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Abstract

challenges of clinical translation are discussed.

Immunotherapy has become an emerging strategy for the treatment of cancer. Immunotherapeutic drugs have
been increasing for clinical treatment. Despite significant advances in immunotherapy, the clinical application of
immunotherapy for cancer patients has some challenges associated with safety and efficacy, including autoimmune
reactions, cytokine release syndrome, and vascular leak syndrome. Novel strategies, particularly improved delivery
strategies, including nanoparticles, scaffolds, and hydrogels, are able to effectively target tumors and/or immune
cells of interest, increase the accumulation of immunotherapies within the lesion, and reduce off-target effects.
Here, we briefly describe five major types of cancer immunotherapy, including their clinical status, strengths, and
weaknesses. Then, we introduce novel delivery strategies, such as nanoparticle-based delivery of immunotherapy,
implantable scaffolds, injectable biomaterials for immunotherapy, and matrix-binding molecular conjugates, which
can improve the efficacy and safety of immunotherapies. Also, the limitations of novel delivery strategies and
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Introduction

Cancer immunotherapy has revolutionized the treatment
of cancer. Compared to chemotherapy and other drugs
that directly kill tumor cells, cancer immunotherapy can
stimulate and/or promote the immune system in the
body to indirectly attack and kill tumor cells, with the
goal of improving anti-tumor immunity while reducing
off-target effects [1-3]. In 1986, the recombinant cyto-
kine interferon-a (IFNa) was the first commercially
available cancer immunotherapy approved by the US
Food and Drug Administration (FDA) for hairy cell
leukemia [4] (Fig. 1). Partial remission can be observed
in some patients, but due to the short duration of treat-
ment with IFNa, purine analogues quickly replaced IFNa
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and became the first-line treatment for hairy cell
leukemia [5]. Subsequently, the FDA approved recom-
binant interleukin-2 (IL-2) for the treatment of meta-
static renal cancer and metastatic melanoma in 1992
and 1998, respectively [1]. Although its application in-
duces long-lasting complete responses in some patients,
serious side effects, such as cytokine release syndrome
(CRS) and vascular leak syndrome, come with high doses
due to the short half-life of IL-2 [6-9]. As for the vac-
cines, sipuleucel-T, an autologous dendritic cell therapy,
was the first successful therapeutic cancer vaccine ap-
proved in 2010 for prostate cancer [10]. However, its
clinical translation was limited by some issues, including
production complexity [11-14].

Strikingly, the monoclonal antibody (mAb) ipilimumab is
a pioneering immune checkpoint inhibitor (ICI) targeting
cytotoxic T lymphocyte antigen 4 (CTLA-4), which was ap-
proved in 2011 for metastatic melanoma [15]. Other im-
mune checkpoint inhibitors, targeted programmed cell
death 1 (PD-1) or its ligand, (PD-L1), and chimeric antigen
receptor (CAR) T cell therapy have been created and used
clinically [16—24]. The emergence of ipilimumab and CAR-
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Fig. 1 Timeline of FDA-approved cancer immunotherapies. FDA Food and Drug Administration, IFN interferon, IL interleukin, mAb monoclonal
antibody, CTLA-4 cytotoxic T lymphocyte antigen 4, PD-1 programmed cell death 1, PD-L1 PD-1 ligand 1, CAR chimeric antigen receptor

Avelumab and durvalumab: PD-L1 mAb for Merkel
cell carcinoma and urothelial cancer.
Tisagenlecleucel and Axicabtagene ciloleucel:
CD19-specific CAR-T cells for B cell acute
lymphocytic leukaemia and large B cell lymphoma

T cell therapy is an epoch-making turning point in cancer
immunotherapy, which is called a breakthrough in 2013 by
Science [25]. Currently, a variety of immunotherapies have
been approved for cancer treatment (Table 1). Therefore,
as a promising therapeutic strategy, immunotherapy is con-
sidered to have the ability to treat or even cure certain
cancer.

Although immunotherapy has made significant ad-
vances, the clinical applications of immunotherapy en-
counter several challenges associated with safety and
efficacy. For example, in terms of safety, immunotherapy
can cause fatal adverse effects in some patients, including
autoimmune reactions, CRS, and vascular leak syndrome
[26, 27]. Regarding the efficacy, only a minority of patients
respond to immunotherapy [28, 29]. In addition, major
immunotherapies were initially evaluated in hematological
malignancies because solid tumors faced delivery barriers
such as complex tumor microenvironments. Given this, a
few of immunotherapies, such as activated cytokines and
ICIs, have been granted by the FDA for the treatment of
solid tumors [30]. Interestingly, the FDA has not yet ap-
proved CAR-T cell therapy for solid tumors, but re-
searchers are actively developing CAR-T cells that are
highly specific for solid tumor [31, 32].

Novel strategies, especially improved delivery strategies, are
able to more effectively target tumors and/or immune cells
of interest, increase the enrichment of immunotherapies
within the lesion, and reduce off-target effects. Some
materials, such as lipids, polymers, and metals, have been
used to exploit delivery strategies [33—36]. At present, new
delivery strategies are being researched and developed for

immunotherapy, including nanoparticles, scaffolds, and
hydrogels [37]. These delivery platforms offer many advan-
tages for immunotherapy compared to separate therapeutic
agents. On the one hand, the delivery systems can be de-
signed to achieve spatiotemporal control of the treatment
and to protect the therapeutic cargo until it is delivered and
accumulated within the target cells [38, 39]. On the other
hand, delivery platforms, for instance implants, have been
utilized to achieve localized delivery of therapeutic drugs in a
controlled manner, and cell therapy has been used to
minimize toxicity related to systemic administration [40-42].

