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Abstract

anticancer treatment.

Recent advances in the field of novel anticancer agents prolong patients’ survival and show a promising future. Tyrosine
kinase inhibitors and immunotherapy for lung cancer are the two major areas undergoing rapid development. Although
increasing novel anticancer agents were innovated, how to translate and optimize these novel agents into
clinical practice remains to be explored. Besides, toxicities and availability of these drugs in specific regions
should also be considered during clinical determination. Herein, we summarize emerging agents including
tyrosine kinase inhibitors, checkpoint inhibitors, and other potential immunotherapy such as chimeric antigen
receptor T cell for non-small cell lung cancer attempting to provide insights and perspectives of the future in
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Background
In the past few decades, systemic treatment for lung cancer
remained to be cytoxicity agents with platinum-based regi-
mens. ECOG1594 was the first trial comparing four differ-
ent chemotherapy regimens for advanced non-small cell
lung cancer (NSCLC) head to head [1]. All chemotherapy
regimens showed almost the same efficacy with objective
response rate (ORR) of 19% and 7.9 m median overall sur-
vival (OS). The platinum-based doublet chemotherapy
seemed to reach the plateau since then. In 2005, the
first-ever trial combining small molecular targeted agent
known as bevacizumab, an anti-vascular endothelial
growth factor (VEGF) monoclonal antibody, with doublet
chemotherapy, had shown superiority of overall survival
with this treatment modality in advanced non-squamous
non-small cell lung cancer patients without brain metasta-
sis [2]. Yet, several trials including molecular targeted
agents and chemotherapy fail to reach the endpoints [3-5].
Epidermal growth factor receptor, a well-known bio-
marker for targeted therapy at present, was first brought
up with potential clinical responsiveness to tyrosine kinase
inhibitor gefitinib in 2004[6]. Since then the era of
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targeted therapy was uncovered and multiple trials dem-
onstrated the efficacy of tyrosine kinase inhibitor (TKI) in
oncogene-driven non-small cell lung cancer patients [7—
11]. In these trials, significantly improved progression-free
survival (PFS) was observed compared to tradition chemo-
therapy; however, no overall survival benefit was identified
which may be partly due to high crossover rate after dis-
ease progression [12—14]. Moreover, resistance to tyrosine
kinase inhibitor was inevitable and sequential treatment
was warranted [7, 15-17].

Although up to 69% of patients with advanced NSCLC
could harbor actionable driver mutations, a number of
patients barely got a chance for more effective agents
other than chemotherapy [16, 18-21]. Until 2013, im-
munotherapy was crowned as the first place of scientific
breakthroughs [22]. Efficacy of immunotherapy for those
without targetable oncogene mutation was proven from
second-line treatment [23-27] to first-line treatment
[28, 29]. Through long-term follow-up, immunotherapy
had also shown itself the greatest potential of long-term
clinical benefit [30, 31], even though the efficacy was not
that satisfactory [23-30]. Indeed, similar to targeted
therapy, patients may eventually develop resistance to
immunotherapy [32, 33] and some may even suffer
hyperprogression after immunotherapy [34, 35]. The de-
sire of novel agents that showed better efficacy, prolong
survival benefit, and overcame resistance promoted the
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development of potential targets and corresponding
drugs. In recent years, we have witnessed the birth of
numerous emerging agents and their superior clinical re-
sponsiveness. Herein, we summarized the novel agents
in tyrosine kinase inhibitors especially for epidermal
growth factor receptor (EGFR) and anaplastic lymphoma
kinase (ALK) inhibitors, checkpoint inhibitors, and other
potential immunotherapy aiming to provide a landscape
of emerging agents for NSCLC as well as insights and
perspectives for the future in anticancer treatment.

Epidermal growth factor receptor and human epidermal
growth factor receptor 2 inhibitors

Dacomitinib

Dacomitinib is a selective and irreversible inhibitor for
EGER [36, 37]. In 2014, an official announcement from Pfi-
zer indicated the trial failure of dacomitinib in patients with
refractory advanced non-small cell lung cancer. However,
based on superior results from phase II single-arm trial
(ARCHER 1017) in the first-line setting, ARCHER1050, a
phase III randomized control trial (ARCHER 1050) com-
paring dacomitinib and gefitinib head to head, was set to
confirm its clinical efficacy and safety in expanded popula-
tion. The results were promising, and the median PFS for
dacomitinib and gefitinib was 14.7 months and 9.2 months,
respectively (HR =0.59, 95% CI 0.47-0.74) [38]. Similar
efficacy was shown between EGFR 19Del and EGFR
21L858R which suggested opposite results compared to the
first-generation TKI in previous researches [39, 40]. Further
OS results have been recently unleashed, and the median
OS was 34.1 m with dacomitinib versus 26.8 m with gefi-
tinib (HR =0.76, 95% CI 0.58-0.99) [41]. Higher incidence
of adverse events compared to the first-generation TKI
should be noticed [38, 41]. Currently, updated results of
dose reduction in dacomitinib have been released and
higher efficacy was found in dose modulation group [42].
Yet, efficacy results in patients with brain metastasis and re-
sistant mechanism to dacomitinib were poorly explored
and whether patients who had treatment failure after daco-
mitinib could still have a great chance of receiving osimerti-
nib has not been answered [41]. Indeed, dacomitinib has
been officially approved by the FDA in 2018 due to its su-
perior performance in the first-line setting. Clinically, daco-
mitinib as a first-line treatment would be an optional
choice, and hopefully, the third generation may be a salvage
treatment after disease progression. But it would be too
early to confirm its significant clinical role in first-line treat-
ment neglecting the striking performance from osimertinib.
Further clinical researches were warranted to provide evi-
dence for a better therapeutic scheme.

