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Abstract

Tissue factor (TF) is the primary initiator of the coagulation cascade, though its effects extend well beyond hemostasis. When
TF binds to Factor VII, the resulting TF:FVIIa complex can proteolytically cleave transmembrane G protein-coupled protease-
activated receptors (PARs). In addition to activating PARs, TF:FVIIa complex can also activate receptor tyrosine kinases (RTKs)
and integrins. These signaling pathways are utilized by tumors to increase cell proliferation, angiogenesis, metastasis, and
cancer stem-like cell maintenance. Herein, we review in detail the regulation of TF expression, mechanisms of TF signaling,
their pathological consequences, and how it is being targeted in experimental cancer therapeutics.
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Introduction
Tissue factor (TF), also named Factor III, CD142, or
thromboplastin, is a transmembrane glycoprotein that
participates in the rate-limiting step of the coagulation
cascade. It derives its name from the ability of tissue ex-
tracts from platelets, leukocytes, and organs to clot
blood. Morawitz is credited with developing the “clas-
sical” theory of blood coagulation in 1905, wherein pro-
thrombin is converted into thrombin when incubated
with tissue extracts and calcium [1]. He postulated that
components for blood clotting are always present in cir-
culating blood, except for TF (then named thromboki-
nase), which must be released from tissues [2]. Thirty
years later, Howell used the term “Tissue Factor” to de-
scribe an extract from tissues that promotes coagulation
[3]. TF is constitutively expressed in the subendothelial
spaces and adventitia, where it acts as a hemostatic en-
velope to halt bleeding when it encounters calcium and
coagulation factors. TF is abundantly expressed in highly
vascularized organs, like the brain, lungs, placenta, heart,
and kidneys [4, 5]. During vascular injury, TF is exposed

to the blood, where it functions as a cofactor for the cir-
culating zymogen factor VII (FVII). This TF:FVIIa com-
plex can then bind and activate either factor IX (FIX) or
factor X (FX), triggering a cascade that generates fibrin
and activates platelets, resulting in a hemostatic plug at
the site of injury.
TF is highly expressed in many types of cancer [6],

and cancer cells can shed TF-active microvesicles (TF-
MVs) into the circulation [7]. Not surprisingly, many
cancers cause venous thromboembolism (VTE), with
high levels of flTF-MVs correlating with increased VTE
risk [8]. As a group, cancer patients have an ~ 6-fold in-
creased risk of VTE compared to the general population
[9–11]. This paraneoplastic event is called “Trousseau
Syndrome,” named after the French physician Armand
Trousseau, who was among the first to describe this in
the 19th century in his cancer patients [12]. (He also de-
veloped VTE himself in 1867 and correctly diagnosed
himself with fatal gastric cancer.)
It is now clear, however, that TF has other major roles

beyond hemostasis and thrombosis. Ancient organisms
like the horseshoe crab (Limulus polyphemus) use pro-
teins similar to TF as an immune response to entrap
pathogens [13]. Indeed, many components of the mam-
malian coagulation system share similarities with
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inflammatory molecules of the immune system, and that,
in addition to coagulation, they play important roles in
immunity and wound healing [13]. Cancers can use
these TF-activated pathways to enhance cell prolifera-
tion, cell survival, angiogenesis, metastasis, and cancer
stem-like cell (CSC) maintenance. In fact, because of
these similarities to wound healing, cancer has been
called “the wound that does not heal” [14].
Herein, we present a general overview of the mecha-

nisms controlling TF expression in cancer, discuss TF-
mediated signaling pathways, highlight how TF controls
cancer progression, and review TF-targeted therapeutic
strategies being tested to improve cancer management.

TF structure and isoforms
TF is encoded by F3, a 12.5 kb gene located on chromo-
some 1p21.3. This gene contains 6 exons that can pro-
duce two different proteins. One protein, the product of
all 6 exons, is full-length TF (flTF). The other is an alter-
natively spliced isoform, termed asTF (Fig. 1). These two
proteins have an apparent molecular mass of ~ 47 kDa
and ~ 26 kDa, respectively, after sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) [15, 16].
Human flTF is a 263 amino acid transmembrane