Here, we briefly describe five major types of cancer im-
munotherapy, including their clinical status, strengths,
and weaknesses. Then, we introduce novel delivery strat-
egies that can improve the efficacy and safety of immuno-
therapies. Also, the limitations of novel delivery strategies
and challenges of clinical translation are discussed.

Cancer immunotherapy: classification, clinical
status, advantages, and disadvantages
Cytokines: interferons, interleukins, and GM-CSF
Interferons, interleukins, and granulocyte-macrophage
colony-stimulating factor (GM-CSF) are the three major
cytokines applied in immunotherapy [26]. The cytokine
recombinant IFNa was approved for clinical use in 1986,
marking the cytokine as a pioneer in immunotherapy
[4]. Unlike immune checkpoint inhibitors, cytokines dir-
ectly boost the activity and growth of immune cells.

In response to microbial pathogen infections, inter-
ferons are generally produced by immune cells and
thereby induce the maturation of various immune cells,
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Class Agent Description Indications
Cytokines Intron A Recombinant IFNa2b Hairy cell leukemia, melanoma, follicular lymphoma, and AlDS-related Kaposi
sarcoma
Roferon-A Recombinant IFNa2a Hairy cell leukemia, chronic myelogenous leukemia, and AlDS-related Kaposi
sarcoma
Aldesleukin Recombinant IL-2 Melanoma and kidney cancer
Imiquimod Stimulating TNF, IL-12, and IFNy Basal cell carcinoma
production
Cancer Sipuleucel-T Autologous PBMCs activated with  Prostate cancer
vaccines recombinant human PAP-GM-CSF
Bacillus Strain of Mycobacterium Bladder cancer
Calmette- tuberculosis variant bovis
Guérin
Immune Ipilimumab CTLA-4 mAb Melanoma
checkpoint ) ' )
inhibitors Pembrolizumab  PD-1 mAb Melanoma, non-small-cell lung cancer, Hodgkin lymphoma, advanced gastric
cancer, microsatellite instability-high cancer, head and neck cancer, and ad-
vanced urothelial bladder cancer
Nivolumab Melanoma, bladder cancer, classical Hodgkin lymphoma, colorectal cancer,
hepatocellular cancer, non-small-cell lung cancer, kidney cancer, squamous
cell carcinoma of the head and neck, and urothelial cancer
Atezolizumab PD-LT mAb Urothelial cancer and non-small-cell lung cancer
Avelumab Merkel cell carcinoma and urothelial cancer
Durvalumab Urothelial cancer and non-small-cell lung cancer
CAR-T cells Tisagenlecleucel CD19-specific CAR-T cells B cell acute lymphocytic leukemia and non-Hodgkin lymphoma

Axicabtagene
ciloleucel

Large B cell lymphoma

such as macrophages, dendritic cells (DCs), natural killer
(NK) cells, and lymphocytes, to exert immune responses
[43-46]. Angiogenesis in the extracellular tumor space
can also be suppressed by interferon-activated immune
cells [44, 47]. Moreover, interleukins stimulate the activ-
ity and growth of T cells [23, 48-50]. GM-CSF utilizes
two mechanisms to achieve the goal of enhancing im-
mune responses. One is to promote T cell homeostasis,
thereby enhancing T cell survival, and the other is to
support dendritic cell differentiation, which in turn al-
lows these cells to express tumor-specific antigens [51].
In addition to the three major cytokines mentioned
above, the researchers are also studying related agonists,
which activate immune cells through intracellular mech-
anisms. For instance, agonists of toll-like receptors 7/8
(TLR7/TLR8) stimulate antigen-presenting cells (APCs)
to improve anti-tumor immunity, while stimulator of
interferon genes (STING) agonists are utilized to trigger
pro-inflammatory cytokine production and other type I
interferon immune responses [52, 53].

However, due to the short half-life of cytokines, treat-
ment often requires high-dose bolus injections, which
can lead to serious side effects, including CRS and vas-
cular leak syndrome [26]. In addition, cytokine therapy
can lead to autoimmune attacks against healthy tissues
by inducing the death of activated T cells and facilitating

the survival of regulatory T cells [27]. Currently, increas-
ing research is attempting combination therapies, in-
cluding the combination of two or more cytokines, the
combination of cytokines with immune checkpoint in-
hibitors or chemotherapies, with the goal of reducing
the side effects of high therapeutic doses required for in-
dividual treatment [44].

Cancer vaccines: nucleic acids, dendritic cells, and
neoantigens

Nucleic acid therapy has become a promising cancer
vaccine, including DNA-based or RNA-based vaccines.
The vaccine depends on exogenous nucleic acids being
transported into the target cells [54, 55]. Mechanistically,
APCs usually take up DNA or mRNA and translate
them into antigens, which are presented to T cells to
stimulate their activation. Activated T cells then attack
tumor cells expressing antigens of interest [54, 55].
Moreover, the mRNA vaccines encode pro-inflammatory
cytokines (e.g., [L-12) or trafficking-related molecules to
regulate DC functions [56—58]. A significant increase in
DC immunostimulatory activity can be achieved by
using mRNA vaccines encoding costimulatory molecules
(e.g., CD83) [59, 60]. Intratumoral administration of
TriMix mRNA vaccines, which do not encode tumor-
associated antigens, activate CD8a* DCs and tumor-
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specific T cells, thereby slowing tumor growth in mouse
models [61]. Continued antigen availability during vac-
cination promotes both high antibody titers and germi-
nal center (GC) B cells and T follicular helper (TFH) cell
responses [62]. This process may be a contributing f-
actor to the efficacy of the nucleoside-modified mRNA-
LNP vaccines [63, 64]. Due to the difficulty of nuclear
delivery and immunogenicity, DNA vaccines have failed
in many clinical trials [65, 66]. Instead, the mRNA
vaccines induce protein expression without crossing the
nuclear barrier. Also, mRNA is non-infectious and un-
integrated into the genome [54, 67]. Currently, non-
replicating and self-amplifying mRNAs are two types of
mRNA vaccines in which non-replicating mRNAs are
used more frequently [54, 68, 69]. However, mRNA is
easily degraded due to the universality of RNase. To in-
crease mRNA stability, several sequence modifications
have been applied, including poly(A) tail additions, the
use of 5' caps, the incorporation of pseudouridine se-
quences, and optimized 5" and 3’ untranslated regions
(UTRs) [70-72]. In addition, transfection agents or
delivery platforms are needed to mediate intracellular
delivery and protect it from degradation [54, 73]. Col-
lectively, improvements in delivery technologies can
greatly enhance the efficacy and safety of nucleic acid
vaccines, such as increased intracellular (mRNA) and
intranuclear (DNA) delivery.