Osimertinib (AZD9291)
Despite the high response rate to the first-generation TKI,
majority of patients would suffer disease progression after
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9-13 months of treatment [7, 15-17]. The most common
resistant mechanism to the first-generation TKI is
p.Thr790Met point mutation (T790 M) with almost 60%
[15, 20]. Osimertinib, an irreversible third-generation TKI,
was set to overcome resistance to T790M, and sensitive
EGFR mutations (19Del and 21L858R) were covered as
well [43, 44]. In a phase II single-arm AURA?2 study [44],
ORR was 70% (95% CI 64—77) among 199 pretreated pa-
tients receiving osimertinib and manageable side effect
was identified. Extension population-based AURA study
showed that 201 pretreated patients harboring T790 M
mutation received osimertinib with a median treatment
duration of 13.2 months. Objective response rate was 62%
(95% CI, 54% to 68%), and median PFS was 12.3 months
(95% CI, 9.5 to 13.8) [45]. Treatment-related adverse
events were milder compared to previous TKI [7-10, 44,
45]. With the superior performance, the FDA has ap-
proved its indications in second-line treatment. To further
demonstrate the efficacy of osimertinib in the first-line
setting, FLAURA study has been put forward and prelim-
inary results have been released. Osimertinib showed
significantly prolonged PFS compared to standard
EGFR-TKIs in first-line setting (18.9 months vs. 10.2
months, HR = 0.46, 95% CI 0.37-0.57) [46]. So far, the me-
dian overall survival for both osimertinib and standard
EGFR-TKI group was not reached. Favorable trend for osi-
mertinib could be identified with a P value of 0.007. In-
deed, compared to previous EGFR-TKIs, osimertinib
revealed much longer PFS and better efficacy as well as
decreased toxicity. And since that, the FDA has approved
its first-line setting in the early 2018. Yet, should the win-
ner take it all? Recent studies have provided more evi-
dence and faith of using osimertinib in the first line. The
exploratory postprogression outcomes of phase III
FLAURA study has been reported showing not reached
median second PFS in osimertinib arm while 20 months
for standard of care EGFR-TKI arm [47]. Another study
found that the continuation of osimertinib after disease
progression could lead to a median second PFS of 12.6
months and be associated with longer overall survival
compared with discontinuation [48]. Indeed, the mature
results of OS are requested to further give a final depos-
ition of this issue. The other focal aspect for osimertinib is
the resistant mechanism. Till now, limited studies re-
ported the resistant mechanism of osimertinib and ex-
treme complicated resistant profiles were identified based
on current data [49-51]. Fortunately, several preclinical
and small size studies have provided potential treatment
modalities to overcome the resistance, but an umbrella
trial should be designed to address the pending issues [48,
52-63]. On the other hand, considering the rapid develop-
ment of checkpoint inhibitors (CPIs) in advanced NSCLC,
whether CPIs could benefit in patients with pan-negative
oncogenes after osimertinib or treatment failure of novel
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combination modality remained to be explored in pro-
spective trials. (Figure 1). Among patients with advanced
lung cancer, brain metastasis was regarded as one of the
major factors for poorer prognosis [64—66]. In contrast to
the first-generation EGFR-TKI, osimertinib showed much
better response rate in brain metastasis which may be due
to higher penetration through the blood-brain barrier
(BBB) [67, 68]. Collectively, osimertinib would be a more
competitive first-line treatment for advanced non-small
cell lung cancer patients beyond the first-generation
EGFR-TKIs and further OS data of FLAURA study was
pending to decipher the order issue.

AZD3759

Over 50% of NSCLC patients with EGFR-activating mu-
tations would develop CNS metastasis during treatment
[65, 69, 70]. Poor survival was observed in these patients
with 16 months for brain metastasis [64] and 4.5-11
months for leptomeningeal metastasis [66]. AZD3759 is
an oral EGFR-TKI which was specifically designed to
overcome the weak penetration of the blood-brain bar-
rier [71, 72]. This drug contained no substrate for efflux
transport [71] and achieved 100% penetration through
BBB [69], suggesting superior clinical efficacy in CNS
metastasis. The BLOOM study is a phase I, open-label,
multicenter trial evaluating the safety and preliminary
antitumor efficacy of AZD3759 [69]. Tolerable safety
profile was observed in this trial, and high consistent
concentration of AZD3759 between CSF and free plasma
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was observed. However, whether a high concentration of
AZD3759 in CSF would be translated into durable CNS
response and not inferior efficacy in extracranial target
lesions compared to previous EGFR-TKI warrants fur-
ther clinical results.

Poziotinib, TAK-788, afatinib, and pyrotinib

In NSCLC, approximately 10-15% of patients harbored
EGFR-activating mutations. For those whose tumor has
sensitive EGFR mutation including deletion in exon 19
and mutation encoding p.L858R, standard first-generation
TKI could probably provide dramatic efficacy [7-11].
However, approximately 10-12% of patients within have
an in-frame insertion in exon 20 of their tumors [73-75].
The EGFR exon 20 insertions are generally resistant to
most EGFR-TKIs [76, 77] which may be due to the altered
drug-binding pocket of exon 20 [76]. Poziotinib has been
proven to be a potent inhibitor of both EGFR and HER2
exon 20 insertion mutations through preclinical models
and clinical experience [78]. Its preliminary clinical activ-
ity has been reported in 2018 WCLC with confirmed ORR
of 43% in advanced NSCLC [79]. Another novel agent for
EGEFR exon 20 insertion, TAK-788, has also been reported
in 2018 WCLC [80]. The ORR was approximately 40% in
NSCLC patients with EGFR exon 20 insertion. Remark-
ably, the disease control rate could reach up to 100% in
this small group of population. Additionally, for HER2
mutations, afatinib has shown some activity through
retrospective researches with limited prospective clinical
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trials assessing its efficacy in HER2 mutation patients [81—
84]. A recent published phase II study (NICHE trial)
showed a disease control rate of 53.8% with median PFS
of 15.9 weeks and median OS of 56.0 weeks failing to ver-
ify the efficacy of afatinib in HER2 mutation patients [85].
On the other hand, pyrotinib is an oral, irreversible
pan-HER receptor TKI. Preclinical data indicated effective
antitumor activity in vitro and in vivo [86, 87]. A small
sample size phase 2 study has investigated its efficacy and
safety. Patients who received 400 mg of pyrotinib showed
an ORR of 53.3% and a median PFS of 6.4 months regard-
less of prior treatment lines along with tolerable adverse
events [88]. Indeed, further larger sample size evaluation
was warranted to verify its clinical value.