glycoprotein that is comprised of an extracellular

domain (residues 1-219), a transmembrane domain (resi-
dues 220-242), and an intracellular C-terminal domain
(residues 243-263). This portion of TF is structurally
homologous to class II cytokine receptors [17, 18]. The
extracellular portion of flTF contains two fibronectin
type III domains and two disulfide bridges at Cys49–
Cys57 and Cys186–Cys209 [19]. Although the extracellular
domain of TF is structurally similar to the class II cyto-
kine receptors, it does not bind to any cytokines. Instead,
it binds to coagulation factor VII (FVII) zymogen. The
cytoplasmic C-terminal domain of flTF does not contain
any significant homology with other proteins, and it
lacks adaptor motifs usually found in the cytokine recep-
tor superfamily that bind with Janus kinase-signal trans-
ducer and activator of transcription (JAK-STAT)
effectors. Instead, TF’s cytoplasmic C-terminal domain
interacts with a variety of scaffolding and adapter pro-
teins that influence cytoskeletal structure and cell
signaling.
In 2003, Bogdanov et al. first described asTF, in which

exon 5 is spliced out and exons 4 and 6 are fused to-
gether. This causes a shift in the open reading frame that
produces a unique 40 amino acid C-terminus [15]. The
unique C-terminus of asTF lacks a transmembrane do-
main and is secreted. Although asTF retains a Lys165 and

Fig. 1 Full length TF (flTF) and alternatively spliced TF (asTF) primary protein structure. flTF is an integral transmembrane protein, whereas asTF
lacks a transmembrane and can be secreted. Both isoforms contain the same first 166 residues, which share an N-terminal β-sandwich and the
charged lysine doublet (purple circles) necessary for FVII/FVIIa binding. Disulfide bridges are shown with green circles. Glycosylation has been
reported to occur on asparagine at sites N11, N124, and N137 (red circles). flTF contains two serine residues in the C-terminus that can undergo
phosphorylation (yellow circles). Palmitoylation of C243 is thought to orientate flTF in the plasma membrane. Through alternative splicing of the
gene that encodes for TF, F3, a frame shift occurs and generates a unique C-terminus, resulting in the formation of asTF. asTF’s unique C-terminus
contains a cluster of five positively charged residues (+) that allow asTF to interact with cell membranes
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Lys166 doublet, which is required for TF:FVIIa complex
formation, its procoagulant activity is questionable, as it
lacks a complete binding site for coagulation factors IX
and X [15]. Indeed, asTF has minimal to no procoagu-
lant activity when compared to flTF in vitro [20–22].
However, these studies were primarily conducted in flTF
deficient conditions, and asTF may indirectly trigger co-
agulation [23, 24]. Even so, Ünlü et al. observed that
asTF does not affect receptor-ligand kinetics of flTF on
endothelial cells [21]. Because of asTF’s positively
charged C-terminus, it likely requires a negatively
charged phospholipid membrane to promote coagula-
tion, which is often found in cancer.
In addition to alternative splicing, TF can undergo

post-translational modifications. The extracellular do-
main has three N-linked glycosylation sites (Asn11,
Asn124, and Asn137), and TF glycosylation may affect the
charge of TF and its affinity to FVII [25, 26]. It has
widely been assumed that recombinant TF and naturally
occurring TF are identical, but Krudysz-Amblo et al.
showed that TF derived from the placenta was 5-fold
more procoagulant than recombinant TF and that this
difference was due to increased glycosylation of placental
TF [27]. Phosphorylation is another post-translational
modification that affects TF signaling, discussed below.
The C-terminus of TF contains two phosphorylation
sites (Ser253 and Ser258) [28]. TF can also undergo palmi-
toylation, the covalent attachment of fatty acid palmitate
to a cysteine (S-palmitoylation) or, less frequently, to
threonine or serine (O-palmitoylation) [29]. Palmitoyla-
tion controls a wide variety of cellular functions, includ-
ing protein subcellular trafficking, protein stability, and
protein-protein interactions [29]. The intracellular do-
main of TF has one S-palmitoylation site (Cys245) [30],
which suppresses phosphorylation of Ser258 in the TF C-
terminus [31]. However, the extent of TF palmitoylation,
and whether it influences plasma membrane microdo-
main trafficking, is still unclear.