Dendritic cell vaccines are the most studied type of
cell-based cancer vaccine [74]. They are derived from
patients’ dendritic cells that are modified to express
tumor-associated antigens and directly stimulate T cells
to target cancer cells [74]. Due to its ability to prolong
overall survival, sipuleucel-T, a dendritic cell vaccine,
was approved for the treatment of prostate cancer in
2010 [10]. However, other dendritic cell-based vaccines
are frustrating in clinical trials. Despite high safety, they
lack efficacy [75]. Therefore, in order to achieve the pur-
pose of improving efficacy, on the one hand, dendritic
cells expressing high levels of targeted antigens can be
identified, and on the other hand, delivery to relevant
lymph nodes can be enhanced [74, 76].

The neoantigens are tumor-specific antigens that are only
present in cancer cells. Cancer vaccines based on neoanti-
gens can increase the number of neoantigen-specific T cells
in vivo to enhance adoptive anti-tumor immunity. Cur-
rently, neoantigen-based vaccines are being studied as novel
cancer immunotherapies because they can enhance the im-
mune responses to tumor cells [77, 78]. Preclinical studies
have shown that the neoantigen-based cancer vaccines are
effective and feasible in mouse tumor models, including
melanoma, colon cancer, and glioma [68, 79-82]. For
example, neopeptides containing IDH1 (R132H) p123-142
mutation region were synthesized and bound to transgenic
human MHC-II molecules. The results from IDH1 (R132H)
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mutant glioma mouse model showed that the neopeptide
vaccine could trigger rapid and effective mutation-specific
anti-tumor immune responses [82]. Also, clinical trials of
neoantigen-based vaccines are ongoing for various tumors
[83—87]. In six melanoma patients, a synthetic long peptide
(SLP) vaccine against up to 20 individual neoantigens was
used. Results showed that four patients had no tumor recur-
rence within 25 months after vaccination, and two patients
with relapse obtained tumor regression after receiving PD-1
antibody [85]. In addition, neoantigen-based vaccines also
show the potential therapeutic effects in human glioblast-
oma [86, 87]. Keskin et al. found that the number of
neoantigen-specific CD4" and CD8" TILs were increased in
eight glioblastoma patients vaccinated with multi-epitope
neoantigen vaccine in a phase I clinical trial [87] Meanwhile,
personalized neoepitope vaccine (APVAC 2) mainly caused
CD4" Thl cell responses in 15 patients with glioblastoma
[86]. Therefore, neoantigen-based vaccines have a promising
future in cancer immunotherapy.

Agonists targeting T cell surface receptors
Co-stimulatory receptors (i.e.,, CD28) and tumor necrosis
factor receptor (TNFR) family members, including TNF
receptor superfamily member 9 (i.e., 4-1BB), TNF receptor
superfamily member 4 (ie., OX40), and glucocorticoid-
induced TNFR-associated protein (GITR), are the most
commonly targeted T cell surface receptors [88]. As for
co-stimulatory receptors, agonistic antibodies bind to
these co-stimulatory receptors and thereby induce T cell
growth and exert tumoricidal activity [27]. For members
of the TNFR family, agonistic antibodies may play a role
through the NF-«B, JNK, and PI3K-AKT pathways [89].
Therefore, agonists can specifically bind to surface recep-
tors of T cells and activate intracellular signaling path-
ways, thereby promoting T cell proliferation, survival, and
exerting effector functions of killing tumor cells [90].
Currently, some clinical trials have used agonistic anti-
bodies to target different receptors [89]. Ongoing phase
II trials include agonistic antibodies targeting 4-1BB
(e.g., utomilumab and urelumab) and antibodies target-
ing OX40 (PF-04518600, BMS-986178, and INCAGN-
01949, etc.) [91-93]. However, dose-limiting toxicity also
occurs on agonistic antibodies because agonists can trig-
ger the activity of unwanted immune cell subtypes to at-
tack healthy cells [88]. Based on this, researchers are
evaluating the toxicity related to specific doses and dos-
ing schedules, and are developing delivery technologies
to solve this issue. For instance, in mouse models, anti-
4-1BB antibodies immobilized to liposomal nanoparti-
cles showed lower toxicity and increased intratumoral
accumulation compared to freely delivered antibodies
[94]. Therefore, advanced delivery technology should be
developed for agonistic antibodies in the future. This
technology is capable of both controlling the duration of
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exposure and simultaneously inducing multivalent T cell
activation.

