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Cancer stem cell secretome in the tumor 
microenvironment: a key point for an effective 
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Abstract 

Cancer stem cells (CSCs) represent a tumor subpopulation responsible for tumor metastasis and resistance to chemo- 
and radiotherapy, ultimately leading to tumor relapse. As a consequence, the detection and eradication of this cell 
subpopulation represent a current challenge in oncology medicine. CSC phenotype is dependent on the tumor 
microenvironment (TME), which involves stem and differentiated tumor cells, as well as different cell types, such as 
mesenchymal stem cells, endothelial cells, fibroblasts and cells of the immune system, in addition to the extracellular 
matrix (ECM), different in composition to the ECM in healthy tissues. CSCs regulate multiple cancer hallmarks through 
the interaction with cells and ECM in their environment by secreting extracellular vesicles including exosomes, and 
soluble factors such as interleukins, cytokines, growth factors and other metabolites to the TME. Through these fac‑
tors, CSCs generate and activate their own tumor niche by recruiting stromal cells and modulate angiogenesis, metas‑
tasis, resistance to antitumor treatments and their own maintenance by the secretion of different factors such as IL-6, 
VEGF and TGF-ß. Due to the strong influence of the CSC secretome on disease development, the new antitumor 
therapies focus on targeting these communication networks to eradicate the tumor and prevent metastasis, tumor 
relapse and drug resistance. This review summarizes for the first time the main components of the CSC secretome 
and how they mediate different tumor processes. Lastly, the relevance of the CSC secretome in the development of 
more precise and personalized antitumor therapies is discussed.
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Introduction
The cancer stem cell (CSC) model is based on the identi-
fication of tumor cells in different stages of differentiation 
in a wide variety of tumors, including ovarian [1], breast 
[2, 3], brain [4], lung cancer [5], melanoma [6], prostate 
[7], colorectal [8] and liver cancer [9]. All of them are 
composed by a small subpopulation of cells with stem 
cell-like characteristics such as quiescence, slow cell 

cycle, expression of embryonic SC transcription fac-
tors and epigenomic regulation driven by micro-RNAs 
(miRNAs) [10]. Like normal SCs, CSCs can self-renew 
and divide asymmetrically to give rise to daughter cells, 
which constitute the bulk of the tumor, and this makes 
CSCs are responsible for the maintenance and prolifera-
tion of the tumor, as observed in healthy tissues [11].

However, identification of these subpopulations has 
not been easy, and although several markers have been 
described, tumor heterogeneity and inter-patient vari-
ations make it difficult to define robust markers [12]. 
In general terms, the most commonly used indicators 
to identify CSCs are surface markers such as CD133 
and CD44 [13, 14], increased activity of aldehyde 
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dehydrogenase (ALDH) [14, 15] and their ability to 
exclude Hoechst 33342 (side population) [16], and to 
form spheres in vitro [17].

In addition, CSCs drive tumor drug resistance due to 
their ability to enter a quiescent state, activate DNA 
repair mechanisms, reactivate drug efflux system and 
protect against ROS [12], ultimately being responsible for 
disease relapse. Therefore, the CSC model explains the 
poor prognosis of the disease and indicates that identify-
ing and attacking CSCs are currently a major challenge in 
cancer research.

As the importance of CSCs in tumor development has 
been elucidated, special attention has also been paid to 
their environment, since the tumor niche has a strong 
influence on the tumor behavior. The tumor microen-
vironment (TME) includes stem and differentiated can-
cer cells, the extracellular matrix (ECM), mesenchymal 
stem cells (MSCs), cancer-associated fibroblasts (CAFs), 
endothelial cells (ECs), immune system cells, and a com-
plex network of cytokines and growth factors [18]. All 
these components orchestrate tumor processes in dif-
ferent ways. Non-tumor and differentiated tumor cells 
interact closely with CSCs by modulating their activ-
ity and contributing to key tumor processes such as 
tumor growth, metastasis, angiogenesis and immune 
system evasion [18]. Indeed, TME cells also promote 
resistance to antitumor therapies, since the secretion of 
soluble factors such as interleukin-6 (IL-6), hepatocyte 
growth factor (HGF), fibroblast growth factor (FGF), or 
transforming growth factor ß (TGF-ß) and ECM adhe-
sion proteins such as integrins leads to the activation of 
several tumor survival pathways [19]. Additionally, the 
ECM has a different composition, organization and post-
transcriptional modification in the TME than the sur-
rounding normal tissue [20] and largely influences the 
intratumor signaling, transport mechanism, cell motil-
ity, metastasis and immune response [21, 22]. Moreover, 
tumor ECM shows higher density and stiffness, which 
can interfere on nutrient, oxygen and metabolite diffu-
sion which in turn lead to tumor hypoxia. This stiff ECM 
also acts as a physical barrier to the action of chemo- 
and radiotherapy agents. Tumor hypoxia and the barrier 
capacity are related to poor treatment response [20, 23].

Importantly, CSCs do not merely adapt to the TME; 
they also form their own niches by recruiting and acti-
vating other cells and modify their environment in dif-
ferent ways [24]. Understanding the interaction of CSCs 
with their niche may be crucial to design effective cancer 
treatments and selectively target this cell subpopulation.

This review examines for the first time the main com-
ponents secreted by CSCs to generate and modify their 
own environment and to orchestrate the tumor hall-
marks. To this end, we describe the role played by CSC 

secretome in cell recruitment, in the interactions with 
tumor niche as well as in distal metastasis. Finally, the 
impact of CSCs on the development of resistance to cur-
rent antitumor treatments and the new therapies that 
focus on overcoming these issues by targeting the CSC 
secretome are also discussed.