Noncoagulant signaling by tissue factor
Although TF is classified as a cytokine class II recep-
tor, its signaling mechanism differs greatly from that
family of receptors. TF can trigger both proteolytic
and non-proteolytic cell signaling, and both TF iso-
forms have unique mechanisms of action (Fig. 2). On
tumor cells, flTF binds the inactive zymogen, FVII,
forming a flTF:FVII complex in which FVII is rapidly
converted into an active protease, FVIIa. The flTF:
FVIIa complex then binds and activates FX, creating
a ternary flTF:FVIIa:FXa complex. This complex
cleaves several protease-activated receptors (PARs),
which belong to the seven-transmembrane G protein-
coupled receptor family whose members are
irreversibly activated by proteolytic cleavage of the N-

terminus. Cleavage of the N-terminus on PAR re-
leases its tethered ligand, allowing it to fold back on
itself and bind to the extracellular portion of loop 2,
in turn altering the binding affinity of PAR to intra-
cellular heterotrimeric G proteins. These G proteins
are composed of three unique subunits, α, β, and γ,
and act as molecular switches inside cells to initiate a
remarkably diverse array of functions.
To date, the PAR group of receptors consists of PAR1,

PAR2, PAR3, and PAR4. TF activation of the coagulation
cascade generates thrombin, and PAR1 was first discov-
ered in 1991 as a receptor for thrombin on platelets
[32]. PAR1, PAR3, and PAR4 are all activated by throm-
bin; PAR2 is the only PAR that is not [33]. The flTF:
FVIIa:FXa complex can directly cleave both PAR1 and
PAR2, and flTF:FVIIa can cleave PAR2. Signaling by the
flTF:FVIIa:FXa complex is supported by the endothelial
protein C receptor (EPCR), enabling PAR signaling, and
is required for the induction of proinflammatory genes
[34, 35]. In contrast, flTF:FVIIa elicits MAPK signaling
through PAR2, not PAR1, and also promotes calcium
mobilization, activation of Src family kinases, and activa-
tion of other pathways like PI3K, JAK/STAT, and β-
catenin [36–43]. However, studies show that PARs often
exist in close proximity to each another and are capable
of forming homodimers and heterodimers [44]. Further-
more, cleaved PAR2 can transactivate PAR1, and vice
versa [44, 45]. Thus, both PAR1 and PAR2 signaling are
closely linked, and can potentially lead to each other’s
activation by proxy.
Once PARs are cleaved, they can transactivate nearby

membrane-bound receptor tyrosine kinases (RTKs) [46].
Such transactivation could occur via one of two mecha-
nisms: (i) ligand-independent recruitment of non-
tyrosine kinases; (ii) a “triple membrane passing signal”
mechanism wherein membrane-bound matrix metallo-
proteases are activated, leading to receptor ligand shed-
ding, in turn causing paracrine and/or autocrine RTK
activation [47]. flTF:FVIIa cleavage of PARs causes
transactivation of multiple RTKs, including EGFR,
PDGFRβ, and IGF-1R [48–51]. Because this generally
happens within minutes, and does not depend on se-
creted ligand, flTF:FVIIa transactivation of RTKs
through PARs is mostly via the former, ligand-
independent mechanism. In fact, flTF:FVIIa activation of
PAR2 leads to RTK phosphorylation via a ligand-
independent, Src-dependent intracellular pathway [48–
51]. This means that even when extracellular ligands for
RTKs are absent or when cells are in the presence of
extracellular RTK inhibitors, flTF:FVIIa may still activate
those RTKs through PAR2. Even though intracellular ac-
tivation of RTKs via flTF may confer resistance to RTK
small molecule inhibitors, anti-RTK antibodies are often
still clinically effective [52].
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A lot of TF’s non-coagulant effects are dependent on
integrins. These are heterodimeric transmembrane re-
ceptors that function as adhesion molecules for both
cell-cell and cell-extracellular matrix (ECM) interactions,
and mediate a variety of biological processes that include
survival, proliferation, stemness, and migration [53].
There are 24 integrins, each being composed of various
combinations of α and β subunits. Integrins can assume
three conformation states, including bent (inactive), ex-
tended (intermediate affinity), or extended with open
conformation (high affinity) [54]. flTF directly interacts
with α3, α6, and β1 integrin subunits [55, 56], and flTF:

FVIIa associates with β1 subunits in the active conform-
ation, thus inducing the internalization of the TF:FVIIa-
β1 integrin complex via GTPase Arf6 [57]. Although
PAR2 activation enhances the affinity of flTF:FVIIa to β1
integrins, blocking PAR2 activation is not sufficient to
prevent flTF:FVIIa binding to β1 integrins [56].
In addition to flTF:FVIIa cleaving PAR2, it also cleaves

receptors in the Eph RTK family [58]. The Eph RTK
family includes 14 members separated into nine EphA
and five EphB receptors, that govern cell proliferation,
differentiation, and mobility [59, 60]. flTF:FVIIa directly
cleaves both EphB2 and EphA2, independent of PAR2

