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Luciferase reporter assay
Cells (5 × 105) were seeded in 24-well plates and transfected
with either a β-catenin-TCF/LEF-sensitive or -insensitive
reporter vector (TOP FLASH/FOP FLASH, Promega) using
Lipofectamine 2000 reagent in each well. After 24 h, the lu-
ciferase activity was measured using the Dual-Luciferase
Reporter Assay System (Promega, CA, USA).

Xenograft model
Female BALB/c nude mice (4 weeks of age) were pur-
chased from the Shanghai Institute for Biological
Sciences (Shanghai, China). For the kidney in situ
tumour model, 5 × 106 cells in 100 μl PBS were injected
into the kidney using insulin syringes (Becton Dickin-
son). Tumour formation was observed by an IVIS 200
imaging system. For the lung metastasis model, 2 × 106

cells in 100 μl PBS were injected into the tail vein using
insulin syringes. The mice were sacrificed, and the num-
ber of metastatic nodules in each lung were counted
8 weeks after injection. For the subcutaneous tumour
model, 5 × 106 cells in 100 μl PBS were implanted under
the right flanks of the mice. Tumour size and body
weight were measured every 4 days. Six weeks later, the
mice were sacrificed, and the tumour weights and vol-
umes were calculated. This study protocol was approved
by the Animal Care and Use Committee of the Sun Yat-
Sen University Cancer Center, Sun Yat-Sen University.

Statistical analysis
Statistical analyses were performed using SPSS version
19.0. A chi-squared test was performed to analyse the cor-
relations between AGK expression and the clinicopatho-
logical features of the patients. Student’s t test was used to
analyse the statistical significance of the differences be-
tween groups. The survival curves were determined using
the Kaplan-Meier method and compared by the log-rank
test. The overall survival (OS) of the patients following
treatment was calculated according to the number of
death events. The distant metastasis-free survival (DMFS)
of the patients following treatment was calculated from
the date of diagnosis to the date of the first distant metas-
tasis at any site, death from any cause, or the date of the
last follow-up visit. A Cox proportional hazards regression
model was used for the multivariate survival analysis.
P< 0.05 was considered statistically significant.

Results
AGK is overexpressed and correlated with poor
survival in RCC
Western blotting and real-time PCR revealed that AGK
protein and mRNA expression were upregulated in 12
human RCC tissues compared to that in the paired adja-
cent normal tissues (Fig. 1a–c). Consistently, AGK was
shown to be elevated in seven RCC cell lines (Caki-1,

Caki-2, 786-O, A498, SK-RC-39, 769P and ACHN) com-
pared to its level in immortalised renal epithelial cell
lines HK-2 (Fig. 1d, e). Furthermore, AGK expression
was higher in the highly metastatic cell lines ACHN and
Caki-1. IHC staining of paraffin-embedded archived bi-
opsies further demonstrated that AGK was hardly ob-
served in the adjacent normal tissues, while strong AGK
expression was detected in the tumour tissues (Fig. 1f).
Correlation analysis showed that AGK expression was

strongly associated with the clinical stage (P< 0.001), Fuhr-
man classification (P= 0.011), recurrence with metastasis
(P< 0.001) and vital status (P< 0.001) (Table 1 and Add-
itional file 1: Table S3). RCC patients with higher AGK
expression experienced poorer 5-year OS (64% vs. 96%,
P< 0.001, Fig. 1g) and 5-year DMFS (57% vs. 95%,
P< 0.001, Fig. 1h) than patients with low AGK expression.
Moreover, multivariate Cox regression analysis showed that
the AGK protein expression level and clinical stage were in-
dependent prognostic indicators for RCC patients (Table 2).
Importantly, patients with increased expression of AGK ex-
perienced an increased risk of death (HR 7.492, P= 0.008)
and metastasis (HR 6.161, P= 0.004).

AGK promotes the proliferation and tumourigenicity of RCC
Since AGK expression was correlated with clinical stage in
RCC, we then investigated the effect of AGK on the prolif-
eration of RCC cells. We first knocked down AGK expres-
sion in RCC cell lines (ACHN and SK-RC-39) with
relatively high expression of AGK, and we upregulated
AGK expression in RCC cell lines (A498 and 769P) with
relatively low expression of AGK (Fig. 2a). CCK8 and col-
ony formation assays revealed that the proliferation rate of
cells with increased AGK expression was significantly
higher than that in the respective control cells, whereas
the knockdown of AGK significantly reduced cell prolifer-
ation (Fig. 2b, c and Additional file 1: Figure S1).
EdU incorporation and flow cytometry assays showed

that overexpressing AGK significantly increased the per-
centage of S phase cells, while the silencing of AGK re-
duced the percentage of S phase cells (Fig. 2d–g).
We next examined the effect of AGK on the tumouri-

genicity of RCC in vivo by using a kidney in situ tumour
model. As shown in Fig. 3a, a remarkable increase in
tumour growth was detected in A498/oeAGK tumours,
whereas the growth of ACHN/shAGK cells was signifi-
cantly reduced compared with that of the control ACHN/
vector cells. Statistical analysis of tumour weights from all
mice in each group further demonstrated the same results
(Additional file 1: Figure S2A and B). H&E staining clearly
revealed the adjacent normal tissues and cancer tissues.
IHC was performed to detect the expression of AGK and
Ki67. As shown in Fig. 3b, AGK was markedly highly
expressed in tumour tissues compared with adjacent nor-
mal tissues. Furthermore, the level of Ki67 positively
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stained cells was higher in A498/oeAGK tumours, while
the expression of Ki67 was remarkably reduced in
ACHN/shAGK tumours. These results provide strong
evidence that AGK plays a critical role in the prolifera-
tion of RCC cells.