Anaplastic lymphoma kinase and ROS1 proto-oncogene
receptor kinase inhibitors

Ceritinib

The current standard first-line treatment for advanced
non-small cell lung cancer harboring ALK rearrange-
ment is crizotinib [89]. Despite the rapid response to cri-
zotinib, most of the patients would suffer disease
progression within 12 months [90, 91]. Approximately, a
resistant mechanism in one third of patients with
ALK-rearranged NSCLC was owning to ALK-dependent
mutation including tyrosine kinase domain or amplifica-
tion of ALK fusion. Ceritinib is a small molecule, oral
tyrosine kinase inhibitor of ALK [92]. In contrast to cri-
zotinib, ceritinib is 20 times more potent as crizotinib
for ALK fusion, yet no tumor activity against MET was
observed. In a phase I study evaluating the antitumor ac-
tivity and safety in NSCLC harboring ALK fusion, ceriti-
nib showed 58% ORR in 114 patients with a dose of at
least 400 mg. Median progression-free survival, although
not that mature enough (38% patients censored), was
7.0 months with a median follow-up time of 9.5 months
[93]. Overall adverse events rate of grade 3 or 4 related
to ceritinib therapy was 49% (varied from 20-80%
among different dose groups), majority of which was
gastrointestinal (GI) issues. Based on these superior clin-
ical outcomes, the FDA granted an accelerated approval
to ceritinib for the treatment in NSCLC patients harbor-
ing ALK rearrangement [94]. In 2016, the updated results
of ASCEND-1 was released. Two hundred fifty-five pa-
tients who received at least 1 dose of ceritinib 750 mg/day
showed an overall response rate of 72% and 56% in
treatment-naive and ALK inhibitor-pretreated groups, re-
spectively. Intracranial disease control was reported in
79% of ALK inhibitor-naive patients and 65% for ALK
inhibitor-pretreated patients. However, approximately 81%
of patients suffer at least 1 adverse events of grade 3 or 4
[95]. In a phase II trial (ASCEND-2), ceritinib was tested
specifically in chemotherapy and ALK inhibitor-pretreated
patients. ORR was 38.6% and median PFS was 5.7 months.
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The intracranial overall response rate was 45.0% with
similar and manageable tolerability as previous researches
[96]. Moving into the first-line setting, ASCEND-4, a
phase III study, showed 72.5% ORR and median PFS of
16.6 months. Yet, the control arm of this study was
chemotherapy without providing head to head compari-
son to crizotinib. Besides, adverse events of grade 3 or 4
(78.0%) were as high as previously reported with ceritinib
750 mg daily [97]. Due to that, ASCEND-8, a phase I
study assessing the tolerability of different dose of ceritinib
in ALK-positive NSCLC, was initiated [98]. Compared to
750 mg daily, 450 mg with food may be optimal with fa-
vorable gastrointestinal tolerability. Further updated ana-
lysis suggested consistent efficacy between 450 mg with
food and 750 mg along with less GI toxicities [99].

Attributed to a similar molecular structure with ALK
fusion, ROS1 fusion may also be potential beneficiaries
with ALK-TKI [100]. For advanced NSCLC patients har-
boring ROS1 fusion, crizotinib was first reported to have
an antitumor activity for the treatment of ROS1 fusion.
The ORR was 72.0% with a median PFS of 19.2 months.
Toxicities were mild with no treatment related to ad-
verse events of grade 4 or 5 [101]. Results were further
demonstrated in a larger East Asian population in a
phase II study. To be noticed, 13.4% of ROS1-positive
patients within the study received a complete response
to crizotinib [102]. In a phase II single-arm study, the ef-
ficacy and safety of ceritinib were assessed in a small
sample size population harboring ROS1 fusion [103].
ORR was 62% with a median PFS of 24 months in over-
all patients who received at least 2 prior systemic treat-
ment. Grade 3 or 4 toxicities of ceritinib 750 mg daily in
ROS1 fusion were much milder than in ALK fusion
(37% vs. ~ 80%) which may probably be owing to the di-
verse interaction between drugs and targets.

Alectinib

Similar to EGFR mutation, patients with ALK rearrange-
ment would be under high risk of brain metastasis [104].
Alectinib is a highly selective inhibitor of anaplastic
lymphoma kinase (ALK) which has shown both systemic
and central nerve system efficacy in ALK-positive
non-small cell lung cancer [70, 105-108]. J-ALEX trial is
the first trial comparing alectinib and crizotinib as the
first-line setting in advanced non-small cell lung cancer
with ALK rearrangement, but only involving the Japa-
nese population [109]. The result of median PFS was ra-
ther promising with 20.3 months for alectinib and 10.3
months for crizotinib. The superiority had been dupli-
cated in the upcoming ALEX trial involving a larger
amount of population [110]. According to the updated
results, the median PFS for alectinib in first-line treat-
ment was 34.8 months which was almost three times
longer than the standard first-line treatment for ALK
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rearrangement [89]. Besides, the phase III ALUR study
directly compared alectinib with chemotherapy in
crizotinib-pretreated ALK-positive non-small cell lung
cancer [111]. Median PFS was 9.6 months with alectinib
and 1.4 months with chemotherapy as second-line treat-
ment indicating an absolute clinical role of alectinib as a
first-line setting. Besides, in contrast to other ALK-TKI
such as crizotinib, alectinib did not have a substrate for
efflux transport [104, 112, 113] and penetration through
BBB was significantly higher than crizotinib [114, 115].
Recent data revealed high objective response rate of
73.3% with 100% central nerve system (CNS) disease
control rate (DCR) in patients with ALK rearrangement
and symptomatic or large CNS metastasis [115]. Al-
though the resistant profile of crizotinib has been well
described [90, 116, 117], little was known about alectinib
and Glyl1202Arg (G1202R) remained a hot potato for
alectinib [118, 119]. Indeed, considering its tremendous
improvement in first-line treatment compared to other
ALK TKIs, alectinib should currently be the first option
from all aspects for treatment-naive patients with ad-
vanced non-small cell lung cancer harboring ALK
rearrangement.