Fig. 2 Coagulation independent mechanisms of TF-mediated signaling. a flTF:FVIIa can proteolytically cleave PAR2, resulting in the
phosphorylation of flTF’s cytoplasmic domain and the recruitment of ABP-280. flTF:FVIIa-mediated cleavage of PAR2 can also promote PAR1/PAR2
heterodimer signaling, when the cleaved tethered ligand binds to adjacent PARs. b flTF:FVIIa:FXa can proteolytically cleave both PAR1 and PAR2.
c Binding of flTF:FVIIa to integrins causes their conformation to switch to a high affinity state. d asTF can bind to integrins independent of FVII,
causing a conformation switch. e flTF:FVIIa induces transaction of RTKs in a PAR2- and Src-dependent manner. f flTF:FVIIa proteolytically cleaves
both EphB2 and EphA2, which then can signal through ephrins
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activation or the flTF:FVIIa:FXa ternary complex [58].
The consequences of this are the subject of ongoing
investigation.
The flTF cytoplasmic domain plays an especially im-

portant role in non-coagulant signaling. It serves as a
scaffold for molecules involved in adhesion, migration,
and cytoskeleton organization, such as actin-binding
protein-280 (ABP-280). TF localizes to lamellipodia,
which are created by cytoskeletal protein actin projec-
tions on the invasive edges of cells [61–63]. TF binding
of ABP-280 may also positively regulate its release via
flTF-MVs [64], resulting in paracrine signaling [65]. The
flTF cytoplasmic domain is phosphorylated at Ser253 by
protein kinase C (PKC) and at Ser258 by p38 MAPK
[28, 31, 36, 66]. Such phosphorylation promotes the
physical association of flTF with α3β1 integrins, thereby
enhancing cell migration on laminin 5 [55]. This flTF
cytoplasmic domain interacts with the PI3K regulatory
subunit p55 and is required for flTF-induced
interleukin-8 (IL-8) expression and resultant angiogen-
esis [57]. The cytoplasmic domain of flTF does not affect
the procoagulant activity of flTF, nor does it alter the
proteolytic activation of PAR2 by flTF:FVIIa [57, 67–69].
However, once the flTF cytoplasmic domain is phos-
phorylated, it inhibits PAR2-dependent angiogenesis [55,
70]. Interestingly, mice lacking the flTF cytoplasmic do-
main do not die in utero, unlike TF-deficient mice, and
flTF:FVIIa association with β1-integrin does not require
the cytoplasmic domain [57, 71].
Whereas flTF can either remain anchored within the

cell membrane or be secreted, asTF lacks the transmem-
brane domain and is only secreted. Although asTF is not
very pro-coagulant, it does have non-hemostatic func-
tions. For example, asTF is a powerful pro-angiogenic
molecule via non-proteolytic ligation of both α6β1 and
αVβ3 integrins, leading to increased FAK, PI3K/AKT,
and MAPK signaling [16, 72]. In contrast to flTF, asTF
can bind integrins without the help of FVII [16].

Regulation of tissue factor expression
TF is constitutively expressed on a wide variety of cells,
especially in the perivascular niche, where it surrounds
the abluminal side of the blood vessel, ensuring that clot
formation happens quickly once blood escapes the endo-
thelium [4, 73]. Endothelial cells that are normally in
contact with blood express very little TF at baseline,
though certain stimuli can trigger its upregulation, like
bacterial lipopolysaccharide [74, 75]. Several miRNAs,
including miR-181b, miR-19, miR-20a, miR-93/106b,
and miR-520 g, can bind to the F3 transcript and limit
its translation into TF [76–80]. PARP-14 is another
posttranscriptional regulator of TF expression that re-
duces TF RNA levels by forming a complex with the
mRNA-destabilizing protein tristetraprolin [81].