Cancer stem cell secretome
Secretome refers to all the molecules secreted by a cell 
or shedded from its membrane and is fundamental for 
cell–cell communication. Despite that the secretome has 
commonly been defined only by the protein fraction, the 
non-protein components such as lipids, miRNAs and 
messenger-RNAs (mRNAs) isolated in or secreted via 
vesicular bodies have been also incorporated into this 
definition [25]. There is increasing evidence that CSCs 
regulate different tumor hallmarks such as angiogenesis, 
tumor growth, metastasis, drug resistance and immune 
dysregulation through their secretome (Fig.  1). CSCs 
communicate with the TME by releasing microvesicles 
(MVs) and exosomes, as well as a wide range of soluble 
factors including chemokines, cytokines, growth fac-
tors, hormones and metabolites [26]. MVs differ from 
exosomes in size (MVs range from 50 to 10,000 nm while 
exosomes are typically 30–150  nm in diameter), their 
secretion mechanism and cargo [27].

Some factors involved in the communication of CSCs 
with their environment such as IL-6, IL-8 and IL-1ß, 
vascular endothelial growth factor (VEGF) and various 
matrix metalloproteinases (MMPs) can be released free 
into the extracellular space or encapsulated in exosomes 
and MVs [28–30]. In addition, various cytokines such as 
CCL2 or CCL5 [31], TGF-ß [32–34] and hypoxia-induc-
ible factor 1 (HIF-1) can also be released via exosomes to 
the TME [35]. All these factors perform multiple func-
tions within the tumor, since they promote the formation 
and activation of the TME, hypoxia, tumor vasculariza-
tion and metastasis, or chemo- and radiotherapy resist-
ance, as it will be discussed in more detail below (Fig. 1).

In addition, several studies have shown that not 
only soluble factors but also miRNAs strongly con-
tribute to cancer development and progression by 
altering the secretome, promoting both tumorigenic 
and tumor suppression responses. MiRNAs are small 
RNAs molecules of 18–22 nucleotides with the abil-
ity to regulate cancer-related processes including 
cellular proliferation, cell cycle arrest, senescence, 
DNA damage response, apoptosis, metastasis and 
CSC properties. These diverse functional features 
are tumor and tissue specific and can have a positive 
or negative effect, and changes in miRNA levels may 
influence their function [36–38]. One recent find-
ing is that miRNAs can be found inside exosomes or 
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MVs and prevent RNase degradation. Therefore, these 
exosome-transferred miRNAs have emerged as a new 
mechanism mediating the tumor–stroma crosstalk and 
metastasis [31, 39, 40] (Table 1). Therefore, it is clear 
that miRNAs secreted by CSCs could be potent regula-
tors of the secretome involved in cancer initiation and 

progression. For example, miR-200 family has been 
shown to inhibit the epithelial–mesenchymal transi-
tion (EMT) and enhance the reverse process [41, 42].

Fig. 1  Crosstalk between CSCs and TME components. CSCs secrete a wide variety of soluble factors to recruit and activate stromal cells and 
reorganize the ECM, as well as to promote angiogenesis, metastasis, hypoxia, immune evasion and tumor progression. These factors also regulate 
their own maintenance and tumor niche maintenance and the response to different anti-tumor therapies

Table 1  Exosomes or extracellular vesicles-derived miRNAs from cancer stem cells

miRNAs Cancer type Functions References

miR-10b, miR-105, miR-9
miR-195, miR-203a
miR-200 family

Breast cancer Invasiveness, endothelial cell migration, angiogenesis and metastasis [39, 43–45]

miR-21, miR-34, miR-155 Oral cancer Proliferation, migration and poor prognosis [44]

miR-19b, miR-29c, miR-151 Renal cancer EMT and metastasis [46, 47, 48]

miR‐215 and miR‐375, miR‐17–92 
cluster, miR‐200c

Colorectal cancer Relapse and poor prognosis, tumor development and metastasis [47]

miR-21 Glioblastoma Angiogenesis and tumor growth [36, 50]

miR-139, miR-183 Prostate cancer Cell proliferation and migration [48]

miR-21, miR-221
miR-146, miR-17, miR-155

Pancreatic cancer Angiogenesis, tumor growth, metastasis and migration and invasion in 
advanced tumor stages

[36, 49, 51]
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Secretome in the interaction with stromal cells
CSCs play an essential role in tumor niche generation 
by recruiting and activating TME cells through different 
signaling pathways [41] (Fig.  2). In fact, many of these 
pathways result on a communication loop between CSCs 
and stromal cells, whereby CSCs self-regulate and regu-
late their environment.

Mesenchymal stem cells (MSCs)
Mesenchymal stem cells perform key functions in the 
development of cancer including regulation of inflamma-
tory processes, angiogenesis, metastasis, maintenance of 
CSCs and tumor growth [50, 51]. For this reason, MSCs 
are recruited into the tumor niche by CSCs and interact 
with each other through a wide network of cytokines [52] 
(Fig. 2).

First, CSCs recruit MSCs to the sites of primary tumor 
growth by secreting IL-6, which also triggers other 
responses in the tumor niche. In turn, IL-6 induces the 
production of CXCL7 by MSCs [52], which has been 
shown to promote tumor invasiveness and metastasis in 
murine models [53, 54], as well as tumor growth through 
interaction with the tumor receptor CXCR2 [53] that, in 
turn, induces the synthesis of other cytokines including 
IL-6 and IL-8.