Brigatinib (AP26113)

Brigatinib, another second-generation highly potent
ALK-TKI, was also designed for a broad range of ALK resist-
ance mutations [120]. Similar to lorlatinib, brigatinib was
proved to be efficiently inhibiting all clinically relevant ALK
resistance mutations including ALK G1202R through pre-
clinical models [121]. However, another study showed di-
verse outcome in preclinical models with IC50 of 129.5 nM
to brigatinib indicating inferior sensitivity to G1202R [106].
In a multicenter retrospective study, one alectinib-pretreated
patient harboring G1202R had a progressive disease as the
best response to brigatinib [122]. Whether brigatinib could
overcome the resistance to G1202R remained to be explored
in a larger sample size trial. Through a phase II trial of briga-
tinib in patients with crizotinib-refractory ALK-positive
NSCLC, brigatinib yielded both substantial systemic and
intracranial response and 180 mg once daily was proven to
have better efficacy with acceptable safety [123]. Currently,
an interim analysis of ALTA-L1 has been reported, showing
51% of progression risk reduced although median PFS was
not reached [124]. Although, relevant research suggested the
brain accumulation of brigatinib may be restricted by
P-glycoprotein (P-gp) and breast cancer resistance protein
(BCRP) [125]. For patients with brain metastasis at baseline
in ALTA trial, brigatinib achieved potent efficacy with a pro-
gression risk reduction of 73%. Similar adverse events were
identified compared to previous ALK-TKI [89, 97, 126—128].
Most importantly, the final PFS and OS result of brigatinib
should be expected to decipher whether brigatinib might be
superior to the new standard first-line alectinib.
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Lorlatinib

Lorlatinib is a highly potent and brain-penetrant
third-generation ALK-TKI in patients with advanced
ALK-positive NSCLC [106]. Most ALK-positive patients
treated with first- or second-generation ALK-TKI would de-
velop resistance to TKI including ALK Glyl202Arg
(G1202R) solvent-front mutation located at the solvent-front
region of ALK, and can impair drug binding through steric
hindrance [106, 129]. A preclinical data showed lorlatinib
was the only ALK inhibitor to potently inhibit wide-range
ALK secondary mutations, including ALK G1202R [130]. So
far for lorlatinib, only phase 1 and 2 study has been released,
and the results were promising [131]. For treatment-naive
patients, ORR was 90% and 69.5% for crizotinib-treated pa-
tients. Based on a preliminary analysis of paired cerebro-
spinal fluid and plasma samples, lorlatinib has been
demonstrated with a high degree of penetration across the
blood-brain barrier [104]. In this phase 1 and 2 trial, the
intracranial response for treatment-naive patients was 66.7%
while 87% for crizotinib-treated patients. Additionally, a
phase I study evaluating the efficacy and safety of lorlatinib
in ALK/ROS1-positive NSCLC showed encouraging results
in either ALK rearrangement or ROS1 rearrangement pa-
tients regardless of treatment lines [132]. For ALK-positive
patients, the overall ORR was 46% along with a median PFS
of 9.6 months and 50% along with 7.0 months for ROS1-
positive patients. Collectively, although PFS result was not
that mature enough, considering its wide range profile for re-
sistance to ALK-TKI, lorlatinib would be an optional sequen-
tial treatment for patients previously treated with ALK-TKI.
A phase III study was being investigated comparing lorlatinib
to crizotinib at first-line setting (NCT03052608), and the
preliminary results may be presented in 2020.

Ensartinib (X-396)

Ensartinib (X-396) is a novel, aminopyridazine-based small
molecule drug that could potently inhibit ALK. Through
preclinical study, tenfold more potent than crizotinib inhi-
biting ALK-positive lung cancer cell lines was observed
[133]. Results of a multicenter expansion study had been
first reported in 2016 WCLC [134] showing similar re-
sponse rate and adverse events compared to previous
ALK-TKI. Currently, this first-in-human phase I/II multi-
center study has revealed the survival benefit of ensartinib
with median PFS of 26 months in treatment-naive patients
and 9 months for crizotinib-pretreated patients [135]. ORR
for treatment-naive patients was 80% and 69% for
previously treated patients. Among patients with brain me-
tastasis, intracranial disease control rate could reach up to
92.9%. eXalt3 is a phase 3 randomized trial comparing
ensartinib and crizotinib head to head [136]. The prelimin-
ary results would be released in 2019 which would further
verify and discuss its clinical role in ALK-positive lung can-
cer patients (Table 1).
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Other novel tyrosine kinase inhibitor

Entrectinib (RXDX-101), larotrectinib (LOXO-101), and LOXO-
195

Recurrent gene fusions are one of the essential onco-
genic drivers to promote tumor growth among varied
malignancies [137]. Similar to ALK and ROS1 rearrange-
ment, fusions of NTRK1, NTRK2, and NTRK3 are ac-
tionable drivers of tumor growth. The incidence of
NTRK fusion in solid tumor was reported as 0.1% [138].
Entrectinib and larotrectinib were both inhibitors target-
ing NTRK fusions [139, 140]. Unlike larotrectinib,
entrectinib also showed efficacy in ROS1 and ALK re-
arrangement [139]. Two phase I study (ALKA-372-001
and STARTRK-1) assessing entrectinib in NTRK-,
ROS1-, and ALK-positive solid tumor showed promising
efficacy and durable clinical benefit of 32 months in a
ROS1-positive lung cancer patients [139]. Besides, prom-
ising intracranial efficacy was observed indicating high
penetration through BBB.