Multiple growth factors and cytokines induce TF ex-
pression. For example, hepatocyte growth factor (HGF)
upregulates TF by activating Met in a Src kinase-
dependent manner [82]. Other growth factors, including
basic fibroblast growth factor (bFGF), platelet-derived
growth factor (PDGF)-BB, PDGF-CC, PDGF-AA, bone
morphogenetic protein-7 (BMP-7), transforming growth
factor-β (TGF-β), and vascular endothelial growth factor
(VEGF) can also increase TF [83–90]. During inflamma-
tion, TF can be upregulated by a variety of cytokines and
signaling molecules, including interferon-γ (IFN-γ),
tumor necrosis factor-α (TNF-α), IL-6, IL-1β, IL-33, and
histamine [91–99]. Activated T lymphocytes release
CD40-ligand (CD40L), which also induces TF [100].
Conversely, the anti-inflammatory cytokines IL-4, IL-10,
and IL-13 all suppress TF [101–103].
In cancer, TF expression can be directly driven by pro-

oncogenic events (Fig. 3). For example, mutations in the
tumor suppressor TP53 and proto-oncogene KRAS acti-
vate MAPK and PI3K/AKT signaling pathways, in turn
stimulating TF expression [104, 105]. In glioma, amplifi-
cation of epidermal growth factor receptor (EGFR) and/
or its constitutively active mutant form, EGFRvIII, pro-
motes the expression of TF, PARs, and ectopic synthesis
of FVII, thus sensitizing the cells to TF-mediated signal-
ing [106]. EGFR-mediated TF expression depends on ac-
tivator protein-1 (AP-1) and is associated with c-Jun
NH(2)-terminal kinase (JNK) and JunD activation [107].
Blocking EGFR signaling in human carcinoma and gli-
oma cells diminishes TF expression [108]. Loss of the
tumor suppressor Pten or E-cadherin also leads to TF
upregulation [109–111]. In neuroblastoma, MYCN amp-
lification positively correlates with TF [112].
Cancer-associated hypoxia also stimulates TF expres-

sion via canonical hypoxia-associated signaling mole-
cules, including hypoxia-inducible factor 1-alpha, early
growth response gene-1 (Egr-1), Cyr61, and VEGF [113,
114]. In glioblastoma (GBM), hypoxia is sufficient to in-
crease TF production in cultured GBM cells, and tumor
cells surrounding necrotic, hypoxic zones stain strongly
for TF [109, 115].
In contrast, we found that gliomas with mutations

in isocitrate dehydrogenase 1 or IDH2 (collectively
“IDHmut”) hypermethylate the early coding region of F3
and suppress its transcription, correlating with less flTF-
MV production, less risk of VTE, and less aggressive be-
havior [116, 117]. This appears to be unique to IDHmut

gliomas, as other IDHmut cancers, like cholangiocarcinoma
and acute myeloid leukemia, neither hypermethylate F3
nor suppress TF production [51, 116].

Pathophysiological effects of TF signaling
While TF clearly has critical roles to play in normal
hemostatic and non-hemostatic cell functions, such
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activities can also greatly contribute to the malignant be-
havior of cancer. Elevated TF is a common feature of
many cancers, and generally correlates with worse pa-
tient survival (Fig. 4) [6]. Here, we will discuss some of
the key studies examining the pathological consequences
of TF expression in cancer, including effects on angio-
genesis, invasion, cell survival, metastasis, and mainten-
ance of cancer stem-like cell (CSC) populations.

Tumor angiogenesis
flTF:FVIIa activation of PAR2 triggers downstream tran-
scription of several proangiogenic genes, including
VEGF, IL8, FGF2, and CXCL1 [38, 118–120]. The cyto-
plasmic domain of flTF is important for controlling
VEGF expression, and its phosphorylation correlates
with VEGF expression in cancer [121–123]. Consistent
with this, flTF deletion results in vascular failure during
embryogenesis, and just deleting the flTF cytoplasmic
domain is sufficient to suppress VEGF production [121,
122, 124]. Of note, although flTF deletion in mice results
in vascular abnormalities, it does not phenocopy VEGF
deletion [125]. Positive correlations between flTF and
vascular density have been reported in cancers of the
brain, pancreas, prostate, large bowel, lung, and breast
[126–131]. This seems to be primarily through PAR2,
because although some have also implicated PAR1 in
blood vessel growth, PAR1-deficient mice show normal
wound healing and postnatal angiogenesis [132–135].
Studies in PAR1- and PAR2-deficient mice further sup-
port the notion that signaling through PAR2, but not
PAR1, is important for tumor angiogenesis [136].
Like flTF, elevated expression of asTF increases the ex-

pression of multiple genes that promote angiogenesis
like VEGF, AREG, and EFEMP1 [23], and at least part of
asTF-induced cancer angiogenesis is dependent on
ligation of β1 and β3 integrins [16, 137]. Furthermore,
asTF does not require FVIIa to induce angiogenesis [16].
High expression of asTF correlates with worse patient
survival in lung and gastric cancer [138, 139].