AGK significantly enhances cell migration and RCC metastasis
Considering that AGK expression was significantly asso-
ciated with recurrent metastasis, we further evaluated
the effect of AGK on the metastasis of RCC cells. The
wound-healing assay and the Transwell assay showed

Fig. 1 AGK is upregulated in RCC and is associated with poor prognosis in 120 RCC patients. a Representative images of AGK protein expression
in 12 pairs of RCC tissues (T) and adjacent normal tissues (N). b Statistical analysis of the relative AGK protein levels in 12 pairs of RCC tumour
samples and adjacent normal tissues. c Relative AGK RNA expression in 12 pairs of RCC tumour samples and adjacent normal tissues. d AGK
protein and e mRNA expression were detected in a normal cell line (HK-2) and seven renal cell lines (Caki-1, Caki-2, 786O, A498, SK-RC-39, 769P
and ACHN). GAPDH was used as a loading control. The error bars represent the standard deviation of the mean (SD) calculated from three
experiments performed in parallel. Pvalues were calculated using an independent Student’s t test. *P< 0.05 versus control. f Representative IHC
images showing AGK expression in RCC tissue and adjacent normal tissue. g Kaplan-Meier analysis of overall survival (OS) and h distant
metastasis-free survival (DMFS) according to AGK expression in 120 RCC patients
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N-cadherin, vimentin and β-catenin in the indicated RCC
cell lines. Moreover, phalloidin immunofluorescent staining
indicated that AGK protein markedly altered the cell shapes
to a more mesenchymal phenotype compared with the
shapes of negative control cells. These results demonstrated
that the overexpression of AGK triggered an EMT-like
phenotypic transition and promoted metastasis in RCC.
Numerous studies have reported that the PI3K/AKT/

GSK3β/β-catenin pathway is aberrant and promotes prolif-
eration, migration and invasion in a wide variety of cancers
[38–42]. In this study, we found that the upregulation of
AGK enhances the phosphorylation of multiple proteins,
such as p-PI3K, p-AKT and p-GSK3β, in RCC. KEGG
pathway enrichment analyses and comprehensive experi-
ments confirmed that AGK promoted RCC proliferation
and metastasis via the activation of the PI3K/AKT/GSK3β
axis. It is well known that activation of GSK3β is required
for the accumulation of β-catenin [43]. Upon phosphoryl-
ation of GSK3β at position Ser9 and the subsequent
inactivation of GSK3β by p-AKT, cytosolic β-catenin deg-
radation is attenuated, resulting in β-catenin accumulation
in the cytoplasm and its translocation from the cytosol to
the nucleus [30, 31]. As the present study has shown, along
with increased AGK, increased nuclear accumulation of β-
catenin is observed. Once in the nucleus, β-catenin acts as
a transcriptional coactivator and activates the TCF/LEF (T
cell factor/lymphoid enhancer factor) family of transcrip-
tion factors [44, 45]. Studies have shown that β-catenin
modifies cell-cycle activation [46] and cell–cell adhesion
[47]. In this study, we found that AGK reduced GSK3β ac-
tivity by phosphorylating Ser9, resulting in the nuclear accu-
mulation of β-catenin, which further upregulated TCF/LEF
transcription factor activity. In addition, a significantly posi-
tive association between AGK and β-catenin was detected
in human RCC samples.

Conclusion
In summary, our results indicate, for the first time, that
AGK is a critical oncogenic factor and is associated with
poor survival outcomes in RCC. Moreover, AGK pro-
motes cell proliferation and metastasis through activation
of the PI3K/AKT/GSK3β/β-catenin signalling pathway.
These results might provide novel targets for the investi-
gation of molecular treatments for RCC patients.

Additional file

Additional file 1: Table S1. The sequences of the primers used for
amplifying AGK and GAPDH. Table S2. The primary antibodies of Western
blotting. Table S3. Association between the absolute IHC score of AGK
expression and the clinicopathological features of RCC. Figure S1. AGK
promotes RCC cell proliferation. Figure S2. AGK promotes the
tumourigenicity of RCC cells in vivo. Figure S3. AGK altered nuclear
translocation of β-catenin in RCC. Figure S4. β-catenin
signalling is crucial for AGK-induced cell growth and invasion in RCC cells.
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