients’ bone marrow
aspirates. Gfi1 knockdown and overexpressing cells were generated by lentiviral-mediated shRNA. Proliferation/
apoptosis studies were done by flow cytometry, and protein levels were determined by Western blot and/or
immunohistochemistry. An experimental MM mouse model was generated to investigate the effects of MM cells
overexpressing Gfil on tumor burden and osteolysis in vivo.

Results: We found that Gfi1 expression is increased in patient's MM cells and MM cell lines and was further increased
by co-culture with BMSC, IL-6, and sphingosine-1-phosphate. Modulation of Gfi1 in MM cells had major effects on their
survival and growth. Knockdown of GfiT induced apoptosis in p53-wt, p53-mutant, and p53-deficient MM cells, while
Gfil overexpression enhanced MM cell growth and protected MM cells from bortezomib-induced cell death. Gfil
enhanced cell survival of p53-wt MM cells by binding to p53, thereby blocking binding to the promoters of
the pro-apoptotic BAX and NOXA genes. Further, Gfi1-p53 binding could be blocked by HDAC inhibitors.
Importantly, inoculation of MM cells overexpressing Gfil in mice induced increased bone destruction,
increased osteoclast number and size, and enhanced tumor growth.

Conclusions: These results support that Gfi1 plays a key role in MM tumor growth, survival, and bone destruction and
contributes to bortezomib resistance, suggesting that Gfil may be a novel therapeutic target for MM.
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Background

Multiple myeloma (MM) is characterized by uncontrolled
growth and accumulation of malignant plasma cells in the
bone marrow (BM) [1]. Bone destruction is a hallmark of
MM, occurring in over 80% of patients and severely
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impacting patients’ quality of life [2]. Modern treatment ap-
proaches have markedly improved MM patient survival,
but MM remains incurable for most patients [3, 4] due to
the emergence of drug-resistant clones. Thus, novel treat-
ments are needed if we are to cure MM.

We recently reported that MM cells upregulate the
transcriptional repressor growth factor independence
1 (Gfil) in bone marrow stromal cell (BMSC), which
induces epigenetic changes in the Runx2 gene to in-
hibit osteoblast (OB) differentiation [5] thereby in-
creasing MM cell growth and chemoresistance [5].
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Gfil encodes a nuclear zinc finger DNA-binding pro-
tein that also acts as a transcriptional repressor of
genes involved in hematopoiesis and hematopoietic
stem cell self-renewal and quiescence [6]. It recruits
the histone demethylase complex LSD-1/CoRest and
the histone deacetylases HDAC-1, HDAC-2, and
HDAC-3 to promoters of specific target genes to re-
versibly repress transcriptional activity [7, 8]. Gfil
overexpression in normal T cells delays apoptosis,
thereby protects them from growth factor withdrawal
[9-11], as well as enhances the progression of murine
T cell acute leukemia (T-ALL) [12]. Further, Gfil co-
operates with oncoproteins, such as Myc and Pim-1,
to induce development of lymphoma and ALL [13].
Gfil protein levels are differentially regulated by the
ubiquitin-proteasome system during myeloid differen-
tiation with rapid proteasomal degradation in granulo-
cytes and stabilization in immature myeloid cells [14].

Gfil can also interact with the p53 tumor suppressor
[15, 16]. Du et al. showed that p53 binds the Gfil core
promoter to repress Gfil transcription, and Gfil inhibits
DNA damage-induced apoptosis in hematopoietic cells
[17]. Downregulation of p53 increases Gfil expression
while reactivation of p53 reduces Gfil expression. Fur-
ther, Gfil overexpression inhibits apoptosis while Gfil
knockdown increases cell death induced by DNA dam-
age, suggesting that p53 may induce apoptosis through
downregulation of Gfil [17]. Finally, Gfil also decreases
the pro-apoptotic effects of p53 in lymphoblastic
leukemia by binding to the regulatory regions of
pro-apoptotic genes, such as BAX, Pmaipl (NOXA), and
Bbc3 (PUMA); blocking p53 binding; and decreasing
methylation of p53-K372 [12].

Because Gfil can play an important role in other
lymphoid malignancies [12], we determined if Gfil also
contributes to MM cell growth, survival, and chemore-
sistance. We report that Gfil mediates MM cell growth
and viability, enhances MM cell resistance to
bortezomib-induced cell death in vitro, and increases
MM cell growth and osteoclastogenesis in vivo.