Immune checkpoint inhibitors: mAbs targeting PD-1/PD-
L1 and CTLA-4

To date, immune checkpoint inhibitors (ICIs) have
been the most studied class of cancer immunother-
apies, including PD-1/PD-L1 blockade and CTLA-4
blockade [3, 19]. Normally, immune checkpoints act
as an immune brake to keep appropriate immune re-
sponses and simultaneously keep healthy tissues away
from immune attack [95]. CTLA-4, as a co-inhibitory
molecule, regulates the degree of T cell activation.
Once CTLA-4 binds to its ligand (CD80 and CD86),
it impairs T cell function and thus contributes to
tumor progression. Blockade of CTLA-4 can repair T
cell function and enable T cells to exert tumor-killing
ability [96]. In addition, upon inflammation, T cells
are activated and express PD-1, allowing them to
recognize abnormal cells [97]. In the tumor micro-
environment (TME), PD-L1 expressed by tumor cells
binds to PD-1 on T cells to inactivate T cells, thereby
allowing tumor cells to escape T cell recognition and
clearance [18]. Thus, mAbs targeting PD-1 or PD-L1
can disrupt this interaction and improve T cell anti-
cancer immunity [98].

Currently, one CTLA-4 inhibitor and five PD-1 or PD-L1
inhibitors have been approved by the FDA for the treat-
ment of various cancers [19]. Compared to conventional
chemotherapies, overall survival rates have indeed im-
proved [99]. However, the disadvantages still exist. Firstly,
serious adverse effects can occur in many organs due to
systemic administration of ICIs [100-102]. Secondly, only a
small percentage of patients respond to ICIs, and many pa-
tients do not respond. Low responses may be associated
with low numbers of tumor infiltrating T cells and adaptive
resistance to ICIs [103, 104]. Finally, different TMEs have
various mechanisms of immunosuppression [105].

CAR-T cell therapy

In recent years, CAR-T cell therapy has achieved re-
markable success in clinical use and has received much
attention. CAR-T cells are derived from T cells of the
patient’s blood, which are modified in vitro to express
specific CARs that recognize tumor cell antigens and are
re-transferred to the same patient. After injection, tumor
cells are specifically recognized and killed by CAR-T
cells [106, 107]. CAR-T cells can maintain their activity
for more than a decade after injection and are typical of
onetime therapy compared to other therapies [108, 109].
The original target for CAR-T cells is CD19, as this mol-
ecule is often expressed on B cell leukemias and lymph-
omas and is only expressed in immature B cells.
Therefore, “on-target, off-tumor” activity can cause B
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cell aplasia, which can be alleviated by immunoglobulin
replacement therapy [110].

At present, two CD19-targeted CAR-T cell therapies
are FDA-approved for clinical use: tissuelecleucel for
acute lymphocytic leukemia and diffuse large B cell
lymphoma and axicabtagene ciloleucel for diffuse large B
cell lymphoma [111, 112]. The clinical success of CD19-
targeted CAR-T cell therapy has motivated researchers
to design CAR-T cells for different antigens or a com-
bination of several antigens in order to facilitate their
widespread use [106, 113, 114]. However, there are some
challenges in the wide application of CAR-T cells. First,
the production of CAR-T cells is time consuming, ex-
pensive, and technically challenging [115]. Second, CAR-
T cells can result in severe side effects such as cytokine
release syndrome and neurotoxicity [116, 117]. More-
over, in solid tumors, except for glioblastomas that ex-
press EGFRVIIL, these engineered cells are less effective
and do not persist [118-120]. Therefore, combinational
therapies and novel delivery strategies are required to in-
crease their applicability to solid tumors.

