
REVIEW Open Access

Insulin-like growth factor receptor signaling
in tumorigenesis and drug resistance: a
challenge for cancer therapy
Hui Hua1, Qingbin Kong2, Jie Yin2, Jin Zhang2 and Yangfu Jiang2*

Abstract

Insulin-like growth factors (IGFs) play important roles in mammalian growth, development, aging, and diseases.
Aberrant IGFs signaling may lead to malignant transformation and tumor progression, thus providing the rationale
for targeting IGF axis in cancer. However, clinical trials of the type I IGF receptor (IGF-IR)-targeted agents have been
largely disappointing. Accumulating evidence demonstrates that the IGF axis not only promotes tumorigenesis, but
also confers resistance to standard treatments. Furthermore, there are diverse pathways leading to the resistance to
IGF-IR-targeted therapy. Recent studies characterizing the complex IGFs signaling in cancer have raised hope to
refine the strategies for targeting the IGF axis. This review highlights the biological activities of IGF-IR signaling in
cancer and the contribution of IGF-IR to cytotoxic, endocrine, and molecular targeted therapies resistance.
Moreover, we update the diverse mechanisms underlying resistance to IGF-IR-targeted agents and discuss the
strategies for future development of the IGF axis-targeted agents.
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Introduction
Sustained growth is a typical hallmark of cancer. Growth
factors, such as epidermal growth factor (EGF), trans-
forming growth factor (TGF), platelet-derived growth
factor (PDGF), hepatocyte growth factor (HGF), fibro-
blast growth factor (FGF), vascular endothelial growth
factor (VEGF), and insulin-like growth factor (IGF),
stimulate cancer cell and stromal cell proliferation, mi-
gration, and invasion thereby promoting tumor growth,
angiogenesis, and metastasis. While IGF deficiency may
inhibit development and cause metabolic problems, ex-
cessive IGF levels disturb health. Increased IGF levels
are inversely associated with longevity and positively as-
sociated with cancer risk. IGF is mainly produced by the
liver, as well as tumor cells and cancer-associated

macrophages (Fig. 1). Furthermore, the bioavailability of
IGF is regulated by IGF-binding proteins (IGFBPs),
which are identified as the serum reservoirs of IGF [1].
Epidemiological studies have demonstrated that circulat-
ing IGF and IGFBP levels are associated with some types
of cancer. For example, higher levels of circulating IGF
are associated with increased risk of breast and prostate
cancer [2, 3]. Recent study also reveals that there is a
modest positive association between IGF1 and lung
cancer risk in current smokers [4]. Although IGF1 was
not associated with overall colorectal cancer risk, it
appears to be associated with the increased risk for
advanced colorectal cancer [5]. In addition, serum levels
of IGFBP3 are inversely associated with esophageal and
gastrointestinal cancer [6, 7]. However, a recent nested
case-control study reveals that circulating concentration
of IGF1 is not associated with bladder cancer,
lymphoma, and melanoma risk in a European population
[8–10].
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IGF binds to its cell surface receptors such as type I
insulin-like growth factor receptor (IGF-IR) and then
initiates multiple signaling pathways including PI3K/Akt,
MAPK, JAK/STAT, Src, and focal adhesion kinase
(FAK), which act in concert to stimulate cancer cell pro-
liferation, survival and migration. Activation of IGF sig-
naling pathways promotes the growth, metastasis, and
drug resistance in many types of human tumors, includ-
ing mesenchymal, epithelial, and hematopoietic cancer
[11–13]. Previous study indicates that IGF-IR may be in-
volved in cell-fate determination. Elevated expression of
IGF-IR in BCR/ABL+ cells may promote the develop-
ment and self-renewal of chronic myeloid leukemia,
while downregulation of IGF-IR in BCR/ABL+ cells leads
to acute lymphoblastic leukemia (ALL) [14]. However,
another study demonstrates that IGF-IR overexpression
is essential for leukemia-initiating cell activity in T-ALL
[15]. In addition, Bcr-Abl can induce autocrine IGF1 sig-
naling in leukemia cells [16]. Autocrine IGF1 signaling
also promotes growth and survival of human acute mye-
loid leukemia cells [17]. Moreover, IGF-IR is involved in
the progression of chronic lymphocytic leukemia [18].
IGF-IR interacts with NPM-ALK and then promotes T
cell ALK+ anaplastic large cell lymphoma cells survival
[19].
Given the important roles of IGF-IR in tumor progres-

sion, inhibition of IGF-IR activity has been proposed as

a therapeutic strategy for solid tumors and hematologic
malignancies [20]. Many anti-IGF-IR monoclonal anti-
bodies (mAbs) and small-molecule inhibitors have been
developed. Although anti-IGF-IR mAbs and IGF-IR in-
hibitors have potent anti-cancer effects in preclinical
models, clinical trials of these agents are largely disap-
pointing in unselected cancer patients. Nevertheless,
some anti-IGF-IR mAbs, such as ganitumab, show clin-
ical benefits in some types of cancer, and are still under
active evaluation. In this review, we update recent pro-
gress in exploring the complex IGF signaling, its role in
drug resistance, and the mechanisms for resistance to
IGF-IR inhibition. We also revisit the strategies to target
IGF-IR for cancer therapy.

IGFs and their receptors
The physiological and pathological functions of IGF are
largely mediated by its receptors. There are two types of
IGF receptors, namely type I IGF receptor (IGF-IR) and
type II IGF receptor (IGF-IIR). IGF-IR is a receptor tyro-
sine kinase (RTK) that mediates the stimulatory effects
of IGF1 and IGF2 on cell proliferation, migration, and
invasion. In contrast, IGF-IIR lacks the kinase activity.
Therefore, IGF-IIR can sequester IGF2 and even deliver
it to lysosome for degradation, thereby abrogating IGF2
signaling (Fig. 1) [21]. IGF-IR consists of extracellular α
subunit (IGF-IRα) and transmembrane β subunit (IGF-

