CORRECTION

Zheng et al. Journal of Hematology & Oncology

https://doi.org/10.1186/s13045-019-0809-3

Correction to: Transcriptional factor six2 promotes the competitive endogenous RNA network between CYP4Z1 and pseudogene CYP4Z2P responsible for maintaining the stemness of breast cancer cells

Lufeng Zheng¹, Qianqian Guo¹, Chenxi Xiang³, Shijia Liu⁴, Yuzhang Jiang⁵, Lanlan Gao¹, Haiwei Ni¹, Ting Wang¹, Qiong Zhao¹, Hai Liu¹, Yingving Xing¹, Yaohui Wang⁶, Xiaoman Li^{2*} and Tao Xi^{1*}

Correction to: J Hematol Oncol (2019) 12:23 https://doi.org/10.1186/s13045-019-0697-6

The original article [1] contained an error in Fig. 7c whereby the same flow image was accidentally misused for the second and fourth group. The correct version of Fig. 7c can be viewed below together with the rest of Fig. 7.

Author details

¹Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China. ²Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China. ³Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China. ⁴Department of Pharmacy, Jiangsu Province Hospital of TCM, Nanjing 210023, China. ⁵Department of Clinical Laboratory, Huai An First People's Hospital, Huai An 223300, China. ⁶Department of Pathology, Jiangsu Province Hospital of TCM, Nanjing 210023, China.

Published online: 24 October 2019

Reference

 Zheng L, Guo Q, Xiang C, Liu S, Jiang Y, Gao L, et al. Transcriptional factor six2 promotes the competitive endogenous RNA network between CYP4Z1 and pseudogene CYP4Z2P responsible for maintaining the stemness of breast cancer cells. J Hematol Oncol. 2019;12:23. https://doi.org/10.1186/ s13045-019-0697-6.

* Correspondence: xiaoman1205@163.com; xitao18@hotmail.com ²Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China

¹Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China

Full list of author information is available at the end of the article

© The Author(s). 2019 **Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

(2019) 12:109

Pig. 7 CentreT_CC is sumiclent and necessary for six2-induced effects. **a**, **b** Phase contrast images of maninospheres formed by MCP-7-six2 cens with si-CYP4Z1 or si-CYP4Z2P treatment (**a**) and quantification of spheres (**b**). The data are presented as the means \pm SDs, n = 3, *P < 0.05, **P < 0.01 vs. MCF-7-six2. **c** Representative FACS profile of cells described in **a** with CD24– and CD44+ markers. **d**, **e** Cells depicted in **a** were subjected to western blot analysis and followed by detecting the expression of p-Akt/p-ERK1/2 (**e**) and stemness markers (ALDH1 and OCT3/4) (**d**). **f** Images of tumors harvested when MCF-7, MCF-7-six2, MCF-7-six2-si-Z1, and MCF-7-six2-si-Z2P cells (left) and MCF-7-Plko-six2, MCF-7-Plko-six2-Z1-UTR, and MCF-7-Plko-six2-Z2P-UTR cells (right) were planted