Novel delivery strategies of immunotherapy with
improved efficacy and safety

Nanoparticle-based delivery of immunotherapy
Nanoparticles can mediate the delivery of vaccines
(Fig. 2 a). The most researched nanoscale vaccines were
antigen (e.g., proteins and peptides)-TLR agonist fusion
vaccines [121, 122]. The combination of TLR agonists
and antigen allows the antigen and adjuvant to be co-
delivered to the same immune cell. A representative
study attached TLR7/8 agonists to polymer scaffolds
and demonstrated that the polymer-TLR7/8 agonists
with low agonist density could self-assemble into
particles ranging in diameter from 10 to 20 nm. The
production of cytokines in the lymph nodes was higher
than that of unformulated TLR7/8 agonists [123].
Amphiphilic nanoscale vaccines have also been created
which are composed of antigen or adjuvant cargo at-
tached to the tail of the lipophilic albumin [124]. The
use of these nano-vaccines in vivo can significantly ac-
cumulate in lymph nodes and reduce systemic distribu-
tion. The results showed that T cell activation was
increased by 30-fold, anti-tumor immunity was greatly
enhanced, and systemic toxicity was greatly decreased.
This delivery strategy is simple and widely used to in-
crease the efficacy and safety of the vaccine at the same
time. In addition, high-density lipoprotein mimic nano-
discs conjugated to neoantigen peptides and adjuvants
were developed [81]. Nanodisc-based vaccines can
greatly increase the efficiency of co-delivery of antigens
and adjuvants to lymphoid tissues and thus maintain
antigen presentation to DCs. Compared to soluble vac-
cines, nanodiscs frequently induce neoantigen-specific
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Fig. 2 Novel delivery strategies of immunotherapy with improved efficacy and safety. a Nanoparticle-based delivery of immunotherapy.
Nanoparticles can mediate the delivery of vaccines. The most researched nanoscale vaccines were antigen (e.g., proteins and peptides)-TLR
agonist fusion vaccines. Amphiphilic nanoscale vaccines have also been created which are composed of antigen or adjuvant cargo attached to
the tail of the lipophilic albumin. High-density lipoprotein mimic nanodiscs conjugated to neoantigen peptides and adjuvants were developed.
Nanodisc-based vaccines can greatly increase the efficiency of co-delivery of antigens and adjuvants to lymphoid tissues and thus induce DCs
maturation. Moreover, nanoparticle-mediated delivery targets multiple inhibitory signals in the tumor microenvironment. Therapeutic peptide
assembly nanoparticles, an antagonist of p-peptide programmed cell death ligand 1 (DPPA-1), were fabricated and co-assembled with NLG919
(an inhibitor of indoleamine 2,3-dioxygenase 1 (IDO-1)). In addition, nanoscale liposome polymer gels (nLGs), including TGF-{3 inhibitors and IL-2,
were designed. And nano-cocoons can control the release of anti-PD-1 antibodies and CpG oligodeoxynucleotides, which can prevent cancer
recurrence and prolong mouse survival. NSC-87877, a potent Shp1 and shp2 protein tyrosine phosphatases inhibitor, was packaged in the
nanoparticles. Nanoparticles carrying NSC-87877 were conjugated to the surface of tumor-specific T cells and stimulated T cell expansion. b
Implantable scaffolds for the delivery of immunotherapy. Implantable scaffolds are biomaterials that can be preloaded with a variety of chemical
reagents, biological factors, or cells. The scaffolds are typically implanted through a small surgical procedure into the subcutaneous or resected
sites. The bioactive agents can be controlled to release in the implanted scaffold, and the immune cells are typically recruited to access the
scaffolds for further bio-programming. For example, poly (lactide-co-glycolide) (PLG) polymer scaffolds were designed to contain GM-CSF, CpG
oligonucleotides, and tumor cell lysates as recruitment factors, risk signals, and antigen sources, respectively. Alginate scaffolds can co-deliver
CAR-T cells with cyclic dinucleotide (CDN) STING agonists to treat solid tumors. ¢ Injectable biomaterials for immunotherapy. Injectable
biomaterials include hydrogels and cryogels. The advantage of these materials is that they can be positioned anywhere the needle can reach
without the need for surgical implantation. This is a relatively simple and minimally invasive procedure that does not require much technical
expertise and avoids unnecessary tissue damage and a series of complications related with inflammatory wound response. d. Other delivery
strategies: matrix-binding molecular conjugates, mineral oils, and polymeric microspheres. Matrix-binding molecular conjugates have been
developed to accumulate within and around tumors, reducing systemic drug exposures and side effects. For example, with a water-soluble
amine-sulfhydryl crosslinker, checkpoint inhibitors bound to a peptide from placental growth factor 2 (PLGF2), which has a particularly high
affinity for a variety of matrix proteins. These conjugates were more localized in the extracellular matrix around the tumor tissue, leading to
delayed tumor growth and extended survival. Mineral oils and polymeric microspheres are designed for local and controlled release. A
commercially available light mineral oil blend, Montanide ISA 51, has been applied in clinical trials for immunotherapy. This mixture was utilized
to prepare sustained release formulations that delivered agonistic anti-CD40 antibodies locally. In addition, biodegradable polymer microparticle
formulations have also been developed to deliver immunomodulatory antibodies locally and continuously, including PLHMGA

immune responses at frequencies up to 40-fold. In ani-
mal tumor models, nanodiscs cleared tumors when
combined with anti-PD-1 and anti-CTLA-4 therapies
[81]. Therefore, nanodisc-based vaccine is promising in
personalized cancer immunotherapy.

Nanoparticle-mediated delivery targets multiple inhibi-
tory signals in the tumor microenvironment (Fig. 2 a). A
nanoparticle-based strategy was developed to suppress
both the immune checkpoints and the tryptophan me-
tabolism. Therapeutic peptide assembly nanoparticles,
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an antagonist of D-peptide programmed cell death lig-
and 1 (DPPA-1), were fabricated and co-assembled with
NLG919 (an inhibitor of indoleamine 2,3-dioxygenase 1
(IDO-1)) [125]. The nanoparticles exhibited a spherical
shape as well as sustained release of the drug, which was
promoted in the presence of acidic pH and enzymes. In
the tumor stroma, the nanoparticles swelled and subse-
quently collapsed, and DPPA-1 and NLG919 were lo-
cally released, which is beneficial to the activation and
survival of cytotoxic T lymphocytes (CTLs). Treatment
with dual immune checkpoint inhibitors increased the
percentage of CD8" T cells in the tumor and in turn
exerted potent anti-tumor immunity, inhibiting the
growth of melanoma. In summary, this study demon-
strates that nanoparticles provide new opportunities for
cancer immunotherapy by targeting multiple inhibitory
signals of the tumor microenvironment.

In addition, nanoscale liposome polymer gels (nLGs),
including TGEF-B inhibitors and IL-2, were designed
[126]. Notably, nLGs continuously released IL-2 and
TGE-p inhibitors into the tumor microenvironment, im-
proved the activity of NK cells and CD8" T cells, and
thereby enhanced anti-tumor immune responses. The
results indicated that tumor growth was slowed and the
survival rate of tumor-bearing mice was increased.
Therefore, the efficacy of nLGs in cancer immunother-
apy is closely related to the activation of innate and
adaptive immune responses. Moreover, nano-cocoons
can control the release of anti-PD-1 antibodies and CpG
oligodeoxynucleotides, which can prevent cancer recur-
rence and prolong mouse survival [127]. Another strat-
egy of triggering T cells by covalently coupling
nanoparticles to free sulfthydryl groups on T cell mem-
brane proteins has been reported to efficiently deliver
compounds into T cell synapses [128, 129]. Shpl and
shp2 protein tyrosine phosphatases downregulate TCR
activation in synapses. NSC-87877, a potent inhibitor,
was packaged in the nanoparticles. Nanoparticles carry-
ing NSC-87877 were conjugated to the surface of
tumor-specific T cells and stimulated T cell expansion.
Therefore, this study offers a novel strategy to suppress
the immune pathway that impairs T cell activation.