Methods

Human primary CD138+ and BMSC cell purification and
MM cell lines

Bone marrow (BM) aspirates were collected in heparin
from 9 healthy subjects and 36 patients with plasma cell
disorders (Additional file 1 Tables S1 and S2).
Non-adherent marrow mononuclear cells were collected,
and highly purified MM cells (>90%) were isolated by
magnetic cell fractionation with anti-CD138 MicroBeads
(Miltenyi Biotec Inc., San Diego, CA) [18] as previously
described [19, 20]. The remaining adherent cells were
cultured for 21 days with media changes every 4 days to
obtain BMSCs that were used at passages 2 and 3.
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Myeloma cell lines were purchased from ATCC (Manas-
sas, VA) (MM.1S; H929) and from Leibniz-Institut DSMZ
(Braunschweig, Germany) (MOLP-8) or generously pro-
vided by Drs. Louis Stancato (U266), Kenneth Anderson
(KMS-11), and Nicola Giuliani (JJN3). HEK293-T cell line
was purchased from ATCC (Manassas, VA), and SAKA-T
cell line was generated by our group [21].

Cell viability/proliferation assays

Cell viability assays

Human MM cell lines were incubated in 96-well plates
in RPMI-1640 media with 10% FCS and varying concen-
trations of Btz for 24 and 48 h. Cell’s viability was quan-
tified using MTT assays (Sigma-Aldrich, St. Louis, MO)
or alamarBlue® Cell Viability assays (Thermos Fisher Sci-
entific, Waltham, MA), per the manufacturer’s protocol.

Proliferation assays

Single cell suspensions of MM cells were stained with
1 uM CellTrace for 20 min at 37 °C according to the
manufacturer’s protocol and grown in complete medium
for 72 h. Fresh stained cells were used as controls.

Cell cycle/apoptosis assays

Propidium iodide (PI) staining was used to detect cell
cycle phases, and a fluorescein labeling system was
employed to detect dUTP end nicks according to the
manufacturer’s instructions (APO-BRDU kit; BD Bio-
science, San Jose, CA) using flow cytometry (Fortessa
flow cytometer, Becton Dickinson). Post-acquisition ana-
lysis of the gated cell subsets was performed using
FlowJo software (Tree Star, OR).

In vivo studies

Fox Chase Beige SCID female mice (4—6 weeks of age)
(Charles Rivers, Indianapolis, IN) were inoculated intra-
tibially (IT) with 10° MM.1S cells stably transduced with
empty vector (EV) or overexpressing Gfil (Gfil o/e) in
20 pl of PBS. Mice were maintained and handled in
accordance with the Guide for the Care and Use of
Laboratory Animals on a protocol approved by the Indi-
ana University IACUC. The animals were followed for
8 weeks before euthanasia due to large tumor develop-
ment. X-ray images of dissected tibias were acquired on
a viva CT 40 scanner (Scanco Medical) at a resolution of
21 m isotropic, reconstructed, and segmented for 3D
display using the instruments analysis algorithm soft-
ware (Sanco Medical Evaluation Program V6).

Ig lambda concentrations

Human plasma Ig\ concentrations were measured after
5 weeks post-IT injection to define successful myeloma
engraftment and at the end of the study to evaluate
tumor burden using commercially available ELISA kits,
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according to manufacturer’s instructions (Bethyl Labora-
tories, Inc., Montgomery, TX, USA).

Histology and histomorphometry

The hind limbs were fixed with formalin and decalcified
in 10% EDTA for 2 weeks. The tissues were processed as
previously described [22], and the sections stained with
hematoxylin and eosin, and tartrate-resistant alkaline
phosphatase (TRAP) (Sigma-Aldrich, St. Louis, MO,
USA). The sections were scored on a Leica DM LB com-
pound microscope outfitted with a Q-Imaging Micropub-
lisher Cooled CCD color digital camera (W. Nuhsbaum
Inc., McHenry, IL, USA).

Osteoclast cultures

Mouse bone marrow cells were flushed from the long
bones of 3—-5-month-old mice, and non-adherent cells
were collected and incubated in aMEM supplemented
with M-CSF (10 ng/ml) for 48-72 h to generate bone
marrow monocytes as previously described [23]. For
myeloma-osteoclast co-cultures, M-CSFE-generated bone
marrow monocytes were plated into 96-well culture
plates (1 x 10° cells/well) in «MEM supplemented with
RANKL (50 ng/ml) and MM.1S EV, and MM.1S Gfil o/
e myeloma cells (5000 cells/well) were added 6 h later.
The cultures were continued for 4 days and then fixed
in 4% paraformaldehyde, washed with PBS, and stained

Page 3 of 14

for TRAP using a leucocyte acid phosphatase staining
kit (Sigma-Aldrich, St. Louis, MO, USA). TRAP-positive
cells with three or more nuclei were scored as osteo-
clasts by counting with an Olympus CKX41 inverted
microscope using a x 10 objective.

Statistical analyses
Statistical analyses were performed using Prism software
(Irvine, CA). The differences between groups were com-
pared using a two-tailed unpaired Student ¢ test or
ANOVA. Statistically significant difference was set at p <
0.05, and results are expressed as mean + SEM. Representa-
tive data from at least three biologic replicates are shown.
The specific details for the other experimental
methods and procedures employed (chemicals and anti-
bodies; plasmid and lentiviral constructs; immunoprecip-
itation and Western blotting; real-time RT-PCR (qPCR);
ChIP assay and immunofluorescence) are listed in Add-
itional file 2 (available on the journal website).