Moreover, CSCs in pancreatic cancer have been found 
to overexpress IL-1ß [55] to attract MSCs by promoting 
MMP-1 secretion, which in turn activates the protease-
activated receptor 1 (PAR1) and G-protein-coupled sig-
nal pathways, resulting in migration and recruitment of 
MSCs to the tumor niche. Moreover, tumor-secreted 
IL-1ß induces the expression of several chemokines 
by MSCs [56, 57] because it promotes the expres-
sion of nuclear factor kB (NF-kB), a major regulator of 
chemokine expression [57]. As with IL-6, IL-1ß also 
interacts with other cell types and triggers other path-
ways in the TME directly affecting tumor growth, inva-
sion and angiogenesis [56], by inducing the secretion of 
angiogenic factors by tumor and stromal cells. However, 
it seems that the effect of IL-1ß is related to tumor type 
and the TME, since a negative effect on IL-1ß-mediated 
tumor growth has also been reported, explained by an 
increased immune response [58, 59].

Finally, glioma CSCs have been shown to secrete stro-
mal cell-derived factor 1 (SDF-1/CXCL12) in order to 
recruit MSCs [60]. MSCs also secrete SDF-1/CXCL12, 
and communication between CSCs and MSCs through 
SDF-1/CXCL12 leads to tumor progression through 
different ways, including CSs survival, tumor growth, 
metastasis and angiogenesis processes [61, 62].

Fig. 2  Crosstalk between CSCs and TME cells. CSCs secrete different factors in order to recruit and activate mesenchymal stem cells (MSCs), 
endothelial cells (ECs), cancer-associated fibroblast (CAFs) and infiltrating immune cells (IICs) to the TME. CSCs also promote their own maintenance 
and are therefore able to regulate processes of hypoxia, vascularization, metastasis and immune response evasion
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Cancer‑associated fibroblasts (CAFs)
Cancer-associated fibroblasts (CAFs) are also key actors 
in TME supporting tumor maintenance, angiogenesis, 
EMT and metastasis and producing ECM components 
[63]. CSCs recruit CAFs either by activating adjacent 
fibroblasts, CAFs or transforming MSCs through the 
secretion of different factors like platelet-derived growth 
factor (PDGF), FGF, IL-6 and TGF-ß [24, 64–66] (Fig. 2). 
In breast cancer, it has also been described that the acti-
vation of fibroblasts to CAFs requires the activation of 
STAT3 by these cytokines, which results in CAFs show-
ing higher CCL2 expression than normal fibroblasts, 
which induces Notch1 expression of CSCs and, therefore, 
promotes stemness maintenance in a bidirectional inter-
action [67]. On the other hand, CSCs can induce differ-
entiation of MSCs into CAFs through the secretion of 
TGF-ß via the activation of the TGFBR1/Smad pathway 
[34, 68, 69].

Furthermore, in a recent study using a murine model of 
breast cancer, CSCs have shown to produce the Hedge-
hog (Hh) ligand Sonic Hedgehog (SHH), activating the 
Hh signaling pathway in CAFs, which leads to increased 
CAF proliferation and ECM deposition and enhances the 
production of other factors such as ACTIVIN A, insulin-
like growth factor 1 (IGF-1) and leukemia inhibitory fac-
tor (LIF), which result in CSC growth and self-renewal 
[70], in a feedback communication between CAFs and 
CSCs.

Immune cells
In the TME, immune system cells may exhibit tumori-
genic or antitumor activity depending on environmental 
signals [71]. For this reason, the communication with 
tumor cells becomes an important factor. The role of 
CSCs is not only to recruit and activate cells in the tumor 
niche, but also the evasion of the immune response 
(Fig. 2). CSCs recruit macrophages to the tumor niche by 
producing pro-inflammatory cytokines and chemokines, 
such as CCL2 [72], IL-6, IL-4, VEGF and TGF-ß [73, 74]. 
Once in the TME, macrophages are activated to tumor-
associated macrophages (TAMs) through CSC-secreted 
factors such as IL4, TGF-ß and macrophage inhibitory 
cytokine 1 (MIC-1), which also inhibits the phagocytic 
activity of macrophages [75, 76]. Moreover, CSC-released 
TGF-ß [77, 78] induces the differentiation of CD4 + T 
lymphocytes to regulatory T lymphocytes (Treg) by 
stimulating the synthesis of FOXP3, thereby having an 
immunosuppressive effect on the tumor [79, 80]. How-
ever, this is not the only pathway used by CSCs for mac-
rophage activation [81, 82]. Treg causes a decrease in 
tumor immunity not only by regulating the accumulation 
of T lymphocytes, but also by releasing other factors with 
immunosuppressive roles such as TGF-ß and IL-10 [83].

A major hallmark of CSCs is to evade the immune 
response [84] through an inadequate antigen presenta-
tion [82, 85, 86] and the ability to create a differentiated 
tumor cell barrier around them [87]. Additionally, CSCs 
secrete different molecules with protective function 
against both innate and adaptive immune responses such 
as TGF-ß, IL-4, IL-6, IL-10 and prostaglandin E2 (PGE2) 
[73, 80, 88]. In addition, FOXP3 in Treg, whose expres-
sion is regulated by TGF-ß and other factors, also inhib-
its the secretion of IL-2, interferon gamma and IL-4 [89]. 
Furthermore, CSCs secrete exosomes with an immune 
response modulating effect by suppressing T-cell 
response [90] and inhibiting dendritic cell differentiation 
[91]. These finding show that CSCs are capable of trigger-
ing multiple pathways for immune evasion.

In summary, the CSC secretome is responsible for the 
recruitment and activation of MSCs, CAFs and immune 
cells to the TME. In addition, they promote the function 
of these cell types, thus leading the regulation of inflam-
matory responses, tumor growth, angiogenesis, metasta-
sis and their own maintenance.