Fig. 1 IGF, insulin, and their receptors. IGF can be secreted by the liver, cancer cells, and macrophages, while insulin is secreted by pancreatic β
cells. IGF-IR may heterodimerize with InsR-A or InsR-B and then forms a hybrid receptor. Whereas IGFBPs usually act as serum reservoirs for IGFs,
IGFBP7, in particular, may compete with IGFs to bind to IGF-IR and inhibit the activation of IGF-IR. GH, growth hormone
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IRβ). Both IGF-IRα and IGF-IRβ are encoded by a single
gene on chromosome 15q26.3. After the translation of
IGF-IR mRNA, the 210 kDa protein product (pro-IGF-
IR) is subject to endoproteolytic cleavage by the pro-
protein convertases such as furin and pro-protein con-
vertase 5, leading to the generation of α chain (706
amino acids) and β chain (627 amino acids) [22]. The
mature IGF-IR is a heterotetramer with two α chains
and two β chains [23]. In addition, IGF-IR has high
homology with the closely related insulin receptor
(InsR), which has two isoforms, InsR-A and InsR-B [24].
The InsR-A is generated by alternative splicing of exon
11 in InsR gene [25]. InsR-A differs from InsR-B in
ligand-binding and signaling properties. While InsR-A
homodimer binds both insulin and IGF2 with high affin-
ity, InsR-B homodimer and InsR-A/B heterodimer pref-
erentially bind insulin but not IGF. IGF-IR may
heterodimerize with InsR-A or InsR-B and then forms a
hybrid receptor. IGF1/2 binds to IGF-IRα homodimer
and IGF-IR/InsR heterodimer. Especially, IGFBP7 may
compete with IGF to bind to the extracellular domain of
IGF-IR and then suppress the activation of IGF-IR by
IGF [26]. In addition, IGF2 can bind to InsR-A homodi-
mer (Fig. 1) [27]. InsR-B, which contains 12 amino acids
encoded by exon 11 of InsR, mediates the metabolic ac-
tions of insulin such as the uptake of glucose by muscle
and adipose [25, 28]. To prevent metabolic disorders,
targeting IGF-IR/InsR for cancer therapy should avoid
compromising the function of InsR-B.
Upon binding to IGF, IGF-IR undergoes changes in its

conformation, which in turn abolishes the restraints of
intrinsic kinase activity by the ectodomain, and triggers
transphosphorylation of its tyrosine kinase domains [29].
Phosphorylation of a triple-tyrosine cluster (Y1131/
1135/1136) in the kinase domain of β subunit can fur-
ther amplify the kinase activity of IGF-IR. Except for au-
tophosphorylation, IGF-IR can be phosphorylated and
activated by other kinases such as Src and FAK [30, 31].
Of note, the protein kinase mTOR has tyrosine kinase
activity [32]. mTORC2 interacts with IGF-IR, and phos-
phorylates IGF-IR at Y1131/1136 thereby activating IGF-
IR [32]. The conformational changes in IGF-IR create
docking sites for its substrates, such as Shc and InsR
substrates (IRS), which relay the signaling to down-
stream effectors including PI3K, MAPK, and STAT3.
The IRS1/Akt pathway is critical for regulation of me-
tabolism by insulin and InsR. Instead, InsR-A mediates
the mitogenic effects of both IGF and insulin, which is
dependent on receptor internalization, phosphorylation
of SHC and MAPK [33].
IGF-IR has both beneficial and detrimental effects on

health. Studies in IGF-IR-deficient mice demonstrate
that these mice die within a few days after birth [34], in-
dicating that IGF-IR has critical roles in development

and health. However, overexpression of IGF-IR may in-
duce cellular transformation. IGF-IR is frequently over-
expressed or activated in a variety of cancer. IGF-IR
expression is elevated in about 50% of breast cancers,
and more frequently in luminal A-type breast cancer
than luminal B and triple-negative breast cancer [35].
The prognostic impact of IGF-IR expression in human
breast cancer remains inconclusive. While some studies
suggest that overexpression of IGF-IR or phosphorylated
IGF-IR is inversely associated with patient prognosis
among all subtypes of breast cancer [36–38], another
study reveals that IGF-IR is only inversely associated
with prognosis in ErbB2-positive breast cancer [39]. One
study even shows that luminal A/B breast cancer pa-
tients with high IGF-IRα and negative EGFR expression
have better prognosis than the rest [40]. The reasons for
discrepancy among these studies are unclear. It remains
to know whether the levels of IGF-IRα and IGF-IRβ have
different impact on the prognosis. One possibility is that
the IGF-IRα/IGF-IRβ ratio can dictate the different
outcome.
In addition, IGF-IR is overexpressed in about 30% of

human prostate cancer. Overexpression of IGF-IR in
prostate cancer is associated with high Gleason grade
and increased risk of tumor recurrence and metastasis
[41]. Moreover, cell membrane expression of IGF-IR is
present in 36% of head and neck squamous carcinoma
(HNSCC), while cytoplasmic IGF-IR is detected in 92%
of HNSCC [42]. Regardless of the location of IGF-IR,
high levels of IGF-IR are associated with high tumor
stage, HPV negativity, and short overall survival [42].
Overexpression of IGF-IRβ was correlated with a de-
creased survival in patients with cervical carcinoma [43].
Except for the levels of IGF-IR, the IGF-activated gene
transcription signature is strongly associated with poor
prognosis in breast cancer patients [38]. Therefore, both
the levels and activity of IGF-IR are positively correlated
with tumor progression.

The biologic effects of IGFs signaling on cancer
Once activated by the ligands, IGF-IR and InsR may initi-
ate diverse signaling pathways to regulate cell prolifera-
tion, differentiation, survival, metabolism, migration, and
stemness (Fig. 2). IRS1/2, Shc, and Grb, are typical adap-
tors to transduce signaling from IGF-IR to downstream ef-
fectors. While most of the canonical IGF-IR signaling
processes are conducted in the cytosol, IGF-IR may trans-
locate to the nuclei and then regulate gene transcription,
which represents a non-canonical function of IGF-IR.

IGF-IR promotes tumor growth, anoikis evasion, and
metastasis
PI3K is a classical lipid kinase that catalyzes the produc-
tion of phosphatidylinositol-3,4,5-trisphosphate (PtdIns-
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3,4,5-P3) [44]. Activated IGF-IR phosphorylates IRS1/2
at tyrosine residues and then promotes their association
with PI3K, leading to increased PI3K activation, PIP3
abundance, and the activation of PDK1 by PIP3 [45]. In
this case, IRS1/2 may act as protein scaffolds to lock
PI3K in an active conformation. In addition, PI3K pro-
motes mTORC2 activation [46]. While PDK1 phosphor-
ylates Akt at Thr308, mTORC2 phosphorylates Akt at
Ser473. Phosphorylation of Akt at both Thr308 and
Ser473 leads to full activation of Akt, thereby regulating
glucose metabolism, protein synthesis, cell proliferation,
survival, and apoptosis through multiple targets [46].
After phosphorylation by Akt, Glut is translocated to cell
membrane allowing glucose uptake. Besides, Akt phos-
phorylates and inactivates GSK3, FOXO, and TSC1/2,
leading to activation of Wnt signaling, inhibition of
apoptosis, and activation of mTORC1, respectively [47].
In addition, Akt phosphorylates Bcl2 to promote cell
survival and inactivates p27 and Bad to inhibit cell cycle
arrest and apoptosis.
Except for the PI3K pathway, the Ras-Raf-MEK-ERK

pathway is also important for tumorigenesis. The
adaptor Shc is an essential link between IGF-IR and Ras.
IGF-IR induces tyrosine phosphorylation of Shc, which

is assembled into a complex containing Grb2 and SOS.
Subsequently, the Ras/Raf/MEK/ERK cascade is acti-
vated. ERK may promote cancer cell proliferation by ac-
tivating other tumor-promoting proteins such as Yes-
associated protein (YAP) [48]. In addition, the induction
of YAP signaling by hypoxia is dependent on IGF-IR,
which helps cancer cells adapt to hypoxia [49, 50].
Cancer cell detachment from the matrix is essential