Although limited data of larotrectinib was shown, a re-
cent study containing three phase I/II clinical trials was
published and splendid responsiveness was revealed in
pan-solid tumor including lung cancer harboring NTRK
fusion [140]. Responsiveness was observed regardless of
tumor type, and the overall response rate was 80%.
Based on its superb outcome, the FDA has approved its
application in patients of solid malignancies harboring
NTRK fusion. Despite the preliminary clinical results,
primary and acquired resistance has already been char-
acterized in several studies [141, 142]. To overcome the
resistance mediated by acquired kinase domain muta-
tions, LOXO-195, a selective TRK-TKI, was designed
and preclinically proven to be highly potent in vitro
[143]. Two patients whose tumor developed an acquired
resistance to larotrectinib were treated with LOXO-195
and showed potential efficacy, but relevant data was war-
ranted specifically in lung cancer patients for the future.

Repotrectinib (TPX-0005)

Similar to entrectinib and larotrectinib, repotrectinib is a
next-generation TKI developed to inhibit clinically recal-
citrant solvent front substitutions involving TRK, ROS1,
and ALK. In a preclinical study, among common the ac-
quired resistance to ALK, ROSI1, and TRK including
ALK G1202R, ROS1 G2032R, and TRKB G639R, repo-
trectinib showed high efficacy in vitro compared to other
ALK/ROS1/TRK inhibitors. For patients with brain me-
tastasis, a significant clinical challenge, this next-gener-
ation TKI showed superior efficacy compared to
crizotinib in patients with CNS metastasis. This may be
partly due to its smaller molecule structure compared to
previous TKI drugs [144]. The current phase I/II clinical
trial investigating the efficacy and safety of repotrectinib
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is still ongoing (NCTO03093116), and further results
should be expected.

RXDX-105, LOX0O-292, and BLU-667

RET fusion is a well-established driver oncogene in a
variety of malignancies. In lung cancer, RET fusion was
found in 1-2% unselected cases [145]. RXDX-105 is an
orally, VEGFR-sparing, multikinase inhibitor with activ-
ity against RET. Compared to other RET inhibitors in-
cluding cabozantinib, vandetanib, and lenvatinib,
RXDX-105 showed high preclinical activity [146—149].
In a phase I/Ib trial [150], treatment-naive NSCLC pa-
tients with RET fusion showed 19% ORR to RXDX-105
while 0% ORR for TKI-pretreated patients. Specifically
looking into different upstream partners for RET, only
non-KIF5B RET fusion showed satisfactory clinical effi-
cacy to RXDX-105 which is similar to other RET
inhibitors.

Unlike multikinase inhibitors such as RXDX-105 which
may be under substantial “off-targets” hindering their clin-
ical efficacy, LOXO-292 is a novel RET inhibitor with high
selectivity [147, 149, 151, 152]. Through preclinical re-
search and clinical experience with LOX0O-292, it showed
both high selectivity and responsiveness to RET fusion cell
lines. Besides, LOXO-292 revealed high efficacy in
KIF5B-RET fusion engineered cells which were different
from previous RET inhibitors [151]. Another similar small
molecule specifically targeting RET is BLU-667 which
covered both RET fusion and RET-activating mutations as
well [153]. Compared to RXDX-105, cabozantinib, and
vandetanib, BLU-667 showed a broad range of efficacy in
RET fusion and activating mutation with high selectivity
in KIF5B-RET preclinically. A phase I, first-in-human
study (NCT03037385) which tried to define the maximum
tolerated dose and evaluate the safety along with antitu-
mor activity is still ongoing, and clinical potentials of such
high selective RET inhibitors will be elucidated in the
future.

Capmatinib (INC280)

Capmatinib is a highly potent MET inhibitor [154], and
its single-agent activity has been observed in preclinical
models with strong MET amplification, overexpression,
and mutations. MET amplification could be accounted
for 5-26% in patients resistant to previous EGFR-TKI
[20, 155-159]. Preclinical research suggested INC280
could restore sensitivity to erlotinib and promote
apoptosis in EGFR-mutant NSCLC models [160]. As a
clinical rationale for the combination of capmatinib
and EGFR-TKI, a phase Ib/II single-arm trial evalu-
ated the combination of INC280 and gefitinib in
EGFR-TKI-pretreated patients [161]. Overall response
rate across phase Ib/II regardless of MET copy num-
ber was 27%. In patients with high MET amplification
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(copy number > 6), the ORR was 47% with acceptable
adverse events. However, the survival data was not
mature enough and the resistant mechanism of cap-
matinib has not been released yet. A study established
MET-amplified NSCLC cell lines which showed an
acquired resistance to capmantinib. With further
examination, they found that the combined treatment
of EGFR or PIK3CA would dramatically suppress cell
proliferation and downstream signals [162]. This may
partly suggest an alternative therapeutic strategy to
overcome the resistance to capmatinib, but further
clinical researches were required to elucidate.