Secretome in angiogenesis
Angiogenesis is a central process that promotes tumor 
development and metastasis. CSCs modulate the vas-
cularization of the tumor niche mainly through VEGF, 
but other factors are also involved (Fig. 2). CSCs recruit 
endothelial cells (ECs) to the tumor niche and induce 
angiogenesis by secreting HIF-1, VEGF and SDF-1/
CXCL12 [92–94]. Furthermore, MSCs migrate to the 
tumor niche recruited by CSCs, and once there they 
differentiate into ECs through the action of VEGF 
[95–97]. In addition, CSCs are capable of differentiat-
ing into ECs and endothelial progenitor cells (EPCs) and 
form vessel-like networks in a process called “vascu-
lar mimicry,” mediated also by VEGF [98–101]. Indeed, 
CSCs preferentially overexpress more VEGF receptors 
(VEGFR-1 and VEGFR-2) than their differentiated coun-
terparts and their activation by VEGF mediates chemo-
taxis, tubule formation and vascular marker expression 
[100–103]. Likewise, CSCs show high expression of vas-
cular–endothelial cadherin (VE-Cadherin) and Notch, 
both involved in the transformation to ECs and EPCs 
[102–106], as well as MMP-2 and MMP-9, which pro-
mote ECM remodeling thus promoting new vessel for-
mation by CSCs [105, 106]. Moreover, CSCs overexpress 
CXCR4, whose SDF-1/CXCL12 ligand induces VEGF 
production via activation of the P13K/AKT signaling 
pathway [107, 108]. This makes that stromal cells and 
CSCs can also modulate angiogenesis by promoting the 
expression of CSC-secreted VEGF [109]. CSC-secreted 
VEGF plays other critical roles in the tumor niche since it 
enhances CSCs proliferation by stimulating neuropilin-1, 
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a co-receptor of VEGFR2, and thus promotes tumor pro-
gression and relapse [110–112].

Furthermore, CSCs secrete TGF-β [77, 78] that can 
also induce the expression of VEGF and another angio-
genic factor, the connective tissue growth factor (CTGF), 
in both epithelial cells and fibroblasts [113, 114]. 
Finally, a comparative study of glioma CSCs and non-
SCs secretome has identified an increase in hepatoma-
derived growth factor (HDGF) in glioblastoma stem-like 
cells (GSCs) linked to angiogenesis in vivo [115].

Taken together, these findings demonstrate that the 
CSC secretome modulates the generation of new vascu-
lature in the TME by recruiting ECs and MSCs. In addi-
tion, the secretome involved in this process also enhances 
the maintenance of CSCs and therefore tumor prolifera-
tion and relapse.

Nonetheless, the vascular network formed to support 
the rapid tumor growth is aberrant, with disorganized, 
immature and highly permeable blood vessels, and can-
not fully fulfill its functions [116]. This limits tumor per-
fusion, decreases oxygen supply and increases hypoxia 
in the tumor and prevents the arrival of immune system 
cells. Poor perfusion also reduces the efficacy of radia-
tion therapy and antitumor drug perfusion to the tumor, 
which allows tumor survival [116]. Furthermore, the high 
permeability, related to reduced coverage of the pericytes 
and their binding to the ECs, facilitates the metastatic 
spread of cancer cells, mainly CSCs [117].

Secretome in hypoxia
The rapid proliferation of cancer cells and the TME 
aberrant vasculature cause hypoxic regions within the 
tumors. In response to this situation, both CSCs and 
non-SCs secrete HIF-1, which is stabilized only in areas 
with very low oxygen level [118, 119]. HIF-1 in the tumor 
niche is related to poor prognosis because it enhances 
tumor spread and CSC self-renewal [15, 120–122], pro-
moting the stem phenotype by enhancing Notch-Hes1 or 
ALDH expression. Furthermore, in several tumor types 
HIF-1 has been reported to promote resistance to ther-
apy [23] and EMT phenotype [123], to remove or prevent 
toxic metabolic waste products [118, 124]. HIF-1 is also 
involved in angiogenic processes by inducing VEGF and 
VEGFR2 expression [125–127] and can suppress antitu-
mor immune responses [128].

On the other hand, the hypoxia-inducible factor 2 
(HIF-2) and HIF-regulated genes are preferentially 
expressed in CSCs compared to their differentiated 
counterparts, which is associated with poorer progno-
sis and higher CSCs proliferation and survival [129]. 
Furthermore, HIF-2 has been shown to be expressed at 
low levels of hypoxia and even at physiological levels of 

oxygen [119, 129]; therefore, its function is not limited to 
hypoxic regions.

Moreover, the secretome of hypoxic tumor environ-
ments regulates miR-210 expression in a positive way, as 
shown by the fact that HIF-1 secreted by both CSCs and 
non-SCs promotes its expression. MiR-210 is an impor-
tant mediator of the response to low oxygen tension 
and promotes mRNA degradation of normoxic genes in 
several cancers, particularly in pancreatic cancer. Thus, 
circulating miR-210 levels could serve as a useful bio-
marker for diagnosis in cancers with extremely hypoxic 
signatures [130, 131]. In addition, tumor-secreted HIF-1 
induces miR-155 expression under hypoxic conditions 
and plays a dual role in maintaining this factor as miR-
155 directly targets HIF-1 and suppresses its expression 
and miR-155 suppresses the translation of von Hippel–
Lindau tumor suppressor (VHL) leading to increased 
HIF activity. This role is, however, not so contradictory, if 
we consider that miR-155 targets HIF-1 but not HIF-2α, 
which is more oncogenic. MiR-155 is also related inflam-
mation since IL-6 induces its expression and this in turn 
activates the JAK2/STAT3 pathway, thus promoting 
tumor inflammation [132].