for metastasis. Upon detachment from the matrix, circu-
lating tumor cells may be subject to anoikis. Upregula-
tion of IGF-IR signaling can help cancer cells resist
anoikis by inhibiting p53 and p21 activation [51]. IGF-IR
also promotes anchorage-independent growth through
RACK1-mediated STAT3 and Akt activation [52, 53].
Furthermore, IGF-IR/Akt signaling promotes the expres-
sion of LIP, an anoikis suppressive isoform of CCAAT
enhancer binding protein-β [54]. Inhibition of IGF-IR
enhances the susceptibility of cancer cells to anoikis, re-
duces circulating tumor cells in the blood, and inhibits
cancer metastasis [55].
As a receptor tyrosine kinase, IGF-IR can activate a

couple of tyrosine kinases that have important roles in
tumor progression, such as Src, FAK, JAK, RON, and
MET [56, 57]. FAK and JAK/STAT3 activation promote

Fig. 2 IGF and insulin signaling pathways. IGF and insulin can activate multiple signaling pathways including PI3K, MAPK, JAK/STAT, discoidin
domain receptors (DDRs), FAK, and Src; promote cell proliferation, survival, epithelial-mesenchymal transition (EMT), migration, and stemness; and
inhibit autophagy and anoikis
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cancer metastasis. Indeed, overexpression and activation
of IGF-IR is associated with high risk of metastasis and
poor prognosis in many cancer patients [58]. Moreover,
IGF-IR interacts with discoidin domain receptors, the
non-integrin collagen receptors that promote EMT, cell
proliferation, and survival [59, 60]. Both tumor growth
and metastasis are dependent on angiogenesis. IGF pro-
mote angiogenesis through VEGF, an effector down-
stream of PKCδ and Akt that are activated by IGF-IR
[61]. The tumor suppressor VHL can interact with PKCδ
and prevent its binding to IGF-IR, thereby abrogating
IGF-IR-PKCδ signaling [62]. Moreover, previous studies
demonstrate that IGF promotes mitochondrial biogen-
esis and turnover in cancer cells by inducing peroxisome
proliferator-activated receptor γ coactivator 1β (PGC-
1β), PGC-1α-related coactivator, nuclear factor-
erythroid-derived 2-like 2 (NFE2L2/NRF2), and the
mitophagy mediator BNIP3 [63]. In addition, IGF in-
duces the expression of the cystine/glutamate antiporter
(SLC7A11), which promotes the uptake of cystine to
counteract oxidation [64]. Thus, inhibition of IGF-IR
may lead to impaired mitochondrial functions and in-
creased the production of reactive oxygen species [65].

IGF-IR promotes epithelial-mesenchymal transition (EMT)
and stemness
It is conceived that dynamic EMT and mesenchymal-
epithelial transition drive cancer cell invasion, survival in
circulation, and outgrowth in secondary organs. EMT is
characteristic of the downregulation of E-cadherin and
upregulation of N-cadherin and vimentin. The transcrip-
tion factors smad, zeb1/2, snail, slug, and twist are key
drivers of the EMT program. Loss of the epithelial
marker E-cadherin may impair cell-cell adhesion, cell-
matrix adhesion, and cell polarity. IGF-IR is able to in-
duce EMT through multiple mechanisms [66]. IGF-IR-
activated Akt may stabilize slug, a negative regulator of
E-cadherin expression. On the other hand, IGF-IR may
trigger EMT via STAT3, FAK, and NF-kB [67, 68].
EMT may drive epithelial cells into a stem cell-like

state [69]. Indeed, IGF-IR promotes both EMT and can-
cer stemness. Mechanistically, activation of STAT3 con-
tributes to the induction of EMT and cancer stemness
by IGF-IR [30, 70]. In addition, IGF-IR is overexpressed
in cancer stem cells and stimulates the expression of
stemness transcription factors such as inhibitor of DNA-
binding 1, Nanog, and POU5F1 [71, 72]. Inhibition of
the IGF-IR-Akt-mTOR pathway suppresses breast can-
cer stem/progenitors [73].
IGF-IR is also involved in the regulation of EMT and

cancer stemness by oncogenes and tumor suppressor
genes. DNp73, a dominant-negative variant of the tumor
suppressor p73, enhances EMT and cancer stemness by
abrogating the inhibitory effect of EPLIN on IGF-IR and

downregulating miR-885-5p thereby increasing its direct
target IGF-IR [74, 75]. In addition, NF-kB can induce
IGF2 expression in cancer cells to activate IGF-IR, and
then promote cancer stemness. During stroma-cancer
cells crosstalk, cancer-associated fibroblasts may secrete
IGF2 to activate IGF-IR/Nanog axis in tumor cells and
promote cancer stemness [76]. Lastly, fibulin 3 (FBLN3),
an extracellular matrix protein, suppresses both EMT
and self-renewal of the lung cancer stem cells by inhibit-
ing the IGF-IR/PI3K/AKT/GSK3β pathway [77].

Nuclear IGF-IR regulates gene expression
While IGF-IR is usually localized at the plasma mem-
brane in normal cells, it often translocates into the cyto-
plasm and nucleus in cancer cells even though it does
not have the nuclear localization signal [78–80]. Al-
though the SUMOylation of IGF-IR at three evolutionar-
ily conserved lysine residues (K1025/1100/1120) in IGF-
IRβ is dispensible for its kinase activity, SUMOylation is
essential for its nuclear translocation [81]. In addition,
the nuclear translocation of IGF-IR is dependent on the
SUMO-conjugating enzyme Ubc9 [82]. Mechanistically,
the dynactin subunit p150(Glued) transports IGF-IR to
the nuclear pore complex, where importin-β and
RanBP2 interact with IGF-IR and then deliver it into the
nucleus [83]. Moreover, the growth factor amphiregulin
interacts with IGF-IR and promotes the binding of IGF-
IR to importin-β1 thereby enhancing the nuclear trans-
location of IGF-IR [84]. Nuclear IGF-IR can not only
bind to IGF-IR promoter DNA and promotes the tran-
scription of itself [85], but also directly binds DNA and
recruit RNA polymerase II to upregulate JUN and
FAM21 expression in cancer cells [86]. In addition, IGF-
IR interacts with T cell factor (TCF) and promotes the
expression of β-catenin/TCF targets including cyclin D1
and axin 2 [87]. Of note, the kinase activity of IGF-IR is
not required for its nuclear translocation and activation
of transcription [88]. Nevertheless, the nuclear IGF-IR
still acts as a kinase to phosphorylate its nuclear part-
ners. For example, nuclear IGF-IR phosphorylates prolif-
erating cell nuclear antigen at Y60/133/250 and
promotes its ubiquitination, which prevents replication
fork stalling after DNA damage [89]. Moreover, nuclear
IGF-IR promotes slug expression through phosphorylat-
ing histone H3 at Y41 [90].Thus, nuclear IGF-IR has
both kinase-dependent and kinase-independent
functions.