Also, a dual pH-responsive multifunctional nanoparti-
cle system was created to combine immunotherapy and
chemotherapy [130]. R848, a synthetic analogue regulat-
ing Toll-like receptor, was loaded into the poly(rL-histi-
dine) core, while doxorubicin (Dox) bond to the shell of
hyaluronic acid through acid-decomposable hydrazine
bonds. Ionization of poly (L-histidine) near pH 6.5 and
breakage of hydrazine bond at pH 5.5 promoted the re-
lease of R848 and Dox in the tumor microenvironment.
R848-encapsulated nanoparticles have strong immuno-
regulatory activities against DCs. Therefore, the synergis-
tic administration of drugs and adjuvants can enhance
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the effect of immunotherapy and chemotherapy for
breast cancer.

Implantable scaffolds for immunotherapy

Implantable scaffolds are biomaterials that can be pre-
loaded with a variety of chemical reagents, biological fac-
tors, or cells. The scaffolds are typically implanted
through a small surgical procedure into the subcutaneous
or resected sites. The size of the implants is consistent
with a small tablet or pill. The bioactive agents can be
controlled to release in the implanted scaffold, and the im-
mune cells are typically recruited to access the scaffolds
for further bio-programming [131, 132] (Fig. 2 b).

Poly (lactide-co-glycolide) (PLG) polymer scaffolds were
designed to contain GM-CSF, CpG oligonucleotides, and
tumor cell lysates as recruitment factors, risk signals, and
antigen sources, respectively. Specific dendritic cell popula-
tions can be recruited and programmed [133]. The im-
planted scaffold must be maintained in the body for more
than 7 days, with the aim of triggering adequate immune re-
sponses and thus inhibiting tumor growth. In brain tumor
models, it has been shown that anti-tumor efficacy is closely
related to the ability of the implant to contact the tumor tis-
sue and build a GM-CSF gradient [134, 135]. PLG scaffolds
are constantly being improved in design and application to
deliver a variety of agonists. And scaffolds in combination
with ICIs can enhance CTLs activity [98, 99]. Currently, a
vaccine called WDVAX (ClinicalTrials.gov identifier:
NCTO01753089) is undergoing phase I clinical trial evalu-
ation in patients with stage IV melanoma [136]. It can be ex-
pected that specific antigens or synthetic neoantigens can be
developed to achieve personalized vaccines [137].

Recent studies have shown that alginate scaffolds can
co-deliver CAR-T cells with cyclic dinucleotide (CDN)
STING agonists to treat solid tumors [138]. In the
mouse pancreatic tumor model, due to the limitations of
CAR-T cell monotherapy, intravenous injection of CAR-
T cells alone failed to eliminate the tumor. However,
when alginate implants are combined with CDN, the
therapeutic efficacy of CAR-T cells can be obviously im-
proved [139]. It is worth noting that the implants, loaded
with CAR-T cells without CDN, more than doubled the
survival rate of mice compared to CAR-T cell therapy
alone. However, scaffolds were not able to completely
eliminate the tumor, indicating the need to use STING
agonists in order to promote long-lasting anti-tumor im-
munity [138]. Implanted scaffolds co-released CAR-T
cells and STING agonists, which are able to clear tumors
with an average survival increase of 37 days. Interest-
ingly, tumor re-challenge in tumor-clearing mice indi-
cated that they had established complete immunity in
their bodies, with no pancreatic tumor regrowth.

Additionally, scaffold-based cancer vaccine delivery is
a new strategy for cancer immunotherapy [140]. Porous
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3D scaffolds were prepared by cross-linking collagen and
hyaluronic acid. It can deliver both gemcitabine and can-
cer vaccines [141]. The inhibition of tumor immunosup-
pression induced by myeloid-derived suppressor cells is
mediated by gemcitabine. The recruitment and activa-
tion of dendritic cells, the increase in the number of
CD4" and CD8" T cells, and the enhancement in IFN-y
production are all attributed to cancer vaccines. System-
atic anti-tumor immunity was produced in the model of
primary breast cancer after operation, which prevented
in situ recurrence and lung metastasis. Therefore, com-
pared with bolus vaccine formulations, scaffolds exhibit
better systemic anti-tumor immunity and tumor growth
inhibition in delivering vaccines, adjuvants, or other
drugs.

Injectable biomaterials for immunotherapy

Injectable biomaterials include hydrogels and cryogels
[142, 143]. The advantage of these materials is that
they can be positioned anywhere the needle can reach
without the need for surgical implantation. This is a
relatively simple and minimally invasive procedure
that does not require much technical expertise and
avoids unnecessary tissue damage and a series of
complications related with inflammatory wound re-
sponse [144] (Fig. 2c).