In conclusion, the CSC secretome regulates the 
response to hypoxic environments through HIF and miR-
NAs and its overexpression is related to poor prognosis, 
related to the effects on tumor maintenance and CSCs 
themselves.

Secretome in CSC maintenance
In addition to interacting with stromal cells, CSCs regu-
late their maintenance in the tumor niche, as described 
above. In addition, CSCs regulate their self-renewal 
through the autocrine secretion of TGF-ß, which pro-
motes stemness properties of CSCs in breast [133], colon 
[134] and ovary cancer [135] and induces self-renewal 
and prevents differentiation in glioma CSCs [136–138]. 
Indeed, CSCs secrete nodal and activin, from the TGF-ß 
family, linked to the CSCs self-renewal in pancreatic can-
cer in vitro and CSCs tumorigenicity in vivo [139]. Signal-
ing pathways involved in TGF-ß-induced CSC phenotype 
acquisition include SMADs, AKT, SOX and MAPK, 
which in turn synergize with other signaling pathways to 
promote tumor invasion and metastasis [140].

Furthermore, CSC survival is promoted by auto-
crine production of different interleukins. In colon can-
cer, CSC-secreted IL-4 promotes their maintenance 
and inhibits apoptosis [76]. IL-1ß also promotes tumor 
growth and invasion by activating CSC self-renewal and 
EMT [56, 141]. IL-6 can induce tumor cell dedifferen-
tiation in breast [142, 143], colon [144, 145], and pros-
tate [146] cancers and regulates stemness in ovarian 
CSCs driven by ALDH1A1 expression [147]. Similarly, 
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overexpression of IL-8 promotes pancreatic CSC self-
renewal via IL-8/CXCR1 axis [148]. This is consistent 
with other studies, showing that the IL-8/CXCR1 path-
way is essential for CSCs survival in breast cancer [149].

CSCs promote their maintenance and tumorigenicity 
through the secretion of exosomes. For example, GSCs 
secrete exosomes carrying chloride intracellular chan-
nel protein 1 (CLIC1), which affects tumor proliferation 
both in  vivo and in  vitro [150]. In pancreatic and colo-
rectal cancer, exosomes released by CSCs stimulate the 
stemness phenotype and cell invasion and mobility [151]. 
In addition, CSCs deregulate miRNAs, which also affect 
their own maintenance. MiR-302/367 cluster was found 
to be strongly expressed in CSCs and strongly repressed 
during differentiation in most cancers, with its expres-
sion being highly correlated with the expression of CSC 
markers [152]. Interestingly, Rahimi et al. isolated CSCs 
using their stem cell-specific miR-302 expression and 
maintained CSCs stemness by continued selection [153]. 
Lastly, in colorectal cancer miR-146a increases the sym-
metrical division of CSCs, and miR-1246, one of the most 
differentially expressed miRNAs in the CSC population, 
is involved in self-renewal processes, tumorigenicity and 
drug resistance [36, 154].

Given the importance of CSC maintenance in the TME, 
the CSC secretome plays a key role on tumor develop-
ment by promoting CSCs self-renewal, preventing their 
differentiation and even promoting the dedifferentiation 
of tumor cells to SCs.

Secretome in extracellular matrix remodeling
ECM remodeling is essential for angiogenesis, metastasis 
and tumor growth, and since the ECM is a reservoir of 
many factors, its degradation results in their release into 
the environment. ECM remodeling occurs principally 
through the activity of matrix metalloprotease-10 (MMP-
10), which enhances EMT, metastasis and CSC state 
[155, 156]. It has been reported that CSCs overexpress 
MMP-9 [157, 158], which allows the activation of inactive 
TGF-ß in ECM [159], MMP-2 and MMP-13 [105, 160], 
all related to increased metastatic and angiogenic capac-
ity. In ovarian cancer cell lines, CSCs overexpress CCL5 
and its CCR1, CCR3 and CCR5 receptors compared to 
their differentiated counterparts, resulting in increased 
autocrine-mediated invasion capacity by NF-kB activa-
tion and the consequently elevated MMP-9 secretion 
[161].

In addition, CSCs induce the production of certain 
ECM components such as periostin and tenascin through 
different factors, with TGF-ß playing a central role. That 
ECM components promote metastatis and support SCs 
functions [162–166]. Periostin promotes the acquisition 
of a stemness phenotype in tumor cells when it binds to 

Wnt ligands [167, 168]. Periostin is also essential for met-
astatic colonization with infiltrating tumor cells being 
able to induce periostin expression in the metastatic 
niche [166]. This protein can also increase the expression 
of the VEGFR by ECs [169]. Lastly, tenascin is involved 
in vascular mimicry by enhancing the release of MMP-2 
and MMP-9 by CSCs [170]. Thereby, both ECM compo-
nents are important for tumor angiogenesis.

CSC secretome is involved both in ECM degradation 
facilitating tumor metastasis, angiogenesis and prolif-
eration, and in the generation of specific components 
involved in tumor behavior.