Fig. 3 Induction of tissue factor expression in cancer. Growth factors, inflammation, hypoxia, and oncogenic signaling mechanisms activate
signaling pathways that drive the expression of TF. Conversely, TF is downregulated by some micro RNAs (miRs), and by hypermethylation
induced by IDHmut

Fig. 4 High F3 mRNA correlates with worse prognosis in cancer.
Overall survival of Pan-Cancer TCGA cancer patients, stratified
according to F3 mRNA via Cutoff Finder (http://molpath.charite.de/
cutoff/). N = 8556 for low F3 mRNA and N = 2288 for high F3 mRNA
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Proliferation, cell survival, and apoptosis
Both flTF and asTF can increase the proliferation of
many different kinds of cancer, though perhaps by dif-
ferent mechanisms [140]. In colon cancer cells, flTF:
FVIIa activates PAR2, leading to increased proliferation
through the PKCα and ERK1/2 pathways [141, 142]. In
breast cancer cells, the pro-proliferative effect of asTF
depends on β1 integrin [143]. However, the response of
cancers to TF likely depends on their molecular back-
ground. For example, we found that GBM cells with
driver mutations in EGFR are far more dependent on
endogenous TF for cell proliferation than GBM cells
with driver mutations in NF1 [116].
flTF has a number of anti-apoptotic effects in cancer

cells, including activation of PI3K, AKT, and JAK/
STAT5 signaling pathways; suppression of death-
associated protein kinase-1; and upregulation of BclXL
[144–148]. As a result, flTF can prevent anoikis (Greek
for “homeless”), a form of apoptosis that is induced by
the lack of anchorage-dependent survival signaling
caused by loss of surrounding extracellular matrix [143,
146, 149].

Cancer stem-like cells
Special subpopulations of cells within cancer are capable
of self-renewal. These cells are commonly referred to as
cancer stem-like cells (CSCs), and they contribute to
therapy resistance, recurrence, and distal metastasis
[150]. Our data, and that of others, indicate that TF con-
tributes to the CSC phenotype [151]. For example, TF is
positively correlated with well-known markers of CSC
like CD44 and CD133, and is enriched on CSCs com-
pared to cancer cells without self-renewing capacity
[152–156]. In conditional knock-down experiments, lack
of TF can prevent the growth of some xenografted can-
cers for prolonged periods of time, followed by abrupt
and rapid growth when TF expression is restored [157].
Conversely, others found that TF may not be a regulator
of CSC populations in all cancer types. Schaffner et al.
showed that EPCR negative cells and receptor blocking
EPCR antibodies reduced breast cancer stem cell popu-
lations, whereas TF expression did not alter the CSC
phenotype [158].

Invasion and metastasis
Metastasis is a Greek word meaning “displacement” and
is the result of multiple cellular processes working to-
gether to allow cancer cells to invade normal tissue be-
yond the original tumor site, survive while traveling
through the blood or lymphatic system, and form a new
tumor in a distant site. TF is prominently expressed at
the invasive edge of tumors and positively correlates
with invasiveness in cancers from a variety of organs, in-
cluding the liver, breast, pancreas, and lung [159–162].

TF expression is also up to 1000-fold greater in meta-
static cells than in non-metastatic cells [163]. An un-
biased shRNA screen showed that TF is one of the most
powerful drivers of metastasis in osteosarcoma [164].
Such correlative findings have been verified by func-
tional studies in vivo [23, 163, 165].
The mechanisms underpinning TF’s effects on inva-

sion and metastasis mostly resemble those already noted
in other pro-malignant functions. The pro-invasive ef-
fects of flTF on cancer cells appear to depend on the
cytoplasmic domain, as expression of mutant flTF con-
structs that lack the cytoplasmic domain are far less
metastatic [166, 167]. The cytoplasmic domain of flTF
promotes invasion by activating the GTPase Rac1 and
p38 MAPK, which interact with actin filaments and
cause extension of filopodia and lamellipodia [61]. flTF-
mediated activation of PAR2 also recruits actin-binding
protein to the cytoplasmic domain of flTF, and promotes
cytoskeleton reorganization and cell motility by activat-
ing MAPK and cofilin pathways [62, 63, 168]. Activated
PAR2 stabilizes and increases β-catenin expression
[169], and in glioma, the pro-invasive effects of flTF:
FVIIa is dependent in part on β-catenin [116]. However,
flTF-β1 integrin interaction promotes cell migration
when the flTF cytoplasmic domain is phosphorylated
[55], suggesting the requirement of PAR2 activation. In
contrast, asTF can increase cell motility by directly bind-
ing and activating β1 integrins [170].
The release of flTF-MVs by tumors can also promote