IGF-IR promotes drug resistance in cancer therapy
IGF-IR not only promotes cell proliferation, but also
prevents stress-induced cell death. Previous studies dem-
onstrate that IGF-IR contributes to resistance to various
category of cancer therapeutics including chemotherapy,
endocrine therapy, radiotherapy and targeted therapy.
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Overexpression and activation of IGF-IR during chemo-
therapy, radiotherapy or targeted therapy predicts poor
outcome in cancer patients [91]. Meanwhile, preclinical
studies indicate that inhibition of IGF-IR may reverse
the resistance to many drugs and improve the efficacy of
those anti-cancer agents.

Radiotherapy and chemotherapy
DNA damage cancer therapy is one of classical cancer
treatments. IGF-IR is able to repair DNA damage
through both non-homologous end joining (NHEJ) and
homologous recombination [92]. Inhibition of IGF-IR
impairs the repair of radiation-induced double strand
breaks and sensitizes cancer cells to radiotherapy [82].
The promotion of NHEJ by IGF-IR may rely on DNA-
dependent protein kinase (DNA-PK), whereas a direct
interaction between IGF-IR and DNA-PK is absent [93].
Of note, the IGF-IR downstream effectors Akt and
mTOR promote the repair of radiation-induced DNA
double strand breaks and confer resistance to radiother-
apy [93, 94]. Inhibition of residual homologous recom-
bination further enhances the sensitivity to IGF-IR
inhibitors [95]. Since IGF-IR can promote DNA damage
repair, activation of IGF-IR may contribute to resistance
to DNA-damaging agents. Hence, inhibition of IGF-IR
represents a therapeutic strategy to target DNA repair
and sensitize cancer cells to DNA-damaging agents. In-
deed, IGF-IR inhibition sensitizes cancer cells to ATM-
related kinase inhibition, cisplatin, oxaliplatin, and doxo-
rubicin [96–99]. Combined treatment with IGF-IR in-
hibitor, PARP inhibitor, and/or platinum may be a
strategy to improve the efficacy of cancer therapy [100].
In addition, IGF-IR inhibition sensitizes cancer cells to
other chemotherapeutic agents, such as paclitaxel, 5-
fluorouracil (5FU), temozolomide, gemcitabine, and bor-
tezomib [101–105]. Combination of IGF-IR inhibitor
and these chemotherapeutic agents may result in in-
creased DNA double strand breaks, apoptosis, and mi-
totic catastrophe. Except for repression of DNA repair,
IGF-IR inhibition may downregulate the synthesis of
survivin, a dual regulator of cell proliferation and sur-
vival [106]. Decreased expression of survivin contributes
to the sensitization of cancer cells to chemotherapy by
IGF-IR inhibitors.

Endocrine therapy
In addition to neoadjuvant chemotherapy, endocrine
therapy has important roles in treating some types of
cancer such as breast cancer and prostate cancer. How-
ever, estrogen receptor α-positive (ERα+) breast cancers
and androgen receptor-positive prostate cancer may
adapt to hormone deprivation and acquire resistance to
antiestrogen or antiandrogen therapies. Phosphorylation
of IGF-IR/InsR is elevated in ERα+ breast cancer cells

resistant to estrogen deprivation and tamoxifen, possibly
due to increased secretion of IGF1/2 in these cells and
elevated expression of retinoblastoma-binding protein 2
that inhibits IGFBP4/5 by interacting with ER-NRIP1-
HDAC1 complex [107–109]. In addition, the dual InsR/
IGF-IR inhibitor linsitinib can prevent the emergence of
breast cancer cells that are resistant to long-term estro-
gen deprivation or antiestrogen treatment and inhibit
growth of established ER+ breast cancer xenografts in
ovariectomized mice [107]. Combination of linsitinib
and the ER antagonist fulvestrant is more effective to in-
hibit hormone-independent breast cancer growth than
the single agent [108]. Of note, treatment with the neu-
tralizing IGF-IR monoclonal antibody is incapable of
overcoming resistance to hormone deprivation or anties-
trogen therapy, due to the compensation by InsR [107].
Given that ErbB contributes to IGF-IR/InsR and ER an-
tagonist resistance, co-targeting ErbB, IGF-IR/InsR, and
ER may achieve maximal anti-cancer effect on ER+
breast cancer [110].
Androgens and the androgen receptor have critical

roles in prostate cancer development and progression.
Androgen deprivation therapy is a conventional treat-
ment for advanced prostate cancer. However, most pros-
tate cancers eventually become resistant to androgen
deprivation and progress to castration-resistant disease.
IGF2 mRNA expression is increased in prostate cancer
during progression to castration-resistant disease [111].
Moreover, androgen synthesis is upregulated by IGF2
that increases the expression of steroidogenic enzymes
including steroid acute regulatory protein, cytochrome
p450 family member 17A1, aldo-keto reductase family
member 1C3, and hydroxysteroid dehydrogenase 17B3
[111, 112]. The intratumoral androgen synthesis may
help prostate cancer adapt to castration and progress to
castration resistance [113]. Combination of the anti-IGF-
IR Ab ganitumab and castration potently inhibits pros-
tate cancer in animal model [113]. In addition, the an-
drogen synthesis inhibitor abiraterone is a treatment for
metastatic castration-resistant prostate cancer. IGF-IR
phosphorylation is elevated in prostate cancer cells and
residual resistant tumors after treatment with abirater-
one [114]. Accordingly, IGF-IR inhibition can enhance
the efficacy of castration and abiraterone on prostate
cancer [114, 115].

Molecularly targeted therapy
As a receptor tyrosine kinase, IGF-IR cross-talks with
other RTKs such as EGFR, ErbB2, ErbB3, and MET.
These RTKs share some common nodes among the sig-
nal transduction pathways. Inhibiting one of these RTKs
may trigger system rewiring that allows other RTKs to
compensate it. While EGFR family members can com-
pensate IGF-IR inhibition and confer resistance to IGF-
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IR-targeted agents, IGF-IR can confer resistance to
EGFR/ErbB2/ErbB3-targeted therapies as well. For ex-
ample, IGF-IR and ErbB3 were significantly upregulated
in ovarian cancer cells resistant to the anti-ErbB2 mAb
trastuzumab [116]. Upon treating mucinous lung adeno-
carcinoma with the EGFR inhibitor gefitinib, the EGFR
ligand amphiregulin promotes the binding of IGF-IR to
importin-β1 and triggers nuclear localization of IGF-IR,
which in turn prevents the induction of apoptosis by ge-
fitinib [117]. Concomitant inhibition of both EGFR and
InsR/IGF-IR is required to induce apoptosis in glioblast-
oma [118]. In addition, cholangiocarcinoma cells can
adapt to EGFR inhibition by upregulation of IGF2-IR/
IGF-IR axis [119]. Moreover, compensatory activation of
IGF-IR is involved in resistance to co-inhibition of EGFR
and MEK in KRAS-mutated colorectal cancer cells
[120]. The IGF2/IGF-IR signaling confers resistance to
anti-VEGF therapy, which can be circumvented by the
dual InsR/IGF-IR inhibitor BI885578 [121]. Lastly, IGF
signaling contributes to resistance to the multikinase in-
hibitor sorafenib in hepatocellular carcinoma [122].
PI3K/Akt/mTOR pathway is attractive target for can-