An injectable polymer hydrogel vaccine was created as
an immune initiation center, and hydrogels were also
loaded with chemoattractants and immunomodulators
to improve DCs infiltration and immune reprogramming
[145, 146]. This injectable therapy improved two-fold
survival in B cell lymphoma models [146]. Subsequently,
a two-layer hydrogel/microsphere complex was devel-
oped for delivering exogenous immune cells [147]. An
injectable alginate-based system established a hydrogel
in situ that was capable of carrying exogenous DCs
[148]. The ability to deliver immunostimulatory mole-
cules via bulk encapsulation from a self-gelling system
was also explored. In recent years, injectable gelatin
cryogels from natural collagen facilitated the infiltration
and expansion of immune cells and controlled the re-
lease of GM-CSF [149]. Moreover, the alginate hydrogel
system was utilized to form larger pores relative to the
more standard nanoporous alginate systems [150]. These
macroporous alginate hydrogels greatly increased cell in-
filtration, and when containing GM-CSF, the injected
hydrogels recruited a population of millions of immature
DCs [150]. Subsequent studies have shown that directly
conjugated peptide antigens can be delivered by the
same pore-forming alginate hydrogels preloaded with
GM-CSEF, leading to the recruitment and reprogramming
of antigen-specific T cells [151].

An alginate hydrogel combination therapy was re-
ported for local delivery of celecoxib and anti-PD-1
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mAbs into tumors [152]. Utilizing the anti-inflammatory
properties and intrinsic anti-tumor activity of celecoxib,
the efficacy of anti-PD-1 mAbs can be improved by
counteracting the harmful anti-PD-1-induced chronic
inflammation [153]. It was demonstrated in the melan-
oma models that celecoxib or anti-PD-1 mAbs was de-
livered separately from subcutaneously injected alginate
hydrogels, which obviously inhibited tumor growth com-
pared with drug injection alone [152]. This indicated
that the hydrogels sustained higher local drug concen-
tration and continued to deliver. In addition, the simul-
taneous delivery of celecoxib and anti-PD-1 mAbs
significantly enhanced anti-tumor efficacy, as manifested
by significantly reduced tumor size, as well as complete
regression of some mouse tumors [152]. Also, compared
to local or systemic administration of free gemcitabine
and anti-PD-L1 antibodies, local injection of hydrogel
reduced postoperative tumor recurrence and prolonged
survival in a melanoma mouse model [154]. Addition-
ally, the combination of DC vaccines and anti-PD-1
mAbs is also delivered by peptide hydrogel [155].

Therefore, injectable biomaterials are a complement to
implantable scaffolds, and both delivery strategies have
shown impressive therapeutic results.

Other delivery strategies: matrix-binding molecular
conjugates, mineral oils, and polymeric microspheres
Matrix-binding molecular conjugates have been developed
to accumulate within and around tumors, reducing sys-
temic drug exposures and side effects (Fig. 2d). For ex-
ample, with a water-soluble amine-sulthydryl crosslinker,
checkpoint inhibitors bound to a peptide from placental
growth factor 2 (PLGF2), which has a particularly high af-
finity for a variety of matrix proteins [156]. In the murine
models with melanoma and breast cancer, these conju-
gates were more localized in the extracellular matrix
around the tumor tissue compared with the unmodified
inhibitors after peritumoral administration, which led to
delayed tumor growth and extended survival [156]. In
addition, these conjugates boosted systemic anti-tumor
immunity and decreased side effects related to systemic
administration of ICIs. Also, the matrix-binding molecular
conjugate is scalable to enable local delivery of ICIs to
other tumor sites of the body that are difficult to be
reached by systemic administration.

A commercially available light mineral oil blend, Mon-
tanide ISA 51, has been applied in clinical trials for im-
munotherapy [157]. This mixture was utilized to prepare
sustained release formulations that delivered agonistic
anti-CD40 antibodies locally [158]. In a mouse model of
lymphoma, local injection of the formulations eliminated
both local and secondary tumors [158]. This method re-
quires only a lower dose of antibody to stimulate T cells
and thereby avoid systemic toxicity. In addition, due to
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local lesions caused by Montanide ISA 51 at the injec-
tion site of mice, including inflammation, swelling, and
granuloma, biodegradable polymer microparticle formu-
lations have also been developed to deliver immuno-
modulatory antibodies locally and continuously [159,
160]. For example, poly(D,L-lactic-co-hydroxymethyl gly-
colic acid) (PLHMGA), a biodegradable polymer, was
used in a mouse colon cancer model for slow and sus-
tained release of anti-CD40 and anti-CTLA4 antibodies
[159]. It is worth noting that local injection of PLHMGA
microparticles can control the release of antibodies for
more than 30 days and has considerable efficacy [159].
These polymeric microspheres are characterized by
complete reabsorption in vivo with lower serum anti-
body levels, which provides a durable immunotherapy
delivery system while reducing the risk of systemic side
effects [159].

Limitations of novel delivery strategies for
immunotherapy

Although novel delivery strategies hold potential for can-
cer immunotherapy, some limitations still remained that
need to be further considered. Firstly, the size of the nano-
particles influences their biodistribution and pharmaco-
kinetics in vivo. Nanoparticles, less than 200 nm in size,
can proceed with more freedom in the lymphatic circula-
tion to deliver antigens and/or adjuvants, thus increasing
the likelihood of activating APCs. Secondly, the toxicity
characteristics of nanoparticle-based immunotherapy re-
quire adequate attention. It is unclear whether nanoparti-
cles increase immune activation while also increasing
autoimmune responses. Once nanoparticles can induce
more autoimmune side effects, methods are needed to
minimize the side effects. Since nanoparticles can better
activate dendritic cells and T cells via co-stimulating mul-
tiple signaling pathways, the translation of nanoparticle-
based delivery for immunotherapy requires an accurate as-
sessment of their toxicity. Moreover, nanotechnology can
increase the complexity and cost of manufacture and
commercialization, which is detrimental to the clinical
translation of nanoparticle-based immunotherapy.

In addition, confirmation of biocompatibility and deg-
radation of biomaterials, such as scaffolds and hydrogels,
is important. As noted above, scaffolds and hydrogels
are used locally and systemic toxicity may be limited.
However, due to the biological material itself, an acute
inflammatory reaction may still be triggered. Of course,
chronic inflammatory reactions may emerge due to the
continuous degradation of biological materials.