Results

Gfi1 expression is upregulated in human MM cells

Gfil mRNA levels were significantly increased in human
CD138+ cells from MM patients compared with normal
donors (Additional file 1: Table S1) (Fig. 1a). We then
compared Gfil mRNA levels (Additional file 1: Table S2)
in different stages of the disease and found that they
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Fig. 1 Gfi1 expression is upregulated in human MM cells. GfiT mRNA expression was measured by gPCR in CD138+ cells from multiple myeloma
patients (MM) (n=7) and normal bone marrow (NBM) donors (n = 3) (see patient/normal donor characteristics in Additional file 1: Table S1) (a).
Gfil mRNA expression was measured by gPCR in CD138+ cells from relapsed MM patients (MMR) (n = 10), MGUS patients (n =4), and MM newly
diagnosed patients (MMD) (n=11) (see characteristics of patients from ltaly in Additional file 1: Table S2. Unpaired t test with Welch's correction:
MGUS vs MMR *p =0.0281 and MMD vs MMR *p = 0.0438 (b). Gfi1 protein levels were analyzed by WB in cell lysates of primary CD138+ cells
isolated from MM patients and normal bone marrow (NBM) donors (numbers represent Gfil/3-actin ratio of densitometric measurements;

p <0005 MM vs. NBM) (). Gfi1 and Mcl-1 protein levels were analyzed by WB in cell lysates of primary CD138+ cells from MM patients (MM1-3) and
MM cell lines using -actin as loading control (d)
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were increased in relapsed MM patients compared with
MGUS patients and newly diagnosed MM patients
(Fig. 1b) suggesting that Gfil levels correlate with dis-
ease progression. Gfil protein levels were also signifi-
cantly higher in CD138+ cells from MM patients and
MM cell lines compared with normal donors (Fig. 1c, d).

Gfi1 mediates the viability and cell growth of myeloma
cells

We next examined the effects of modulating Gfil levels
in human MM cell lines that expressed wild-type (wt),
mutant, or haploinsufficient p53. Knockdown (KD) of
Gfil, using two different shRNA (#1 and #2) (Fig. 2a),
significantly increased the expression of the Bcl-2 family
pro-apoptotic genes BAX, PUMA, and NOXA (Fig. 2b,
c) in H929 cells (p53-wt) and significantly decreased cell
growth and viability after 24 and 72 h, compared to
scrambled shRNA-transduced control cells (Fig. 2d).
The decreased viability of Gfil-KD in MM cells
(shRNA#1) resulted from enhanced apoptosis, as shown
by increased caspase 3 activation and DNA fragmenta-
tion (Fig. 2e, f) and increased levels of sub-GO cell cycle
fraction when compared to scrambled control shRNA
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(Additional file 3: Figure S1A). Importantly, Gfil-KD
(shRNA#1) also induced cell death in MM cells with al-
tered p53. Gfil-KD increased cleaved Mcl-1 and caspase
3 levels in JJN3 (p53-haploinsufficient) and RPMI-8266
(p53-mutant) MM cells (Additional file 3: Figure S1B).
We then determined the effects of overexpression (o/e)
of Gfil in MM cells (Fig. 3a). MM.1S Gfil o/e enhanced
proliferation of MM cells compared with MM.1S cells
transduced with empty vector (EV), as shown by a signifi-
cantly decreased CellTrace staining after 72 h (Fig. 3b).
Consistent with these results, MM.1S Gfil o/e cells dis-
played enhanced mitosis with a significantly increased per-
centage of cells in “G2+M” phase compared with MM.1S
EV cells (Fig. 3c), while “S” phase levels were only slightly
higher in these cells. The enhanced viability of MM cells
overexpressing Gfil was not restricted to p53-wt cells.
MTT assays showed that Gfil overexpression in JIN3 cells
increased their metabolic activity (Additional file 4: Figure
S2A). Importantly, Gfil o/e partially protected MM cells
from bortezomib (Btz)-induced apoptosis. Btz treatment
dose-dependently decreased MM.1S EV cell viability after
24 and 48 h (Fig. 3d), while Gfil o/e significantly en-
hanced MM.1S viability (Fig. 3d) and significantly
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Fig. 2 Gfil mediates cell growth and viability of myeloma cells. mRNA Gfil levels measured by gPCR showing its knockdown (KD) as compared
with scrambled (Scr) control in H929 cells using two different lentiviral ShRNA (#1 and #2) (a). p53 target genes (BAX, NOXA, PUMA) mRNA levels
were measured by gPCR in GfiT-KD and Scr control H929 cells. The bar graph represents fold versus Scr levels (b). Gfi1, BAX, NOXA, and PUMA
protein levels were analyzed by WB using GAPDH as loading control (left panel). The graph (right panel) represents densitometric levels of the
protein versus loading control in three independent experiments (c). H929 cells were transduced with Gfi7-shRNA (#1 and #2) and Scr-shRNA,
selected with puromycin for 48 h and maintained in complete media for another 24 h. The cell number was counted by hemocytometer (time
zero) and after another 24 and 72 h. The bar graph represents percent cell number vs time zero (d). Gfi1, BAX, total and cleaved caspase 3
protein levels were analyzed by WB using a-tubulin as loading control (e) and DNA fragmentation was measured by Apo-BRDU assay and flow
cytometry in H929 cells transduced with Gfil-shRNA (#1) and Scr-shRNA (f)
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Fig. 3 Gfi1 overexpression enhances cell proliferation and survival and protects MM cells from Btz-induced apoptosis. MM.1S cells were
transduced with lentivirus carrying the PCL6-GFP vector containing the Gfil cDNA insert (Gfi1 o/e) or the empty vector (EV). Gfi1 overexpression
was estimated at both mRNA as measured by gPCR (a, left panel) and protein levels as measured by WB (a, middle panel) and quantified (N =9)
by densitometry (a, left panel). Stable Gfi1 o/e MM.1S cells and their EV controls were stained with CellTracker, and proliferation was measured
after 72 h by flow cytometry (b, histograms). The bar graph represents the fold increase in proliferation of Gfil o/e cells as compared with EV in
three independent experiments (b). Cultures of MM.1S cells, Gfi1 o/e, and EV controls (24 h) were stained with propidium iodide (Pl), and cell
cycle phases were evaluated by flow cytometry (c, histograms). The bar graph represents the percent of cells in the “G2+M" cell cycle phase of
Gfi1 o/e cells compared with EV in three independent experiments (c). MM.1S Gfi1 o/e and EV control cells were treated with Btz at the indicated
concentrations. Viability was measured by alamarBlue assay after 24 and 48 h and analyzed as percent from the untreated control (d). MM.1S EV
and Gfi1 o/e cells were treated for 24 h with Btz (3 and 5 nM), and cell lysates were analyzed by WB for Gfi1 and total and cleaved caspase 3
protein levels using {3 actin as loading control (e)