Secretome in metastasis
Metastasis is a process that involves the dissemination 
of cells through lymphatic or blood vessels from the pri-
mary tumor to distant sites where colonization leads pro-
gressively to the growth of a secondary tumor. The EMT 
is a fundamental process for tumor invasion and involves 
the loss of epithelial properties and acquisition of motile 
and invasive phenotype [171]. The CSC secretome 
induces EMT and promotes metastasis in different ways. 
A key factor in the metastatic process is TGF-ß, which 
correlates with the expression of SC markers in tumor 
cells and promotes that phenotype, as described above, 
through induction of EMT [77, 137, 172–174]. TGF-ß 
has the ability to promote cell invasion and metasta-
sis of CSCs and is not only expressed by CSCs, but also 
by other TME cells such as TAMs or CAFs [158, 175, 
176]. However, TGF-ß is a ubiquitous cytokine that is 
expressed in nearly every cell type and therefore has an 
active role in various cellular processes. Although TGF-ß 
has been reported to promote tumor progression, inva-
sion and metastasis in late-stage tumors, it has also been 
shown to act as a tumor suppressor as it can inhibit cell 
proliferation, induce apoptosis and mediate tumor cell 
differentiation in early-stage tumors. The role of TGF-ß 
depends on tumor stage and is regulated by tumor cells, 
stromal cells and the immune system. The mechanisms 
behind the dual role of TGF-ß are related to mutations 
in some components of the signaling pathway, but it may 
also be that there is no alteration of the tumor suppressor 
pathway, if not that it is inhibited [177, 178]. Several fac-
tors can promote tumor development including: (1) p53 
mutations that activate the formation of the Smads2/3 
and p63 complex that suppresses the action of p63 allow-
ing TGF-ß to promote EMT; (2) loss of Smad4 function 
secondary to genetic alterations; (3) overexpression of 
Six1 (pro-metastatic regulator); (4) oncogenic activation 
of the Ras-RAF-MAPK pathway; (5) hypomethylation of 
the PDGFβ gene; and (6) DAB2 epigenetic downregula-
tion [178]. Moreover, miR-106b-25 inhibits p21 and Bim 
(pro-apoptotic factor) and is probably involved in the 
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positive regulation of Six1. Furthermore, miR-106b-25 
can activate the tumorigenic path by inhibiting suppres-
sion growth through TGF-ß and repressing the inhibitory 
protein Smad7 [177].”

In addition, different miRNAs play a fundamental role 
in metastasis. Down-regulated miR-200 and let-7 miR-
NAs in CSCs can regulate EMT stem-like transition, 
self-renewal and metastasis in breast, prostate and colon 
cancer, and miR-34a downregulation in CSCs is related 
to self-renewal and asymmetric division [43, 152, 154, 
179, 180]. miR-21 is a known “oncomiR” differentially 
up-regulated or over-expressed in CSCs and has been 
related to metastasis, poor prognosis, cell cycle and CSC 
promotion in many cancers. miR-221, miR-100, miR-10b 
or miR-125a upregulation in CSCs and non-CSCs can 
modulate breast CSC properties enhancing their invasion 
and migration potential [36, 152, 181]. Moreover, in met-
astatic breast cancer cells, exosome-secreted miR-10b, 
miR-105 and miR-9 are related to enhanced invasiveness 
through increased endothelial cell migration, angiogen-
esis and vascular permeability [43]. The miR-200 family 
found in extracellular vesicles of breast CSCs was related 
to their metastatic capacity [44]. In glioblastoma, miR-
10b is upregulated in CSCs and its inhibition strongly 
reduces CSCs proliferation and metastasis. OncomiR-138 
has also been identified as a prognostic biomarker of 
GSCs [180, 182]. In ovarian cancer, miR-5703, miR-630, 
miR-1246 and miR-320b were significantly dysregulated 
in CSCs compared with primary cancer cells, whereas 
miR-424-5p level was lower and associated with distant 
metastasis [183]. Finally, exosomes isolated from oral 
CSCs displayed nearly consistent downregulation of 
miR-34 and the up-regulation of miR-21 and miR-155 
was related to increased CSC proliferation and migra-
tion; therefore, they may be consider indicators of poor 
prognosis [184]. However, miR-155 overexpression has 
been correlated with better prognosis and lower meta-
static capacity [185, 186] and miR-21 appears down-
regulated in CSCs [44]. These differences could be due 
CSC and inter-patient heterogeneity and to the dual role 
played by the same miRNA depending on cell state. This 
encourages further studies to elucidate the role of miR-
NAs based on this heterogeneity and its relationship 
with cancer progression. Lastly, miRNAs could be used 
as prognostic and predictive biomarkers of response to 
treatment.

Successful metastasis requires a favorable environment 
for the colonization and growth of tumor cells at the site 
of the secondary tumor, called the premetastatic niche 
(PMN) [187]. This PMN requires the recruitment and 
activation of local resident cells, alteration of the existing 
vasculature, ECM remodeling, as well as immune system 
deregulation [187, 188]. Several factors secreted by CSCs 

are involved in PMN formation. For example, VEGF 
increases vasculature permeability in the PMN [189] 
and stimulates MMP-9 expression in premetastatic tis-
sue, thus facilitating tumor cell invasion [190]. Moreover, 
VEGF enhances the recruitment of bone marrow-derived 
cells (BMDCs), which are critical for PMN formation 
[191, 192] and facilitate tumor-promoting microenviron-
ment through CCL9 secretion, induced by TGF-ß sign-
aling [193]. In addition, TGF-ß and VEGF promote the 
expression of different inflammatory chemoattractants 
in the PMN [194]. Similarly, the CXCL12/CXCR4 axis 
is closely related to angiogenesis, proliferation, invasion 
and metastasis in most tumors by CXCR4 activation and 
migration of cells toward CXCL12. In addition, CXCL12 
protein levels are highest in organs that are common 
sites of metastasis [61, 195–197]. CXCL12 induces MMP 
expression in cancer cells and up-regulates the activ-
ity of MMPs in tumor microenvironment, which pro-
motes tumor invasion and metastasis [61]. CSCs express 
high levels of CXCR4 that have the ability to originate, 
maintain, disseminate and colonize metastasis sites and 
PMNs. CXCL12/CXCR4 signaling activation can be 
indicative of the metastatic CSC population [195, 198]. 
CSC migration is directed by CXCR4/CXCL12, play-
ing a central role in chemotactic gradient perception. 
This signaling pathway is related with cell stemness and 
mobility [199]. Furthermore, intratumor hypoxia at pri-
mary site promotes PMN formation in secondary organs 
through enhancement of the expression of several factors 
and the involvement of exosomes [200, 201]. The role of 
exosomes and MVs from the primary tumor in the com-
munication with PMN cells and modification of ECM has 
also been widely described [202–205]. Therefore, CSCs 
may play an important role in PMN formation, but fur-
ther research is needed to clarify the specific role of the 
CSC secretome.