cer therapy. However, the clinical responses to PI3K in-
hibitors monotherapy are not as efficient as expected.
IGF1 and IGF2 are overexpressed in PIK3CA-mutant
breast cancer, which may activate IGF-IR signaling
[123]. On the other hand, PI3K inhibition may abrogate
the suppression of GSK3β and FOXO by Akt thereby
promoting IGF-IR expression [124, 125]. IGF-IR inhibi-
tor sensitizes PIK3CA-mutant breast cancer to PI3K in-
hibitors [123]. Moreover, IGF-IR phosphorylation is
elevated in breast cancer cells resistant to the p110α
isoform-selective inhibitor BYL719, making the BYL719-
resistant cells sensitive to IGF-IR inhibition [126]. Up-
regulation of IGF-IR is detected in ovarian cancer cell
that acquire resistance to the p110β isoform-selective in-
hibitor taselisib and in PI3K-δ inhibitor idelalisib-
resistant chronic lymphocytic leukemia [125, 127]. In-
hibition of IGF-IR overcomes resistance to taselisib and
idelalisib in ovarian cancer and chronic lymphocytic
leukemia [125–127]. Besides, IGF-IR confers resistance
to mTOR inhibitors [128, 129]. Concurrent inhibition of
both IGF-IR and mTOR more effectively suppresses
tumorigenesis.
The resistance to MAPK, CDK, and ALK inhibitors

also involves IGF-IR. BRAF, MEK, and Erk are import-
ant targets for treating BRAF-mutant melanoma and
other cancers. Upregulation of IGF-IR is detected in
melanoma that acquires resistance to the Erk1/2 inhibi-
tor SCH772984, the BRAF inhibitor vemurafenib, and
the MEK inhibitor trametinib [130]. Stimulation of the
MEK5/Erk5 axis by IGF-IR bypasses the inhibition of
BRAF, MEK1/2, and Erk1/2 [130]. In addition, upregula-
tion of IGFBP2 expression may promote IGF-IR/Akt

activation thereby conferring resistance to BRAF and
MEK inhibitors [131]. Combination of IGF-IR and RAF/
MEK/Erk inhibitors may improve the efficacy in cancer
therapy. Moreover, IGF-IR activation is a mechanism
underpinning the resistance to CDK4/6 inhibitor in
Ewing sarcoma [132]. Combined treatment with CDK4/
6 and IGF-IR inhibitors synergistically inhibits Ewing
sarcoma [132]. Besides, selective anaplastic lymphoma
kinase (ALK) inhibitors is a first-line therapy for nucleo-
phosmin (NPM)-ALK-positive T cell lymphoma and
echinoderm microtubule-associated protein like 4
(EML4)-ALK-positive non-small cell lung cancer
(NSCLC) [133, 134]. IGF-IR physically interacts with
NPM-ALK and enhances its phosphorylation/activation
[19, 134]. Increased expression or activation of IGF-IR is
detected in some cancer cell lines resistant to ALK in-
hibitors [133, 135]. Concurrent inhibition of both IGF-
IR and ALK can combat ALK inhibitors resistance [133,
135].
Epigenetic dysregulation has emerged as one of the

transcriptional vulnerabilities in human cancer. As coac-
tivators that connect acetylated transcription factors and
histones to the activation of RNA polymerase II, the bro-
modomain and extra-terminal domain (BET) family pro-
teins preferentially promotes the transcription of
oncogenes such as Myc, HER3, MET, and IGF-IR [136–
138]. In addition, BET proteins enhance EWS-FLI1 ac-
tivities in Ewing sarcoma. Therefore, BET inhibitors hold
promise in treating cancer. However, activation of IGF-
IR/Akt pathway compromises the efficacy of BET inhibi-
tors in Ewing sarcoma. Combined treatment with BET
and IGF-IR pathway inhibitors achieves potent and dur-
able response in preclinical models [139]. Furthermore,
the enhancer of zeste homolog (EZH2) is a histone
methyltransferase that function as a transcriptional re-
pressor. EZH2 mutation or overexpression is detected in
solid tumors and leukemia, and correlated with cancer
metastasis [140–142]. Hence, EZH2 inhibitors are emer-
ging anti-cancer agents. However, activation of IGF-IR
may confer resistance to EZH2 inhibitors in diffuse large
B cell lymphoma [143].

Clinical testing of IGF-IR-targeted agents
The identification of IGF-IR as an important cancer-
promoting protein has stimulated the development of
many IGF-IR-targeted agents, including anti-IGF-IR
mAbs and small-molecule inhibitors. Given the promis-
ing anti-cancer effects of IGF-IR-targeted agents in pre-
clinical models, clinical trials have been initiated to
evaluate the efficacy of anti-IGF-IR mAbs (Table 1)
[144–151]. However, anti-IGF-IR mAbs monotherapy is
largely ineffective in unselected cancer patients. Some
clinical trials suggest that IGF-IR inhibition may be ef-
fective only in selective cancer patients [152, 153]. A
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Table 1 Clinical evaluation of anti-IGF-IR or anti-IGF1/2 mAbs in cancer patients

Drug Combination Cancer type Phase Participants Response Ref. or trial ID

Ganitumab None Ewing sarcoma; desmoplastic small
round cell tumors

2 38 PR, 16%; SD > 24 weeks: 49%. [144]
NCT00563680

Ganitumab Doxorubicin,
etoposide or
radiotherapy

Metastatic Ewing sarcoma 3 330 This trial is still ongoing. NCT02306161

Ganitumab Palbciclib
(CDK4/6
inhibitor)

Ewing sarcoma 2 18 This trial is still ongoing. NCT04129151

Ganitumab Dasatinib Rhabdomyosarcoma 1/2 40 This trial is still ongoing. NCT03041701

Ganitumab Panitumumab Colorectal cancer 1/2 142 ORR, 22%. No improvement, compared
to panitumumab plus placebo.

[145]
NCT00788957

Ganitumab None Recurrent platinum-sensitive ovarian
cancer

2 61 Objective response rate, 1.6% (95%CI 0-
8.8%); CBR, 1.7% (95% CI, 0-8.9%); PFS,
1.94 months (95% CI 1.45-2.1 months).