decreased caspase 3 activation (Fig. 3e). This effect was  Gfil o/e did not protect MM cells from treatment with
also observed in Gfil o/e JIN3 cells, which had signifi- dexamethasone (data not shown). These results suggest
cantly enhanced viability when exposed to Btz compared that Gfil plays a key role in MM cell survival and contrib-
with EV controls (Additional file 4: Figure S2B). However,  utes to proteasome inhibitor resistance.
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Role of Gfi1-p53 binding in MM cell survival

Since Gfil binds p53 [12] and KD of Gfil in p53-wt
MM cells increased expression of Bcl-2 family pro-
teins, we examined the contribution of p53-Gfil bind-
ing to the survival of p53-replete MM cells. Gfil acts
as an epigenetic regulator of gene transcription by
recruiting histone deacetylases (HDACs) to promoters
of target genes [24]. Since both Gfil and p53 undergo
post-translational modification, with p53 acetylation
activating p53-mediated transcription [25, 26], we de-
termined the role of Gfil and p53 acetylation in MM
cell survival. Treatment of HEK293-T cells, trans-
fected with plasmids carrying the mouse Gfil cDNA,
with TSA (Zn**-dependent HDAC inhibitor (HDACi))
and NAM (NAD+-dependent HDACI) revealed acetyl-
ation of the lysine residues of Gfil (Fig. 4a, top). TSA
plus NAM treatment also resulted in increased acety-
lated Gfil in MM.1S myeloma cells (Fig. 4a, bottom).
Moreover, this treatment induced high levels of p53
acetylation in H929 cells (Fig. 4b), as did nanomolar
concentrations of actinomycin D (Fig. 4c), a known
inducer of p53 acetylation at low doses [27]. p53
acetylation also increased the levels of p53 target pro-
teins (BAX, PUMA) (Fig. 4b, c). Because p53 acetyl-
ation increased p53 activity, we assessed the ability of
p53 to bind to the NOXA and BAX promoters. Treat-
ment with HDACI significantly increased the relative
enrichment of p53 at these promoters (Fig. 4d).

Since both Gfil and p53 can be acetylated in MM
cells and their acetylation induced activation of
pro-apoptotic genes and decreased viability (Fig. 4d,
e), we next assessed if acetylated Gfil binds p53.
HDACIi treatment markedly decreased p53 binding to
Gfil in MM.1S (Fig. 4a, bottom) and H929 cells
(Fig. 4f). Further, immunofluorescence and cell frac-
tionation studies showed that HDACIi treatment shifts
their cellular distribution. Gfil and p53 were
co-localized in the cytosol of H929 cells (Fig. 4g),
with increased amounts of these proteins in the cyto-
solic versus nuclear fractions (Fig. 4h). HDAC] treat-
ment increased acetylated p53 levels in the nucleus
but did not increase nuclear Gfil (Fig. 4g, h).