In summary, CSC secretome promotes metasta-
sis by increasing EMT induction, tumor invasiveness, 
angiogenesis and CSC self-renewal. In addition, several 
secreted factors and vesicles are related to PMN forma-
tion, which make CSC secretome essential for successful 
metastasis.

Secretome in chemoresistance
A major challenge in antitumor therapy is to effectively 
eradicate CSCs, ultimately responsible for tumor relapse 
after chemotherapy. CSCs show intrinsic resistance to 
drugs related to ABC transporter overexpression, high 
ALDH activity, apoptosis evasion mechanisms, enhanced 
DNA damage repair capacity and activation of key signal-
ing pathways [24, 206–209]. Some of these mechanisms 
are regulated by CSC-secreted factors. HIF1, secreted by 
both CSCs and non-SCs, has been described in leukemia 
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and lung tumors to promote radio and chemoresistance 
in hypoxic microenvironments by upregulating IGF1 
expression and activating IGF1 receptor (IGF1R) [122, 
210], which leads to an increase in the SC population and 
enhances EMT [211].

Furthermore, other interleukins with diverse roles in 
tumor behavior are also associated with increased drug 
resistance of CSCs. In colon cancer, the autocrine expres-
sion of CSC-secreted IL-4 promotes apoptosis evasion 
mechanisms, and treatment with IL-4 antibody especially 
sensitizes this subpopulation, promoting the efficacy of 
standard chemotherapeutic drugs [76]. Consistent with 
these studies, the chemoprotective action of IL-4 by 
increasing anti-apoptotic proteins Bcl-2 and Bcl-xL lev-
els has been proved in other tumor types [212, 213]. The 
chemoprotective effects of IL-6 have also been described 
in breast CSCs, where HER2 overexpression increases 
IL-6 production [214]. Treatment with trastuzumab (tar-
get HER2 antibody) in breast cancer results in tumor 
chemoresistance related to the inactivation of the PTEN 
tumor suppressor gene. This is mediated by the IL-6 
inflammatory loop activation, leading to the expansion 
of the CSC population. Furthermore, this CSC popula-
tion secretes IL-6 to a much greater extent than non-SCs, 
which leads to a feedback loop that can be interrupted by 
an IL-6 receptor antibody, reducing the CSC population, 
tumor growth and metastasis [215]. A similar response 
to treatment with paclitaxel has been described in tri-
ple-negative breast cancer (TNBC) through the increase 
in the CSC population and tumor-initiating capacity 
in  vivo. After treatment, high autocrine TGF-ß signal-
ing and TGF-ß -dependent IL-8 overexpression occur, 
which promotes the potential of chemotherapy-resistant 
CSCs; therefore, this resistance can be reduced by phar-
macological inhibition of TGF-ß [216]. Indeed, another 
study focused on blocking the IL-8 receptor CXCR1 
using repertaxin, which selectively depleted CSC popula-
tion in human breast cancer lines [149], confirming the 
role of this interleukin in maintaining the tumor stem 
population.

Moreover, the interaction of CSCs with TME cells 
also promotes a protective environment against chemo-
therapeutic agents. For example, both CSCs and MSCs 
secrete SDF-1/CXCL12, which interacts with their recep-
tor CXCR4 overexpressed in CSCs [107, 217, 218]. This 
interaction contributes to the resistance of the tumor 
cells to chemotherapy-induced apoptosis [217, 219]. In 
fact, multiple trials with CXCR4 inhibitors have been 
conducted in solid tumors with promising anti-tumor 
effects [220]. Furthermore, another pathway that con-
fers drug resistance to CSCs is their ability to influence 
cells of the immune system. CSCs from chemoresistant 
tumors were found to produce multiple proinflammatory 

cytokines (such as IL-1ß, IL-6, IL-8 or tumor necrosis 
factor) that also act to generate tumorigenic myeloid cells 
[221].

In addition to these strategies, the EMT has also been 
postulated as a therapeutic target against CSCs for its 
ability to promote chemoresistance through EMT-related 
signaling pathways and EMT transcription factors such 
as TGF-ß/Smad4, Hedgehog and Wnt [222, 223]. There 
are multiple examples of chemoresistance via EMT pro-
motion such as doxorubicin resistance by upregulation 
of ABC transporters [224–227] or other apoptotic drugs 
such as cisplatin, paclitaxel and trastuzumab [228–231], 
which strongly supports the development of new thera-
pies targeting EMT.

The epigenetic control of chemoresistance has been 
extensively described in CSCs addressing the classic CSC 
signaling pathways and the expression levels of genes 
related to chemoresistance and growth factor receptors 
and others [232]. Unfortunately, there is no research on 
the epigenetic control of secretome-associated chem-
oresistance in CSCs or in the total pool of the tumor 
population. Only one recent publication has related the 
inhibition of the HSP90 chaperone with a higher sensi-
tivity to chemotherapy and a lower release of various 
cytokines (IL-8 and others) and, more interestingly, the 
HSP90 chaperone affected the survival of chemoresist-
ant ALDH cell subpopulations [233]. In addition, there 
is little information available on oncogenic mutations 
associated with the influence of chemoresistance on CSC 
secretome, but p53 mutations have been reported to 
induce the release of an altered secretome by the tumor 
pool subpopulations that affects chemoresistance and 
other tumor processes [234, 235]. For this reason, the 
epigenetic control of the secretome and oncogenic muta-
tions seems plausible hypotheses related to chemoresist-
ance generated by the secretome, but additional studies 
are necessary to confirm them.