NCT00719212

Ganitumab Gemcitabine Metastatic pancreatic cancer 3 640 No improvement on OS. [146]
NCT01231347

Ganitumab Metformin Breast cancer 2 Estimated
enrollment
of 4000

This trial is still ongoing. NCT01042379

Figitumumab None Ewing sarcoma 2 107 PR, 14.02%; SD, 23.36%. [147]
NCT00560235

Figitumumab None Ewing sarcoma 1 16 CR, 6.25%; PR, 6.25%; SD, 37.5%. [148]
NCT00474760

Cixutumumab None Refractory solid tumors 2 36 PR, 8.33%; SD, 13.89%. [149]

Cixutumumab None Previously treated advanced or
metastatic rhabdomyosarcoma,
leiomyosarcoma, adipocytic sarcoma,
synovial sarcoma or Ewing family of
tumors

2 113 12-week PFR, 12% for
rhabdomyosarcoma, 14% for
leiomyosarcoma, 32% for adipocytic
sarcoma, 18% for synovial sarcoma and
11% for Ewing family of tumors.
Median PFS, 6.1 weeks for
rhabdomyosarcoma, 6.0 weeks for
leiomyosarcoma, 12.1 weeks for
adipocytic sarcoma, 6.4 weeks for
synovial sarcoma and 6.4 weeks for
Ewing family of tumors.

[150]

Cixutumumab None Metastatic melanoma of the eye 2 18 CR, 0; PR, 0; SD, 50%; PFS, 2.21 weeks
(95% CI 0–23.2); OS, 59.71 weeks (95% CI
0–109.6)

NCT01413191

Cixutumumab Temsirolimus Bone and soft tissue sarcoma 2 159 PR, 2.52%; SD, 61.64%; PD,35.85% NCT01016015

MK-0646 Gemcitabine,
Erlotinib

Advanced pancreatic carcinoma 1/2 45 PFS, 1.8 months (95% CI 1.8–9.7) for MK
plus gemcitabine (arm A), 1.8 months
(95% CI 1.7–5.5) for MK plus
gemcitabine and erlotinib (arm B), and
1.9 months (95% CI 1.8–5.4) for
gemcitabine and erlotinib (arm C); OS,
10.4 months (95% CI 3.9–18.9) for arm A,
7.1 months (95% CI 5.2–20.0) for arm B,
and 5.7 months (95% CI 4.0–9.5) for arm
C.

[151]
NCT00769483

Xentuzumab Everolimus,
exemestane

Breast cancer 2 100 This trial is still ongoing. NCT03659136

Xentuzumab Everolimus,
exemestane

Breast cancer 1b/2 164 This trial is still active. NCT02123823

Xentuzumab None Advanced solid tumors 1 21 This trial is still active. NCT02145741

CR complete response, CBR clinical benefit rate, ORR overall response rate, OS overall survival, PFR progression-free survival rate. PFS progression-free survival, PR
partial response, SD stable disease, Trial ID registered number at ClinicalTrials.gov
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meta-analysis of 311 Ewing sarcoma patients in multiple
trials demonstrates that treatment with anti-IGF-IR
mAb figitumumab, R1507, or ganitumab results in
complete response in 0.7% cases, partial response in 11%
cases, and stable diseases in 21% cases [154]. Clinical
evaluation of ganitumab remains active in patients with
Ewing sarcoma, rhabdomyosarcoma and breast cancer.
In fact, ganitumab has been approved as orphan drug in
Ewing sarcoma by the US Food and Drug Agency. It is
being tested to combine ganitumab with Src inhibitor
dasatinib in patients with embryonal and alveolar
rhabdomyosarcoma, and with chemotherapy, radiother-
apy or CDK4/6 inhibitor in Ewing sarcoma (Table 1). In
addition, combination of ganitumab with metformin is
being tested in an ongoing I-SPY2 trial, which aims to
identify most effective agents to treat various types of
breast cancer and learn about the predictors of treat-
ment response [155]. Moreover, a randomized clinical
trial in patients with advanced pancreatic carcinoma
demonstrates that combination of the anti-IGF-IR mAb
MK-0646 with gemcitabine is tolerable and associated
with improvement in overall survival but not
progression-free survival as compared with gemcitabine
plus erlotinib [151]. As an alternative strategy to target
IGF signaling, results of phase 1 clinical trials of the dual
IGF1/2-neutralizing antibodies have been reported, while
no results of phase 2/3 trials in cancer therapy have been
reported [156, 157]. Currently, the dual IGF1/2-neutral-
izing antibody xentuzumab in combination with everoli-
mus and exemestane is subject to clinical trial in ER+/
ErbB2- breast cancer. Combination of everolimus with

exemestrane is an effective treatment for ER+/ErbB2-

breast cancer. It remains to know whether xentuzumab
may further improve the efficacy of everolimus and
exemestrane.
Except for anti-IGF-IR or anti-IGF1/2 mAbs, many

small-molecule IGF-IR inhibitors have been developed
[158–163]. The most extensively evaluated IGF-IR in-
hibitor is linsitinib (OSI-906), a dual IGF-IR/InsR inhibi-
tor (Table 2). A phase 2 trial in recurrent small cell lung
cancer patients shows that linsitinib has no clinical activ-
ity in these patients, although it is a safe and tolerable
treatment [159]. The response to linsitinib is inferior to
the topoisomerase inhibitor topotecan, with median
progression-free survival of 3.0 (95% CI 1.5–3.6) and 1.2
(95% CI 1.1–1.4) months for topotecan and linsitinib, re-
spectively [159]. Besides, linsitinib fails to show activity
in patients with metastatic prostate cancer, locally ad-
vanced or metastatic adrenocortical carcinoma [158,
161]. Combination of linsitinib with everolimus shows
no objective response in patients with refractory meta-
static colorectal cancer [160]. In addition, combination
of linsitinib with erlotinib did not improve the
progression-free survival and overall survival in patients
with advanced non-small cell lung cancer, compared to
erlotinib alone (Table 2). According to the recently re-
ported results of a phase 2 trial in patients with gastro-
intestinal stromal tumors, linsitinib achieved no
objective responses in these patients, although the rate
of 9-month clinical benefit, progression-free survival,
and overall survival at 9 months was 40%, 52% and 80%,
respectively [162]. Despite these disappointing results,

Table 2 Clinical evaluation of small-molecule IGF-IR inhibitors in cancer patients

Drug Combination Cancer type Phase Participants Response Ref. or trial ID

Linsitinib
(OSI-906)

None Locally advanced or
metastatic
adrenocortical
carcinoma

3 139 OS, 323 days (95% CI 256–507) for linsitinib, 356 days (95%
CI 249–556) for placebo

[158]
NCT00924989

Linsitinib None Recurrent small cell lung
cancer

2 44 SD, 3.45%; PFS, 1.2 months (95% CI 1.1–1.4); OS, 3.4 months
(95% CI 1.8–5.6). The response to linsitinib is inferior to
topotecan.