To determine if acetylation of Gfil, p53, or both was
responsible for the enhanced apoptosis seen with
HDACi treatment, we analyzed a set of Myc-tagged
mGfi truncation constructs for the presence of acety-
lated lysines. We found several contained acetylated ly-
sines (Fig. 4i), with the most intense bands in an
overlapping region from amino acid 291 to 300 that con-
tained K292 in the second zinc finger. We then mutated
lysine 292 to arginine (K292R) of Gfil and transfected
wt Gfil and the K292R mutant into HEK293-T cells. Wt
Gfil co-immunoprecipitated with endogenous p53, but
this binding was lost when the cells were exposed to
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acetylating conditions that strongly acetylated the ly-
sine residues (Fig. 4j). Transfection of HEK293-T cells
with the Gfil K292R mutant (which will block acetyl-
ation of the critical K292 residue in Gfil, but should
not affect p53 acetylation) resulted in decreased p53
binding in untreated cells, but no further loss of p53
interaction was observed in the presence of acetylat-
ing conditions (Fig. 4j). This result may suggest that
Gfil-K292 is part of the interaction region for p53,
which would also explain why acetylation of K292
could make the complex dissociate. These results
demonstrate that Gfil acetylation decreases Gfil
interaction with p53 in human MM cells and that
Gfil-p53 binding prevents p53 binding to the pro-
moters of its pro-apoptotic target genes. Therefore,
the acetylation status of Gfil appears to be a deter-
mining factor contributing to Gfil’s effects on MM
cell survival.

Microenvironmental factors regulate Gfi1 levels in MM
cells

Gfil levels are elevated in early B cell development
and decrease in mature B cells [8], but how Gfil ex-
pression is regulated in MM cells is unknown. Since
multiple factors increase MM cell survival, growth,
and chemoresistance [28], including adhesive interac-
tions between MM cells and BMSC, IL-6, TNFa, and
sphingosine-1-phosphate (S1P), we tested their effects
on Gfil expression in MM cells. Adhesive interactions
between MM cells and BMSC increased Gfil expres-
sion 1.5-fold in MM cells, at both the transcriptional
and protein level (Fig. 5a) as did IL-6 (Fig. 5b). S1P
and TNFa had variable effects on Gfil levels in MM
cell lines (Fig. 5b). Both IL-6 treatment and
MM-BMSC adhesive interactions significantly en-
hanced Gfil protein levels, which were associated
with increased levels of the pro-survival Mcl-1 protein
levels in MM cells (Fig. 5a, right panel; c¢; d). Since
Mecl-1 is a direct and functional target gene of Gfil in
p210BCR/ABL-transformed cells [29] and plays an
important role in cell proliferation and survival, we
tested if Gfil and Mcl-1 protein expression levels
were correlated in MM cells. Mcl-I mRNA levels
were significantly increased in MM.1S Gfil o/e cells
compared with control MM.1S EV cells (Fig. 6a). Fur-
ther, adhesive interactions with BMSC (SAKA-T nor-
mal human BMSC cell line) enhanced Gfil mRNA
expression in H929 MM cells as early as 4 h, and this in-
duction positively correlated with the increased Mcl-1 ex-
pression (Fig. 6b). Importantly, Gfil protein levels in MM
cell lines and primary CD138+ MM cells significantly and
highly correlated with Mcl-1 protein expression (Fig. 6c).
Thus, BM microenvironmental factors known to sustain
MM cell growth and survival also regulate Gfil.
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Fig. 4 Gfil is a target for acetylation and binds p53 in MM cells to prevent apoptosis. HEK293-T cells were transfected with either Flag- or Myc-
Gfi1 and HA-P300, incubated 8 h with 10 mM NAM and/or 5 uM TSA (HDACI), and cell lysates were immunoprecipitated (IP) using either an anti-
Flag or anti-Myc antibody and analyzed by Western blot (WB) (a, top). MM.1S cells, treated with HDACi (8 h), were IP with Gfi1 antibodies and
analyzed by WB (a, bottom). H929 cells were treated with HDACi (8 h) (b) or with actinomycin D (1 and 10 nM; 16 h) (c) and analyzed by WB.
Chromatin from H929 cells was analyzed using SimpleChlIP © kit and gPCR with ChIP-gPCR primers for BAX and NOXA. The bar graph represents
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MM.1S EV cells (6/7) or MM.1S Gfil o/e cells (7/9) suc-
cessful engrafted MM cells, with detectable human Ig\

Overexpression of Gfi1 in MM cells increases MM tumor
burden and osteolysis in vivo