metastasis via paracrine signaling within the tumor
microenvironment and at distal sites. flTF-MVs are ele-
vated in the plasma of cancer patients [171, 172] and
can activate PAR1 and PAR2 on nonmalignant cells
[173, 174]. Endothelial cells that are stimulated with
flTF-MVs express increased adhesion molecules and se-
crete pro-inflammatory molecules that can recruit pro-
tumor monocytes, establishing a pre-metastatic niche for
circulating cancer cells [173, 175].
In addition to the aforementioned suppression of anoi-

kis, flTF-mediated activation of the coagulation pathway
is important once cancer cells enter the bloodstream.
Two monoclonal inhibitory antibodies were developed
to study the role of blood coagulation in metastasis. The
first, mAb-10H10, blocks flTF:FVIIa-mediated PAR2 ac-
tivation without any significant effect on coagulation.
The second, mAb-5G9, blocks the formation of the flTF:
FVIIa:FXa complex, thereby inhibiting stimulation of
both PAR1 and PAR2, as well as impairing coagulation
[176]. Using both antibodies in a model of patient-
derived breast cancer xenografts, Versteeg et al. showed
that, whereas mAb-10H10 inhibited primary tumor
growth, mAb-5G9 inhibited its metastatic spread [56].
Palumbo et al. suggested that flTF further supports
tumor metastasis via thrombin-dependent and platelet-
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dependent mechanisms that prevent natural killer cell
clearance of cancer cells [177]. In sum, both TF-
mediated thrombin generation and TF-mediated intra-
cellular signaling contribute to distal metastasis.

Tissue factor as a target for cancer therapy
Because TF plays multiple roles in the malignant behav-
ior of cancer, blocking its signaling might improve can-
cer treatment. A direct inhibitor of TF:FVIIa,
recombinant nematode anticoagulant protein c2
(rNAPc2), has been shown to reduce tumor growth in
preclinical models of colorectal cancer and melanoma
[178, 179]. These findings promoted a clinical trial to
test the safety of rNAPc2 to treat colon cancer (Clinical-
Trial.gov, ID NCT00443573); however, this study was
suspended, and no results were published. rNAPc2 has a
narrow therapeutic window, with a high risk of bleeding
complications [180], and this could likely explain why
the rNAPc2 trial was suspended. Although directly tar-
geting TF disrupts normal hemostasis and increases risk
of uncontrollable hemorrhage, there are ways of block-
ing non-hemostatic aspects of TF activity. For example,
the clinical grade formulation of the mAb-10H10
(CNTO 2559) does not interfere with hemostasis and
has inhibited breast cancer growth in mice [181].
As discussed above, one of the primary targets of flTF

is the PAR signaling nexus. Because flTF activates PARs
independently of its role in coagulation, targeting PARs
could limit many of the pro-cancer effects of flTF with-
out the dangerous side effects of direct flTF inhibition.
Small molecule PAR inhibitors have therefore been
tested as potential cancer therapeutics. The PAR2 antag-
onist, GB88, and its derivatives, block PAR2 activation
and reduced inflammation, yet these inhibitors have low
IC50 and solubility, limiting their effectiveness in vivo
[182–184]. Furthermore, for unclear reasons, GB88
blocks only certain PAR2-mediated signaling pathways,
such as Ca2+ mobilization, but not MAPK signaling
[185]. Recently, a new PAR2 antagonist, I-191, was de-
veloped that has a much higher IC50 and solubility and
blocks both Ca2+ mobilization and MAPK signaling
[182]. Two PAR1 inhibitors exist, atopaxar and vora-
paxar, and both inhibit cancer progression in preclinical
models [186]. An additional approach for blocking
PAR signaling involves the use of cell-penetrating
peptide antagonists termed “pepducins” [187]. PAR1-
targeting pepducin P1pal-7 blocked lung cancer cell
migration and inhibited lung tumor growth by 75%
[188]. For excellent in-depth reviews on targeting
PARs, see Ramachandran et al. and Hamilton et al.
[185, 189]. However, while PAR inhibitors seem to be
well-tolerated in animal models, it remains to be de-
termined whether targeting PAR1 or PAR2 will prove
effective in cancer patients.