Dabrafenib and trametinib

BRAF mutations occurred in about 2—4% of lung adeno-
carcinoma, and approximately 50% of them were BRAF
V600E mutations [163, 164]. BRAF V600E mutations were
reported to have shorter overall survival, and limited pa-
tients responded to chemotherapy compared to wild-type
BRAF [165, 166]. Vemurafenib was the first BRAF V600E
inhibitor assessed in a basket trial which indicated a 42%
overall response rate within BRAF V600E mutation
NSCLC [167]. Dabrafenib was a highly potent adenosine
triphosphate-competitive inhibitor of BRAF kinase select-
ive for the BRAF V600E mutations [168]. In a phase II
non-randomized trial, the disease control rate (DCR) was
53% with a median PFS of 5.5 months. Serious adverse
events were reported in 42% of patients [169]. Through
preclinical study, dabrafenib plus trametinib had shown
high antitumor activity in BRAF V600E mutation cell
lines, and clinically, BRAF plus MEK inhibitors revealed
improved clinical outcome in patients with BRAF V600E
mutant metastatic melanoma [170, 171]. In two phase II
non-randomized trials, consistent overall response rate
was observed with 63.2% and 64.0% in previously treated
and untreated patients, respectively. Similar median PFS
was found as well in previously treated and untreated pa-
tients with 8.6 months and 10.9 months, respectively [172,
173]. Within previously treated patients, grades 3 and 4
events occurred in 49% of patients while almost 73% for
untreated patients. So far, considering limited choices in
BRAF mutation especially V600E mutations, dabrafenib
plus trametinib should be the first option in these group
of patients.

Anlotinib

Anlotinib is a novel, small molecule receptor tyrosine ki-
nases (RTKs) and inhibits both tumor proliferation and
angiogenesis [174—176]. Preclinical studies have shown
that anlotinib has emerged much stronger anti-angiogenic
activity than other anti-angiogenesis agents [177]. Clinic-
ally, the efficacy and safety of anlotinib was first demon-
strated in a randomized phase II study as a third-line
therapy in advanced NSCLC [178]. Patients in the
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anlotinib group showed a significantly longer PFS than the
placebo group (4.8 months vs. 1.2 months). Although no
statistical significance was shown in OS, favor trend of
survival benefit was identified in the anlotinib group (9.3
months vs. 6.3 months). Final results of an expanded
population phase III randomized trial (ALTER 0303) has
been released last year in ASCO meeting and showed both
prolonged PFS and OS in the anlotinib group with
well-tolerable adverse events indicating anlotinib as a po-
tential third-line treatment in advanced NSCLC patients.

Checkpoint inhibitors

Pembrolizumab, nivolumab, and atezolizumab

With the rapid growth of immunotherapy these years,
tradition chemotherapy in pan-negative advanced
non-small cell lung cancer has been challenged from
second-line treatment to first-line treatment by
single-agent checkpoint inhibitors [23, 24, 27, 28]. For
checkpoint inhibitors, the expression of PD-L1 has been
considered as a major predictive factor for immunother-
apy so far [179]. Given that significant discrepancy re-
sults of Keynote-024 and Checkmate-026[29, 180], only
highly selective patients should be available for a single
agent in the first-line setting. Back to the era of targeted
therapy, combination strategies have achieved great suc-
cess, and theoretically, this may probably work out in
checkpoint inhibitors [181-183]. Keynote-021 first re-
ported preliminary results of checkpoint inhibitors com-
bined with chemotherapy [180]. Superior response rate
and progression-free survival were observed with minor
increased toxicities. Identical results were duplicated in
phase III study Keynote-189 and Keynote-407 for lung
adenocarcinoma and squamous cell carcinoma, respect-
ively [184, 185]. To be noticed, the component of
combination immunotherapy seemed to significantly in-
fluence the incidence of adverse events. Cisplatin or
paclitaxel showed much better tolerance than carbopla-
tin or nab-paclitaxel as combination components. In
Keynote-042 (2018 ASCO meeting), single-agent pem-
brolizumab has broadened its indication to a larger
population with PD-L1 positive. Yet, patients with high
expression PD-L1 in both trials showed a similar clinical
outcome. Considering the cost-effectiveness and toxic-
ities, it would be optimal to provide single-agent pem-
brolizumab in patients with PD-L1 high expression
while combination regimens for low or negative PD-L1
expression. As for nivolumab, even post hoc analysis
with stratification of tumor mutation burden showed
statistical significance, and it is still a negative trial show-
ing no significant improvement between single-agent
nivolumab and platinum-based chemotherapy in
PD-L1-positive patients based on the study design prob-
ably due to high crossover rate and non-highly selective
patients. Checkmate-227 was the first reported
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combination trial involving nivolumab in advanced
NSCLC. Compared to standard platinum-based chemo-
therapy, nivolumab plus ipilimumab revealed a signifi-
cantly improved ORR (45.3% vs. 26.9%) and prolonged
mPFS (7.2 months vs. 5.5 months) in patients with high
mutation burden regardless of PD-L1 expression [186].
Indeed, OS was not mature enough to present prelimin-
ary data and comparison between other arms as well as
subgroup analysis was not released yet. Additionally, the
three phase III trials of combination regimens involving
atezolizumab (IMpower 150, IMpower131(2018 ASCO
meeting), IMpower132(2018 WCLC meeting)) have all
shown superiority in clinical outcome with tolerable ad-
verse events in either non-squamous or squamous
NSCLC [187]. Details of all posted trials with combin-
ation regimens are summarized in Table 2.