We next determined the effects of Gfil overexpression
in MM cells in vivo. Consistent with prior studies, 80%
of evaluable animals injected intratibially with either

levels in plasma as an estimate of tumor burden. Plasma
Igh concentrations at sacrifice were higher in MM.1S
Gfil o/e-injected mice as compared with MM.1S
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EV-injected mice, although this enhanced MM growth
did not reach statistical significance (Fig. 7a). Histologic
analysis of tumor burden in MM bearing tibiae was diffi-
cult to assess due to extensive cortical bone destruction

in bones injected with the MM.1S Gfil o/e cells as com-
pared with MM.1S EV-injected mice (data not shown).
The trend towards more aggressive tumors in the bone
marrow of mice bearing Gfil o/e MM.1S as compared
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with EV controls might be due to the modulation of the
c-Myc oncogene by the Gfil levels (Additional file 5:
Figure S3A), Interestingly, examination of tibial X-rays
of animals displaying similar Ig\ showed that MM.1S
Gfil o/e cells caused greater and more extensive cortical
and trabecular bone destruction than MM.1S EV cells
(Fig. 7b). uCT analysis confirmed the significantly greater
bone loss in the injected tibiae of MM.1S Gfil o/e-bearing
mice (Fig. 7c) with a significant decrease in bone volume
relative to the volume of calcified tissue (BV/TV) and tra-
becular number (Tb.N.) (Fig. 7d). Importantly, histologic
analysis of tartrate-resistant acid phosphatase (TRAP)--
stained sections showed increased osteoclast (OCL) num-
bers in the Gfil o/e MM.1S-bearing tibias compared with
EV MM.1S-bearing tibias (Fig. 7e, histology). Analysis of
OCL surface area (Oc.S/BS) demonstrated a marked in-
crease in the Gfil o/e MM.1S-injected tibias that did not
reach statistical significance (Fig. 7e, bar graph), again
reflecting the extreme bone loss seen in these animals.
Interestingly, the histologic analysis with TRAP staining
demonstrated that the Gfil o/e MM.1S-injected tibias
had larger OCL that contained more nuclei/OCL
(Fig. 7e, histology). We then determined if increased
Gfil expression in the MM cells increased OCL for-
mation by culturing purified mouse OCL precursors with
Gfil o/e and EV MM.1S cells for 72 h. TRAP staining of
the cultures showed significantly increased OCL numbers
(»<0.05) in co-cultures containing Gfil-overexpressing
MM cells (Fig. 7f). Further, OCL formed in co-cultures of
Gfil o/e MM.1S were larger and contained more nuclei/
OCL than OCL formed in EV MM.1S control cell
co-cultures. Consistent with this findings, in preliminary
studies, we found that MM.1S Gfil o/e cells produce
higher protein levels of IL-6 and integrin o4 as well as
mRNA levels of RANKL and IL-6 and secrete higher levels
of MIP-1a than MM.1S EV controls (Additional file 5:
Figure S3 B, C, and D). These results support that Gfil o/e

in MM cells enhances OCL precursor fusion and OCL
formation.

Discussion

Gfil is a proto-oncoprotein [13] that acts as a transcrip-
tional repressor, which can regulate cell fate, differenti-
ation, and survival in normal and malignant
hematopoiesis [25, 30]. Previous studies showed that
Gfil affected T cell survival by inhibiting apoptosis
through repression of multiple pro-apoptotic regulators
such as BAX and BAK [9] and that loss of Gfil impairs
proliferation and survival of early myeloid cells [31].
However, Gfil’s role in MM was previously unknown.
We found that MM cell lines and CD138" cells from
MM patients expressed elevated levels of Gfil when
compared to CD138" cells from healthy donors. In
addition, Gfil gene expression levels in MM patient
CD138+ cells correlated with disease progression, sug-
gesting a potential role for Gfil in MM progression. This
observation is consistent with previous studies that
showed Gfil is involved in the accelerated progression
of lymphoid malignancies in MoMuLV-infected mice
[13, 32, 33] and that Gfil can act as an oncogene to en-
hance lymphomagenesis through cooperation with Myc
and Pim-1 [13, 33, 34]. Furthermore, our observation is
in line with a recent study showing that Gfil overexpres-
sion contributes to enhanced tumorigenesis in medullo-
blastoma [35] and small cell lung cancer [36].

We demonstrated that Gfil decreased MM cell death
by inhibiting expression of apoptosis-inducing genes, in-
creasing cell growth, and decreasing sensitivity of these
cells to proteasome inhibitor-induced apoptosis. Further,
loss of Gfil had profound pro-apoptotic effects on MM
cells, increasing BAX, PUMA, and NOXA as well as
cleaved caspase 3 protein levels in p53-replete cells and
significantly decreased the proliferative capacity of MM
cells. Importantly, Gfil o/e-granted MM cells had a



Petrusca et al. Journal of Hematology & Oncology (2018) 11:123 Page 10 of 14

A B EV Gfi1 ole Gfi1 ole
40007 = EV (IgG2. 1972 ng/ml) (IgGA 1832 ng/ml) (IgG. 1860 ng/ml)
=1 Gfif ofe b e 3

3000

g [

2 2000 - =

k) -
1000 L

0 T T T

& & &

Gfi1 ole

D

BV/TV

p<0.05 p<0.05

C Uninjected

3fi1ole EV  Gfilole

E N

DEV
g . wGfit dle
ns.
8
7
6
]
o5
a
o4
[e]
3
2
1
0
180
F MM.1S EVinduced OCL 160 p<0.01
& e 'S 140
Y § 120
< 100
= 80
S
£ 60
-
O 40
O 2
0
EV Gfi1 ole
co-culture
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proliferative advantage over EV-transfected controls, by
enhancing the percentage of cells in the G2+M cell cycle
phase. These results suggest an important role for Gfil
in MM cell survival and growth [37, 38].