[159]
NCT01533181

Linsitinib Everolimus Refractory metastatic
colorectal cancer

1 18 No objective responses to treatment. PFS, 8 weeks (95% CI
7–9); OS, 30.6 weeks (95% CI 16.7–32.1)

[160]
NCT01154335

Linsitinib None Metastatic prostate
cancer

2 17 PSA partial response, 5.88%; PR, 10%; SD,80%; PD, 10%; PFS,
4.7 months (95% CI 3–6.7)

[161]
NCT01533246

Linsitinib Erlotinib Advanced non-small cell
lung cancer

2 88 Combination of linsitinib with erlotinib resulted in an
increase in the incidence of renal and hepatic toxicities
compared to erlotinib alone.
Combination of linsitinib with erlotinib did not improve the
PFS and OS compared to erlotinib alone.

NCT01221077

Linsitinib None Gastrointestinal stromal
tumors

2 20 CR + PR + SD (≥ 9 months), 40%; PFS rate at 9 months, 52%;
OS rate at 9 months, 80%

[162]
NCT01560260

AXL1717 None Recurrent or progressive
malignant astrocytoma

1 9 Tumor response rate, 44%; SD for 12 months, 22.2% [163]
NCT00562380

CR complete response; OS overall survival, PD progressive disease, PFS progression-free survival, PR partial response, SD stable disease, Trial ID registered number
at ClinicalTrials.gov
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an early phase study suggests that AXL1717 may pro-
duce prolonged stable disease and survival of patients
with relapsed malignant astrocytomas [163].

IGF-IR inhibitors resistance
The high failure rate of anti-IGF-IR mAb/inhibitor
monotherapy or combinational therapy in clinical trials
promotes the investigators to inspect the mechanisms
underlying resistance to IGF-IR inhibition in cancer and
revisit the strategies to target IGF-IR pathway. While
mutations in the drug target are involved in the resist-
ance to many molecularly targeted agents [164], muta-
tions in IGF-IR are barely detected in cancer cells
resistant to anti-IGF-IR agents. There are multiple alter-
native signaling pathways to relay IGF/insulin signaling
after IGF-IR is inhibited (Fig. 3).

Compensatory secretion of growth hormone/insulin and
activation of InsR
While growth hormone stimulates IGF1 synthesis, acti-
vation of IGF-IR/InsR by IGF feeds back to inhibit
growth hormone synthesis [27]. Therefore, IGF-IR inhib-
ition may paradoxically lead to increased production of
IGF1/2 and insulin. Both IGF-IR and InsR-A are tumori-
genic and responsive to IGF/insulin [165, 166]. Upon
the prevention of IGF-IR ligand-binding and activation
by anti-IGF-IR mAb, InsR may replace IGF-IR to bind

IGF2 and insulin, leading to a compensatory increase in
InsR phosphorylation/activation and sustained IGF/insu-
lin signaling. Preclinical study demonstrates that overex-
pression of InsR-A in tumor cells confers complete
resistance to cixutumumab, whereas InsR-B overexpres-
sion induces a partial resistance [167]. High InsR/IGF-IR
ratios are associated with resistance to IGF-IR inhibition
in human breast cancer cells [168]. In a pancreatic neu-
roendocrine cancer model, InsR knockout tumors are
suppressed by anti-IGF-IR therapy, whereas InsR-
expressed tumors are resistant to this therapy [168].
Among various types of human cancer, Ewing sarcoma
is a promising indication for IGF-IR-targeted therapy,
since some Ewing sarcomas are highly sensitive to IGF-
IR inhibition. InsR-A confers both intrinsic and acquired
resistance to anti-IGF-IR therapies as well [169]. Simul-
taneous inhibition of IGF-IR and InsR may provide su-
perior antitumor efficacy compared with targeting IGF-
IR alone. These studies lay a foundation for developing
dual IGF-IR/InsR inhibitors such as BMS-754807 and
linsitinib (OSI-906).

Alternative integrin signaling
IGF not only binds to IGF-IR/InsR, but also directly
binds to other receptors such as integrin, a family of ad-
hesive receptors that promotes cancer stemness and cell
survival to adapt to environmental and therapeutic

Fig. 3 The mechanisms for resistance to anti-IGF-IR agents. RTKs, receptor tyrosine kinases
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stresses [170, 171]. When IGF1 binding to IGF-IR/InsR
is blocked by the anti-IGF-IR mAb cixutumumab, IGF1
binding to integrin αvβ3 increases, resulting in activation
of αvβ3 and its downstream effectors Src, FAK, and
PI3K, which confers cixutumumab resistance [172]. In-
hibition of integrin β3 or Src can improve the anti-
cancer activity of cixutumumab in cixutumumab-
resistant cell lines and patient-derived tumors [172]. Ac-
tually, a phase 1/2 clinical trial of combining ganitumab
with Src inhibitor dasatinib in patients with embryonal
and alveolar rhabdomyosarcoma is ongoing (Table 1). In
addition, treatment of rhabdomyosarcoma cells with
anti-IGF-IR mAb or IGF-IR/IR kinase inhibitor leads to
increased activation of YES/Src family tyrosine kinase
(SFK) [173]. Combined treatment with anti-IGF-IR
agents and SFK inhibitors enhances antitumor activity
[173].

Alternative receptor tyrosine kinases activation
The receptor tyrosine kinase family composes of many
collaborative members such as EGFR, ErbB2/3/4, MET,
Axl, PDGF receptor (PDGFR), and IGF-IR, which share
some effectors including PI3K/Akt/mTOR, Ras/Raf/
Mek/Erk, Src, and JAK/STAT. Inhibition of one member
of RTKs usually triggers the compensation by other
members. While active IGF-IR can compensate EGFR
inhibition, activation of the EGFR pathway also contrib-
utes to anti-IGF-IR drugs resistance in cancer [174, 175].
Of note, the adaptor protein IRS1 not only binds to IGF-
IR, but also interacts with EGFR/ErbB3. Inhibition of
IGF-IR may enhance ErbB3-IRS1 interaction [176].
Moreover, ErbB2 can form heterodimers with IGF-IR in
IGF-IR inhibitor-resistant cancer cells, leading to the in-
duction of ErbB2 phosphorylation by IGF2 [177]. Similar
to ErbB2, the RON receptor tyrosine kinase interacts
with IGF-IR and confers resistance to IGF-IR inhibitor
in childhood sarcoma [178]. In addition, PDGFRα/β
amplification, overexpression, and constitutive activation
contribute to anti-IGF-IR mAb resistance [179, 180].
Therefore, the activation of PI3K/Akt, Ras, and STAT3
by other RTKs may confer resistance to IGF-IR inhibi-
tors. In fact, upregulation of IRS1, PI3K, STAT3, and
p38 MAPK is involved in resistance to dalotuzumab and
linsitinib [128]. The bispecific antibody targeting both
IGF-IR and EGFR holds promise in treating cancer,
since it inhibits tumor growth and metastasis in preclin-
ical studies [181]. As aforementioned, EMT is tightly
linked to cancer stemness, metastasis, and drug resist-
ance. Tumor cells with mesenchymal phenotype are re-
sistant to the dual IGF-IR/InsR inhibitor linsitinib, due
to the decreased expression of IGF2 and InsR, and phos-
phorylation of IGF-IR/InsR in these cells [182]. Although
IGF-IR promotes EMT, it does not necessarily mean that

inhibition of IGF-IR is able to reverse this phenotype,
due to the compensation by other RTKs.