Avelumab

Avelumab is a fully human immunoglobulin G1 (IgG1)
monoclonal antibody [188]. Beyond pembrolizumab,
nivolumab, and atezolizumab, it is one of the last PD-L1
inhibitors along with durvalumab to access the market.
Avelumab had been first approved in the USA for the
treatment of metastatic Merkel cell carcinoma. In con-
trary to other PD-1/PD-L1 drugs, the binding of avelu-
mab to the surface of tumor cell via PD-L1 could induce
natural killer cell-mediated antibody-dependent cellular
cytotoxicity (ADCC) which may enhance its clinical
efficacy [189, 190]. In a phase Ib, multicenter trial (JAV-
ELIN Solid Tumor), patients with advanced,
platinum-treated NSCLC were given a single-agent ave-
lumab [188]. Acceptable safety profile was observed, and
50% of patients achieved disease control. Similar median
progression-free survival and overall survival compared
to previous PD-1/PD-L1 were observed with 17.6 weeks
and 8.4 months, respectively [23, 26, 27]. Clinical efficacy
was consistent with the level of PD-L1 expression, and
higher expression of PD-L1 may be translated into a lon-
ger survival benefit. Recent results from a randomized
phase 3 trial (JAVELIN Lung 200) also investigating the
efficacy and safety of avelumab in platinum-treated pa-
tients with advanced NSCLC have been released [191].
In PD-L1-positive (= 1%) patients, no significant survival
benefit was observed between the avelumab and doce-
taxel groups (11.4 months vs. 10.3 months) except the
high PD-L1 expression groups (=50% cutoff and > 80%
cutoff). Increased ORR was consistent with the higher
expression of PD-L1 in avelumab group instead of doce-
taxel group indicating PD-L1 as an essential predictive
biomarker for avelumab. However, according to the pri-
mary endpoint this trial set up initially, it is a negative
study even with numerical significance in survival. Other
relevant trials including JAVELIN Lung 100, JAVELIN
Lung 101, and JAVELIN Medley were still ongoing
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(Table 3), and the closest report of JAVELIN Lung 100
will be released in 2019.

Durvalumab

Durvalumab is a selective, high affinity human IgGl1
monoclonal antibody which impedes PD-L1 from bind-
ing to PD-1 and CD 80 [192, 193]. Its clinical efficacy
was first reported at the 2014 ASCO meeting through a
phase I study, showing limited toxicity and potential re-
sponse rate. On account of previous single-agent check-
point inhibitor success in second-line treatment [23, 24,
26, 27], several phase trials of combination regimens in-
volving durvalumab were initiated [194, 195]. Prelimin-
ary results of these studies showed no significant
difference to other checkpoint inhibitors. One should
notice that combination regimens involving durvalumab
in both TATTON and CAURAL study revealed an ex-
tremely high risk of developing interstitial pneumonia,
leading to the termination of both trials. The phase II
ATLANTIC trial (NCT02087423) evaluated the efficacy
of durvalumab as a third-line treatment in advanced
NSCLC [196]. The ORR was 7.5%, 16.4%, and 30.9% in
patients with PD-L1 expression of <25%, >25% and >
90%, respectively. PFS in patients with high PD-L1 and
low/negative PD-L1 expression was 3.3 and 1.9 month.
To be noticed, cohort 1 in this trial receiving
single-agent durvalumab included advanced NSCLC pa-
tients with EGFR-sensitive mutations or ALK rearrange-
ment. The ORR in this group was not remarkable even
in PD-L1 high expression population. Two well-known
phase III trials with diverse ending were unleashed last
year. The MYSTIC trial (NCT02453282) assessing dur-
valumab plus tremelimumab or durvalumab monother-
apy versus platinum-based chemotherapy showed both
combination and single-agent regimen which failed to
reach the primary endpoint without PFS benefit. The
PACIFIC trial (NCT02125461), on the other hand,
achieved great success and led to a treatment paradigm
shift for unresectable locally advanced NSCLC [197,
198]. Additionally, several phase III trials of durvalumab
are pending or ongoing, and hopefully, more optional
treatment would be provided (Table 4).

Potential novel treatment modalities for lung cancer
Chimeric antigen receptor T cell and bispecific antibodies
Beyond the field of checkpoint inhibitors, another im-
munotherapy such as adoptive cellular immunotherapy
has emerged as a remarkable treatment modality in the
past decades [199, 200]. Unlike checkpoint inhibitors,
which induce antitumor activity through blocking the bar-
rier between effective T cells and tumor cells [201-203],
adoptive cellular immunotherapy is a novel approach pro-
viding “artificial” effective T cells to specifically target tumor
cells directly regardless of tumor types [204-206]. With
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that being said, adoptive cellular immunotherapy may bring
broad range effect on different tumors compared to check-
point inhibitors, which have been reported diverse response
among a variety of tumors [207-213]. So far, significant ad-
vances in chimeric antigen receptor T cell (CAR-T) have
been accelerated in hematological malignancies especially
for CD19-targeted CAR-T-cell therapy in leukemia [214—
218]. However, in solid tumors, it is tough to design CAR-T
because no such surface antigen as unique as CD19 has yet
been identified [219]. Indeed, numerous clinical trials of
CAR-T regarding lung cancer have been initiated including
tumor-associated antigen (TAA) of EGFR (NCT02862028,
NCT01869166), HER2 (NCT00889954, NCT01935843),
carcinoembryonic antigen (CEA) (NCT01723306, NCT02
349724), and mesothelin (MSLN) (NCT01583686,
NCT03054298). Gladly, several trials focusing on NSCLC
were initiated and ongoing in China [220]. One clinical trial
of EGFR-specific CAR-T regarding non-small cell lung can-
cer (NCT01869166) had reported its preliminary results.
45.5% (5/11) of advanced NSCLC patients achieved stable
disease, and 2 achieved partial response (PR). Treatment-
related adverse events were manageable indicating its po-
tentials in NSCLC. Yet, several aspects regarding the appli-
cation of CAR-T in solid tumors should be noticed. First,
the “off-target” effect is one of the major causes that lead to
increased toxicity and less efficacy. In hematological malig-
nancies, for example, the B cell acute lymphoblastic
leukemia (B-ALL), well tolerance could be observed during
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the treatment of CD19-targeted CAR-T cells [221] due to
the ubiquitous expression of CD19 on differentiated B cells
instead of hematopoietic stem cells. On the contrary, target
antigen in a solid tumor may be additionally expressed in
other tissue or organs which may lead to unexpected
treatment-related toxicity. Besides, it is much more difficult
to select candidate antigen in solid tumors with higher anti-
gen heterogeneity [222-224]. Second, microenvironment in
solid tumors was relatively immunosuppressive-preferred
compared to hematological malignancies leading to less ef-
ficient CAR-T therapy in solid tumors. Indeed, ongoing tri-
als regarding solid tumors may further decipher the
uncertainty in the future.