As for the implantable scaffolds, there are also some
disadvantages. The scaffolds are rigid and brittle, prone
to breakage, and require surgery to implant into the sub-
cutaneous areas. Prefabricated alginate scaffolds, al-
though resorbable without brittle problems, still require
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invasive surgical procedures to implant tumor resection
sites. Thus, the implantable scaffolds are limited to the
accessible location of the surgical procedure and is not
easily implanted anywhere it is desired. And they usually
have to be maintained at their implant sites for a suffi-
cient period of time to function. However, their persist-
ence may potentially impair normal organ function. For
example, compared to controls without scaffolds, algin-
ate implants have some damage to pancreatic activity for
treating pancreatic tumors [138]. Moreover, injectable
materials have the disadvantage that the selected bio-
logical material must have the mechanical property to
form a liquid or gel with the aim of passing through the
needle, severely limiting the type of materials.

Challenges of clinical translation and future
directions

Selection of animal models

The selection of animal models is crucial. Many can-
cer immunotherapy regimens have proven effective in
animal models, but rarely enter clinical trials. There-
fore, there is an urgent need for a humanized in vivo
model to ensure that the most promising candidates
enter clinical trials and are still satisfactory. Subcuta-
neous tumor-bearing models, patient-derived xeno-
graft (PDX) models, and genetically engineered mouse
(GEM) models are three common animal models for
studying human disease [161]. Each mouse model has
its own key strengths and weaknesses. Subcutaneous
implantation of cell lines is relatively simple, but does
not replicate human disease well. The PDX models
need immunocompromised animals, and it is therefore
challenging to convert the results of immunotherapy
into a person with a complete immune system. In
addition, in the GEM models, immunocompetent mice
are designed to develop diseases spontaneously, best
replicating human disease and evaluating immuno-
therapy. However, designing and controlling experi-
ments can be challenging due to the spontaneity of
disease formation. Thus, a perfect in vivo model can
reflect the natural state of cancer and precisely analyze
preventive or therapeutic interventions to demonstrate
true efficacy and safety.

Design guidelines, including material selection and cost
and complexity of production

Biomanufacturing is the foundation for the development
of cancer immunotherapy delivery strategies and re-
quires greater resource acquisition and cost reduction.
Producing large-scale industrial samples at a cost that is
affordable to patients is a challenge, especially in the
early stages. Therefore, several design guidelines, includ-
ing treatment stability, scalability, and cost and complex-
ity of production, are fundamental issues to consider for
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clinical translation [162]. The selection of materials is
also related to the process of clinical translation. Com-
pared with unapproved materials, the use of FDA-
approved materials for delivery may be faster to enter
the clinic. This is beneficial for lipid- and polymer-based
materials because the FDA has approved several mate-
rials as drug delivery platforms [163, 164]. For example,
ongoing melanoma clinical trials utilize and evaluate
EDA-approved lipids for delivering mRNA to dendritic
cells (NCT02410733). However, the challenge is that the
FDA has not yet approved mRNA-based agents. There-
fore, the application of the therapy to the clinic may take
longer. Moreover, ongoing clinical trials are also evaluat-
ing an injectable scaffold (WDVAX) for delivery of can-
cer vaccines (NCT01753089).

Future directions

There are two aspects that can be further improved in
the future. One is to study novel delivery strategies to
expand and engineer the ex vivo cell therapy. Another is
that biological materials should be created to increase
the ex vivo expansion of T cells [165—-167]. For example,
microfluidics-based technology can accelerate the intra-
cellular delivery of macromolecules to the ex vivo im-
mune cells [168, 169]. The technique is very efficient in
providing nucleic acids and macromolecules to immune
cells (T cells, B cells, DCs, and macrophages), at speeds
of up to about 1 million cells per second. The principle
is that when cells pass through a point of contraction
within a microfluidic channel, these cells undergo rapid
mechanical deformation that instantaneously destroys
the membrane of the immune cell, thereby absorbing
macromolecules in the buffer [170]. Furthermore, in
order to generate APC mimic scaffolds for T cell expan-
sion, mesoporous silica microrods are coated with a fluid
lipid bilayer, anti-CD3 and anti-CD28 antibodies, and
IL-2 [171]. By replicating how APCs present these sig-
nals in vivo, these scaffolds greatly facilitate polyclonal
amplification of primary human and mouse T cells.
Similar in vivo efficacy can be found in mouse models
with lymphoma [171]. The use of biological materials to
improve the expansion and function of T cells can re-
duce off-target effects by increasing migration to target
tissues in future studies, thereby improving T cell
delivery.

Conclusions

Cancer immunotherapy has become an emerging way of
cancer treatment. Cancer immunotherapy as a whole is
rapidly developing. However, the delivery technology for
cancer immunotherapy is still in its infancy. Novel delivery
strategies that improve immunotherapy are introduced for
controlled release, local delivery, and increased stability.
Many of the delivery technologies described not only
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provide a way for improving immunotherapy but also pro-
vide a way to overcome the inherent heterogeneity of can-
cer. We can envision that these technologies will be
increasingly recognized in the future. For instance, many
delivery systems, such as nanoparticles, scaffolds, mesopo-
rous silica, and hydrogels, can be utilized to accommodate
a variety of therapeutic agents that are selected on the
basis of patient-specific targets. This personalized treat-
ment will offer the potential of curing cancer patients.
Therefore, continuous advancement in drug delivery will
contribute to the wider application of cancer immuno-
therapy in the foreseeable future.
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