Tumor microenvironment remodeling
Tumor cells reside in a highly heterogeneous niche com-
posing of extracellular matrix and stromal cells such as
fibroblasts, macrophages, and endothelial cells. Both fi-
broblasts and macrophages can be friends or foes of
tumor cells, depending on their subtypes that usually co-
exist in tumors to different extent [183]. Compared to
the M1 macrophages that are pro-inflammatory and
tumor suppressive, the anti-inflammatory and pro-
tumor M2 macrophages are more abundant in tumors
[184]. A rich tumor microenvironment supports tumor
cells proliferation, survival, migration and invasion. On
the other hand, tumor cells also secret cytokines to re-
cruit and educate macrophages into M2 type, and stimu-
late stromal cells proliferation [185]. The tumor
microenvironment is involved in acquired drug resist-
ance that eventually impedes cancer therapy [186].
Tumor-associated macrophages and fibroblasts may se-
crete IGF to activate IGF-IR in cancer cells thereby pro-
moting chemoresistance and radioresistance [187, 188].
In addition, dendritic cells in the tumor microenviron-
ment can secret IGF and support T-ALL growth by acti-
vating IGF-IR [189]. Given that IGF can bypass IGF-IR
to activate alternative signaling pathways, the stroma-
derived IGF may contribute to resistance to anti-IGF-IR
agents. On the other hand, treatment of cancer cells
with the anti-IGF-IR mAb cixutumumab paradoxically
triggers cancer cells to produce IGF2, which in turn re-
cruits macrophages and fibroblasts to promote angio-
genesis and metastasis thereby hampering the efficacy of
cixutumumab [190]. Together, it is clear that anti-IGF-
IR agents may paradoxically stimulate tumor micro-
environment remodeling to boost IGF signaling through
alternative pathways, leading to cancer resistance to
anti-IGF-IR agents.

Conclusion and perspectives
Mounting evidence demonstrates that receptor tyrosine
kinases play important roles in carcinogenesis and tumor
progression. Even with the remarkably good response to
EGFR/ErbB2 inhibitors in some types of human cancer,
the majority of patients eventually develop drug resist-
ance, in which IGF-IR is also involved. Although it is
clear that IGF-IR confers resistance to molecularly tar-
geted therapy, chemotherapy and radiotherapy, the com-
plex IGF biology is a great challenge for targeting this
pathway in cancer. Either intrinsic or adaptive resistance
to anti-IGF-IR agents is a troublesome roadblock. The
high degree of tumor heterogeneity and adaptive cellular
signaling plasticity, selection pressure, and clonal evolu-
tion substantially contribute to the resistance to

Hua et al. Journal of Hematology & Oncology           (2020) 13:64 Page 11 of 17



molecularly targeted therapy including anti-IGF/IGF-IR
agents [191].
The efficacy of molecularly targeted therapeutics may

be highly selective in cancer patients. However, most of
the clinical trials of anti-IGF-IR agents are conducted in
unselected cancer patients. There are responders and
non-responders in multiple clinical trials of IGF-IR in-
hibitors. While identification of the different molecular
signatures and genotypes among responders and non-
responders may help develop predictive biomarkers to
enable patient stratification in clinical setting, the mo-
lecular and genetic heterogeneity in many tumors is still
a big challenge for successful cancer therapy [182].
Nevertheless, identification of potential predictive bio-
markers is an urgent task to advance the anti-IGF-IR
therapeutics. The use of integrative proteomic-genomic
techniques to analyze the samples of patients may be a
reliable strategy. Preclinical studies have suggested po-
tential biomarkers such as circulating free IGF levels,
mutations of p53, BRCA1, KRAS and BRAF, IRS2 copy
number gain, InsR/IGF-IR overexpression, InsR/IGF-IR
pathway activation, PTEN loss, CD24, mesenchymal
markers, β-catenin/TCF activity, FUS-DDIT3 fusion, and
ERG [192–201]. Another study indicates that exclusive
nuclear localization of IGF-IR is associated with better
response to anti-IGF-IR antibody in patients with sarco-
mas [79]. These biomarkers should be evaluated in the
clinic. Stratification of anti-IGF-IR agent responders ac-
cording to molecular subtype remains to be a future
direction.
Learning from the lessons of clinical trials, we need to

adjust the strategy to target the complex IGF/IGF-IR sig-
naling. Given the collaboration and compensation
among different signaling pathways, IGF-IR and InsR
should not be the sole targets to be blocked. IGF-IR-
cotargeted multikinase inhibitors are preferable to treat
cancer. The multikinase (FAK/IGF-IR) inhibitor CT-707
has anti-cancer effect in preclinical models and is subject
to phase I clinical trial (clinicaltrials.gov, NCT02695550)
[49]. In addition, the 4-aminopyrazolo[3,4-d]pyrimidine-
based dual IGF-IR/Src inhibitor LL28 inhibits tumor
growth in preclinical models [202]. We look forward to
evaluating the efficacy of these multikinase inhibitors in
clinical trials. Recently, the FDA-approved ALK inhibitor
ceritinib has been identified as a multikinase inhibitor
targeting IGF-IR/InsR, FAK, and RSK1/2 as well [203].
A recent study also demonstrates that ceritinib inhibits
InsR phosphorylation and induces tumor regression in a
pediatric patient with an unclassified brain tumor [204].
Another study suggests that IGF-IR is as an attractive
target for treating patients with BCOR-alternated high-
grade neuroepithelial tumor of the central nervous sys-
tem [205]. It is worthwhile to ensure whether ceritinib
can be repurposed to treat IGF-IR-activated cancer. In

addition, the combined treatment with IGF-IR/InsR and
CDK inhibitors warrants clinical evaluation.
Rather than targeting IGF-IR/InsR themselves, an al-

ternative strategy would be inhibition of the master reg-
ulators of RTKs or downstream signaling hubs such as
IRS1/2 [205–208]. Moreover, IGF-IR has kinase-
independent functions, such as nuclear translocation
and regulation of gene expression, and interaction with
SGLT1 to maintain intracellular glucose levels [209].
These kinase-independent functions of IGF-IR are an-
other challenge to treat cancer with anti-IGF-IR agents.
Inhibition of the kinase activity of IGF-IR may be not
enough to eliminate its pro-tumor effects. Targeting
InsR/IGF-IR expression or degradation should be con-
sidered as another strategy awaiting further exploration
[210, 211]. Given that inhibition of IGF-IR may paradox-
ically lead to upregulation of IGF1/2 expression, and
IGF1/2 have IGF-IR/InsR-independent functions, it war-
rants to investigate whether co-targeting IGF and IGF-
IR/InsR-A may achieve objective responses.
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