flTF requires FVII and FX complex formation for effi-
cient proteolytic signaling. Because FVII and FX are vita-
min K-dependent, their expression can be reduced by
using vitamin K antagonists, like warfarin, which has
been shown to suppress tumorigenesis [190–192]. War-
farin also blocks the growth and spread of pancreatic
cancer by inhibiting signaling of another RTK, Axl [193].
An FXa inhibitor, rivaroxaban, did not directly affect the
growth of TF-positive pancreatic cancer xenografts in
immunodeficient mice [194], but did suppress tumor
growth in an immunocompetent setting that was par-
tially dependent on reprograming tumor-associated mac-
rophages [195]. A selective small molecule inhibitor of
FVIIa, PCI-27483, inhibited tumor growth in preclinical
models [196], although combining it with gemcitabine
was not clearly superior to gemcitabine alone in a phase
2 clinical trial against pancreatic cancer [197].
Because TF is highly expressed on the surface of many

kinds of cancer cells, some have investigated the ability
of TF-specific antibody:drug conjugates to deliver
tumoricidal drugs. One prominent example is a human
anti-TF antibody conjugated to the cytotoxic agent
monomethyl auristatin E (TF-011-MMAE) [198]. TF-
011-MMAE has suppressed tumor growth and metasta-
sis in a variety of preclinical cancer models, even those
expressing relatively low amounts of TF, without signifi-
cant effect on coagulation, and showed better intracellu-
lar internalization than antibody:drug conjugates
targeting EGFR or HER2 [198–200]. TF-011-MMAE,
now renamed HuMax-TF-ADC, has undergone multiple
phase 1 trials demonstrating its safety and is currently
undergoing a multicenter phase 2 clinical trial for safety
and efficacy against cervical cancer and solid tumors
(ClinicalTrial.gov, ID: NCT03438396, NCT03485209).
Hu et al. have developed chimeric antibody-like homodi-

mers that consist of FVII fused to the Fc domain of IgG1
[201]. These immunoconjugates, which are named “ICONs,”
target TF-expressing tumors, and induce both antibody-
dependent cellular cytotoxicity and complement-dependent
cytotoxicity [202–204]. ICONs lack procoagulant activity
due to the elimination of Lys341, and when administered
intravenously, inhibit the growth of melanoma, prostate, and
head and neck tumors [201, 202, 205]. Because first gener-
ation ICONs are relatively large molecules (210 kDa), their
bioavailability within solid tumors is questionable. A smaller
(100 kDa), more efficient second-generation ICON, L-
ICON1, is now being evaluated in preclinical studies [206].
A rapidly emerging immunotherapy strategy for treat-

ing cancer is chimeric antigen receptor (CAR)-modified
T cells (CAR T) [207, 208]. To date, CAR T therapy
against hematopoietic cancers has met with some suc-
cess [209], but whether it has real potential against solid
tumors is debatable. One limiting factor of CAR T in
solid tumors is finding suitable antigens to target [207,
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208]. Zhang et al. developed human T cells modified to
express the light chain of mouse FVII, since it binds
strongly to both human and mouse TF [210]. These
cells, termed TF-CAR T cells, reduced tumor growth
and metastasis in NOG mice with human lung cancer
xenografts [210]. However, off-target toxicity is one of
the main limiting factors of CAR T therapy, so although
the authors found no toxicity in mice from the TF-CAR
T cells [210], it still remains to be determined whether
this approach will have any off-target toxicity in
humans.
Since the secreted TF isoform, asTF, also plays a

prominent role in cancer malignancy but is only minim-
ally procoagulant, it can be directly targeted without
worrying about bleeding. Bogdanov et al. developed an
asTF-specific neutralizing antibody termed “RabMab1”
[15, 143, 170]. RabMab1 is capable of blocking asTF
from binding to integrins and inhibits pancreatic and
breast cancer growth in vivo [143, 170]. Other than Rab-
Mab1, asTF-specific therapies are scarce. However, other
asTF-directed approaches could potentially include in-
hibitory RNAs that specifically target the unique exons
4-6 spliced sequence or by blocking splicing regulatory
proteins that produce asTF [211].

Conclusion and future perspectives
It is now clear that TF has a wide range of activities be-
yond thrombosis, and that these activities are utilized by
cancers to increase their malignancy. Further insights
into TF signaling, and how to block pro-cancer effects
while retaining its hemostatic capacity, may lead to more
effective therapies against the pro-tumor effects of TF.
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