To determine if Gfil could contribute to drug resistance
in MM, we assessed its capacity to block the effect of Btz
and dexamethasone-induced apoptosis, major compo-
nents of MM therapy [39, 40]. We found that blocking
proteasomal degradation with low concentrations of Btz
(3 nM) consistently activated caspase 3 cleavage in MM
cells, but this was accompanied by increased Gfil protein
levels. Higher doses of Btz (5 nM) induced a dramatic en-
hancement of apoptosis in MM cells that was associated
with the loss of the increased levels of Gfil. Importantly,
in the MM cells overexpressing Gfil, Gfil protein accu-
mulation persisted, regardless of the Btz concentrations.
The increased expression of Gfil conferred protection of
MM cells to Btz-induced apoptosis, as shown by the low
levels of active caspase 3 and the significantly higher cell
viability. The twofold overexpression of Gfil did not con-
fer any viability advantage to MM cells treated with dexa-
methasone. Given previous reports showing that Gfil
expression is regulated at the protein level through
ubiquitin-proteasome-mediated degradation [14, 41], our
results suggest that Gfil may contribute to Btz-induced
drug resistance in MM cells, which may, in part, result
from persistent Gfil accumulation.

We found that ablation of Gfil leads to MM cell death
through induction of p53-dependent pro-apoptotic pro-
teins in p53-wt MM cell lines. Moreover, we found that
Gfil binds to p53, preventing its binding to the BAX
and NOXA promoters and that Gfil-p53 binding was
blocked by acetylation of Gfil. The interaction between
Gfil and p53 has been described previously in other sys-
tems. In T-ALL, Khandanpour et al. [12] demonstrated
that Gfil recruits LSD1 to p53 and dampens its activity
by de-methylating p53 at C-terminal lysines to prevent
immediate apoptosis. Du and collaborators reported that
p53 represses transcription of Gfil in human lymphoma
cells [17], whereas Liu and colleagues found that Gfil is
a positive p53 target in hematopoietic cells [42]. How-
ever, Gfil-p53 interactions have not been described in
MM cells. Our results clearly show that Gfil-p53 inter-
actions occur in MM cells and promote MM cell sur-
vival by preventing p53 binding to promoters of
pro-apoptotic target genes (BAX, NOXA). Moreover, we
show for the first time that Gfil is a protein whose func-
tion can be modulated by acetylation. Using truncated
Gfil constructs, we found an acetylation site between
Gfil residues 291-341 that was necessary for Gfil-p53
binding, as shown by our studies with the Gfil K292R
mutant. Cell fractionation studies showed that under
basal conditions, Gfil and p53 are primarily localized in
the cytosol of MM cells. Acetylation induced by HDACi
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treatment decreased the amount of total p53 in the cyto-
sol and increased its acetylated form in the nucleus,
while the nuclear-cytosolic distribution of Gfil remained
unchanged. These results suggest that acetylation of
Gfil is a critical step in p53’s translocation to the nu-
cleus to induce apoptosis in MM cells.

Our results suggest that Gfil also plays a key role in the
survival and growth of p53-mutant or p53-null MM cells.
Although p53 mutations are rare in MM, chromosome
17p13 deletions are detectable in about 10% of newly diag-
nosed patients [43]. Patients harboring the 17p13 deletion
[del(17p)] are considered “high risk” and have poorer
outcomes and shorter survival times compared to
standard-risk patients [44—46]. Moreover, the prevalence
of [del(17p)] increases in advanced stages of disease such
as plasma cell leukemia and extramedullary disease [44].

The mechanism by which Gfil regulates the survival
and growth of these cells remains unknown. As reported
in T cells, one possibility is that in p53-mutant or
p53-null MM cells, Gfil interacts directly with ETS1 to
repress the BAX gene through adjacent DNA binding
sites [47] or that Gfi-1 interacts with PIAS3 to relieve its
inhibitory effect on STAT3 activity [48]. Further studies
are required to determine if these occur, or if other
mechanisms are involved in MM.

The MM microenvironment plays a critical role in
MM cell survival and growth. High levels of IL-6 are
produced by BMSC and increase the growth and sur-
vival of normal B cell lineage and MM cells [49]. Fur-
ther, adhesive interactions between BMSC and MM cells
enhance MM cell growth and drug resistance [50]. We
found that IL-6 and adhesive interactions with BMSC
cells consistently upregulated Gfil in MM cells at the
transcriptional and protein levels. Moreover, Gfil pro-
tein levels were highly correlated with Mcl-1 protein
levels. Mcl-1 is required for proliferation and survival of
hematopoietic stem cells [51, 52] and is a transcriptional
target of Gfil in chronic myelogenous leukemia [29].