The concept of bispecific antibody for oncogene was
based on the simultaneous activation of different path-
ways driving tumor proliferation and growth [225-227].
So far, the bispecific antibody for lung cancer is still
under initial researches. It is indeed an encouraging
agent for lung cancer in the future according to the pre-
liminary results. The novel EGFR/cMet bispecific anti-
body (JNJ-61186372), a fully humanized IgG1 antibody,
was first put up in 2016, and its preliminary results in
human were reported in 2018 WCLC [228, 229]. Object-
ive response was shown in various activating EGFR mu-
tations including T790m and exon 20 insertion. It
seemed like the two separate targets combined may
broaden its antitumor activity compared to single-target
inhibition. However, the efficacy and duration of

[T1E+NE0TIA

Fig. 2 Chord diagrams for sensitive and resistant mutations regarding ALK-TKIs. Both preclinical data and clinical reported cases (preferred) were
enrolled to determine the efficacy of ALK-TKIs to different ALK-dependent mutations. Crizotinib had smallest sensitive mutation profiles compared
to lorlatinib while opposite in resistant profiles. a Mutation profiles showed responsiveness to different ALK-TKIs. b Mutation profiles reported to
be resistant to different ALK-TKIs
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response along with adverse events are warranted to fur- undoubtedly claiming its essential clinical role in the

ther clarify its clinical application. first-line setting. However, whether sequential treatment
following combination modalities (NEJOO9 and JO25567
Discussion presented in 2018 ASCO meeting) or even novel

Novel agents for lung cancer have been booming these  second-generation TKI dacomitinib would be translated
years. Since the post era of IPASS and 2013 when im- into better clinical outcome remained unknown. With po-
munotherapy has been crowned as one of the break- tentially manageable acquired resistance, osimertinib
throughs, remarkable clinical results from both tyrosine would be temporally the best first option for untreated
kinase inhibitors and checkpoint inhibitors for lung cancer = EGFR-mutant NSCLC patients. For ALK rearrangement,
have generated a great number of potential agents which  on the other hand, numerous highly potent targeted drugs
significantly improved patients’ survival beyond the era of ~ were innovated and approved these years. Extremely com-
chemotherapy. The current advances have been undoubt-  plex mutational profiles were observed after the treatment
edly shifting the clinical paradigm for advanced lung can-  of ALK-TKIs. Through chord diagram (Fig. 2) regarding
cer. So far, numerous potential agents including TKIs, sensitive and resistant mutational profiles of correspond-
CPIs, and underlying treatment modalities other than ing ALK-TKIs integrated from previous researches [106,
what we have mentioned above are under preclinical re-  230-242], it is easy to tell that novel ALK-TKIs could
searches or early phase trials. Compared to previous cover more ALK-dependent mutations other than ALK
standard treatment regarding TKIs, novel agents showed fusion and meanwhile show antitumor activity in more re-
significant improvement in several aspects including im-  sistant subtypes. Concurrent ALK-resistant mutations
provement of BBB penetration, broadened target profiles, remained to be unyielding fields at the moment, and
overcoming resistant mechanism, prolonged survival, and  combination of different ALK-TKIs might be worthy to
lower toxicity. In EGFR-TKIs, osimertinib has been try in the future. For CPIs, numerous similar

e N
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Fig. 3 Results of posted and pending trials of PD-1/PD-L1 inhibitors between lung adenocarcinoma and squamous carcinoma regarding different
PD-L1 expression. All posted and pending trials were stratified based on the indication for different expression of PD-L1 and treatment lines. Only
PD-1/PD-L1 inhibitors of pembrolizumab, nivolumab, atezolizumab, durvalumab, and avelumab were included except for checkpoint inhibitors
from Chinese pharmaceutical companies due to early phase trials of these checkpoint inhibitors for lung cancer. Checkmate-227, although
regardless of PD-L1 expression, required high tumor mutation burden (TMB)
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Fig. 4 Perspectives for the evolving modalities of immunotherapy in NSCLC. Treatment modalities involving immunotherapy in NSCLC had
evolved from second-line setting to first-line setting. Prior immunotherapy, highly selective patients, and combination strategies had raised
significant efficacy improvement but increased toxicities as well. Novel immunotherapy in the future combined with multiple novel biomarkers
may infinitely consolidate the clinical role of immunotherapy in advanced NSCLC

checkpoint inhibitors targeting PD-1/PD-L1 including
CPIs developed by Chinese pharmaceutical companies
[243] have been generated since the heat of immuno-
therapy. The clinical paradigm for wild-type NSCLC
has been undoubtedly shifted with so many approved
single or combination regimens involving CPIs in the
first- and second-line setting. Some other phase III tri-
als of novel checkpoint inhibitors were pending, and
hopefully, more choices would be available in the
first-line setting (Fig. 3). Indeed, due to first-mover ad-
vantage and limited understanding of how immuno-
therapy works within microenvironment, novel CPIs
would be much tougher to compete as a single agent
with previous CPIs. Combination treatment modality
and clinical unmet needs, being the two major aspects,
were ideal resolutions for the development of novel
CPIs. To be noticed, challenges to immunotherapy
remained to be unsolved including hyperprogression
[244, 245], immune-related toxicities [246, 247], and
primary/adaptive resistance to immunotherapy [248].
Moreover, potential novel treatment modalities have
aroused great interest and their preliminary perfor-
mances revealed remarkable prospects for development
in lung cancer. Yet, most of the novel agents were still
under the early stage of birth and further results should
be expected. Whether these novel immunotherapy mo-
dalities may take place after the treatment failure of
first-line checkpoint inhibitors in the future would be
worth looking forward to (Fig. 4). At this moment, we
are facing the condition of numerous novel agents de-
veloped for lung cancer. Improvement of clinical trials
accelerating the application of novel drugs in clinical
practice and discovery of novel effective targets along
with much more precise biomarkers would be so much
essential for anticancer treatment in the future.
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