Most importantly, our in vivo study showed that mice
bearing Gfil o/e MM.1S cells developed more aggressive
tumors in the bone marrow as compared with EV con-
trols, although the tumor burden was difficult to assay
histologically because of its extramedullary growth. The
difference in the oncogenic phenotype might be due to
the modulation of the c-Myc oncogene by the Gfil levels
(Additional file 5: Figure S3A), since c-Myc overexpres-
sion was been related to poor prognosis in MM patients
[53]. Mice bearing Gfil o/e MM tumors had more bone
destruction than those bearing control MM cells and lar-
ger OCLs with more nuclei/cell. Hypernucleated OCL
have an increased bone resorbing capacity [54]. Further,
Gfil o/e MM cells enhanced OCL precursor fusion and
OCL formation in vitro. The underlying mechanism for
the OCL effect is beyond the scope of this study but may
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involve increased secretion of several soluble osteoclasto-
genic factors by MM cells such as MIPla, RANKL, or
MMP13 [54].

Conclusions

In summary, our results support Gfil as a key contribu-
tor to MM cell survival and growth through its regula-
tion of p53 activity in p53-replete MM cells and that
Gfil can be targeted in p53-replete MM cell by HDACi
treatment. Further, our results suggest that Gfil may
contribute to Btz resistance and that targeting Gfil may
be a novel therapeutic strategy for MM patients, even
those harboring p53 mutations or deletions.

Additional files

Additional file 1: Table S1. Main characteristics of the US Patients and
Normal donors cohort. Table S2. Main characteristics of the Italian
patient’s cohort. Table S3. Sequences of gPCR primers used for
amplification of human mRNA. (DOCX 22 kb)

Additional file 2: Chemicals and antibodies; Plasmid and lentiviral
constructs; Immunoprecipitation and Western blotting; gPCR; ChIP assay;
Immunofluorescence. (DOCX 22 kb)

Additional file 3: Figure S1. Gfi1-KD induces apoptosis in MM cells
regardless of their p53 status. MM.1S cells, lentiviral infected to knock
down Gfil (Gfi1-shRNA #1) and the corresponding scrambled control
(Scr-shRNA) were stained with Pl and cell cycle phases were evaluated by
flow cytometry. The histograms show the different amplitude of the “sub
Go" phases representing different levels of apoptosis (A). Gfil KD was
induced by lentiviral infection (Gfi1-shRNA #1) in H929 cells (p53 wt),
JIN3 (p53 haploinsufficient) and RPMI-8266 (p53 mutant) MM cell lines.
Proteins collected 24 h after the puromycin selection were analyzed by
WB for pro-apoptotic cleavage of Mcl-1 (Mcl-1(s)) and caspase 3 as
compared to control lentiviral infected cells (Scr-shRNA) (B). (JPG 623 kb)

Additional file 4: Figure S2. Gfil overexpression increases metabolic
activity and confers protection from Btz-induced apoptosis in JJN3 MM
cells. Stable cumate inducible Gfi1 (iGfi1) JIN3 cells and their respective
controls (iCtl) were obtained as described in the Methods section. Gfil
overexpression (4-5 fold compared to iCtl) (data not shown) was induced
by exposing the cells to 25 pg/ml cumate for 24 h (overexpression was
stable for 48 h after removing the cumate from culture media). MTT
assays showing metabolic activity of JJN3 iGfi1 cells as compared with
iCtl at 24 h after cumate was removed from the media (N=4) (A). MTT
assay showing metabolic activity of JIN3 iGf1 and iCtl cells, treated for
24 h and 48 h with Btz (3, 5 and 10 nM). The bar graph represents %
versus untreated control (B). (JPG 262 kb)

Additional file 5: Figure S3. MM Gfil o/e cells produce higher levels of
osteoclastogenic factors. MM.1S EV and Gfi1 o/e cells (upper left panel;
graph on the right represents densitometric evaluation of three
independent experiments) and H929 Gfil- shRNA and Scr-shRNA cells
(lower left panel; graph on the right represents densitometric evaluation
of three independent experiments) were analyzed by WB for Gfi1 and
c-Myc protein expression using 3-actin and a-tubulin as loading controls
(A); MM.1S EV and Gfi1 o/e cells protein lysates were analyzed by WB for
Gfi1, Integrin a4 and IL6 protein levels using GAPDH as loading control
(B); RANKL and IL6 mRNA levels were measured by gqPCR using specific
primers in MM.1S EV and Gfi1 o/e cells (C); MIP1a protein levels were
measured by ELISA (R&D Systems, Minneapolis, MN) in 72 h condition
media harvested from MM.1S EV and Gfi1 o/e cells (D). UPG 523 kb)
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IL-6: Interleukin 6; IP: Immunoprecipitation; ishRNA: Inducible short hairpin RNA;
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