It is worth discussing how therapeutic treatments 
can alter the composition and abundance of the tumor 
secretome, a phenomenon called “therapy-induced 
tumor cell secretome,” which enhances the survival and 
expansion of CSCs [236]. For example, treatment with 
paclitaxel or gemcitabine in TNBC increases the produc-
tion of HIF factors, whose increased activity leads to an 
increase in the CSC subpopulation through IL-6 and IL-8 
signaling and increased expression of multidrug resist-
ance. This suggests that a treatment based on chemo-
therapeutic agents combined with HIF inhibitors would 
help overcome chemoresistance [23]. However, chemo-
therapy is not the only treatment that can alter the tumor 
secretome. As shown in a previous study by our research 
team, the dose of radiation therapy administered in vitro 
and in  vivo affects the expression of several MMPs and 
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their inhibitors [237]. These alterations were related with 
the molecular profile of breast cancer. The study not 
only highlights the fundamental role played by the spe-
cific characteristics of each tumor and TME in response 
to treatment, but also that radiotherapy promotes the 
secretion of matrix remodeling enzymes involved in the 
dispersion, invasiveness and metastasis of CSCs and in 
the EMT process [237]. Additionally, Shen et  al. dem-
onstrated that chemotherapy induces breast cancer cells 
to secrete exosome-derived miR-9, miR-195 and miR-
203a, which induces CSC phenotypes and expression of 
stemness-associated genes, thus generating cancer cell 
communication and self-adaptation to survive treatment 
[39]. Thereby, miRNAs can also display chemoprotec-
tive functions, which means the secretome’s capacity to 
protect tumors against chemotherapy, as demonstrated 
by the mentioned studies, in which the released exoso-
mal miRNAs act in response to the treatment favoring 
the maintenance and expansion of CSCs, avoiding there-
fore the effect of the treatment and the development of 
relapses and metastatic processes.

To recapitulate, CSC secretome promotes chemore-
sistance through different strategies such as inducing 

the stem phenotype and EMT processes, apoptosis eva-
sion mechanisms and regulation of the immune system. 
Lastly, chemotherapeutic agents can alter the tumor 
secretome and consequently tumor cell functions and 
responses, with a negative effect on treatment outcomes.

Clinical implications and future trends
Given the importance of the interplay between CSCs and 
their niche, the new antitumor therapies focus on simul-
taneously targeting different communication routes to 
target TME and starve CSCs (Fig.  3). One of the most 
recurrent options is to target tumor vasculature, with 
several FDA-approved angiogenesis inhibitors available 
(see Table  2) such as bevacizumab (antibody directed 
against VEGF) or sorafenib and sunitinib, inhibitors of 
tyrosine kinase receptors (TKRs) that target multiple 
TKRs, including VEGF receptors (VEGFRs) and PDGF 
receptors (PDGFRs). The combination of both treat-
ment strategies has increased patient survival in the first 
months, usually in combination with other chemother-
apy approaches; however, in many of these patients the 
disease will progress [238]. This may be due to a lack of 
biomarkers to determine which patients will benefit from 

Fig. 3  Tumor response to different antitumor strategies. The failure of conventional therapies is due to the tumor and the CSC mechanisms to 
initiate the carcinogenesis process. For this reason, the new therapies focus on TME, including the CSC secretome. However, CSCs use different 
pathways to fulfill their functions; therefore, targeting only one of the pathways can lead to tumor relapse. The new therapies are aimed at 
simultaneously blocking several pathways for better outcomes
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these drugs and the doses required as well as to tumor 
adaptive resistance mechanisms [239, 240]. This tumor 
capacity to adapt to therapy by activating other alterna-
tive pathways has led to the development of strategies 
that combine anti-VEGF agents with other drugs target-
ing different pathways such as VEGFRs, TKRs and epi-
dermal growth factor receptors (EGFRs) inhibitors, with 
greater or lesser success [241]. Indeed, CSCs can also 
promote resistance to anti-angiogenic therapy, which 
leads to intra-tumor hypoxia states resulting in increased 
HIF-1 and HIF-2 expression and, therefore, increased 
risk of tumor propagation, CSC self-renewal, drug resist-
ance and even angiogenesis activation [23, 120–122, 
125–127]. For example, treatment of breast cancer with 
sunitinib and bevacizumab increased the CSC population 
through HIF-1 activation of Wnt pathway [242], and in 
pancreatic cancer and glioblastoma the use of a VEGFR 
and TKR inhibitor also increased the risk of invasion and 
metastasis related to intratumor hypoxic states [243–
245]. Nonetheless, when these drugs are used in combi-
nation with other cytotoxic drugs, the results are more 
promising [246, 247], which confirms the idea of using 

antiangiogenic drugs in conjunction with other thera-
pies for example targeting hypoxia [248] (Fig.  3). Fur-
thermore, antiangiogenic therapy failure has resulted in 
a different approach involving vascular normalization to 
improve drug delivery and limit hypoxia [116, 249]. 

Another widely used approach is to try to block the 
recruitment or function of stromal cells due to the ability 
of CSCs to promote their tumor niche. For example, pre-
clinical studies showed that targeting CCL2 or the CCL2 
receptor (CCR2) on tumor infiltrating macrophages 
improved chemotherapeutic efficacy, inhibited metasta-
sis and increased anti-tumor T-cell responses [72, 250, 
251]. However, these agents may need to be administered 
as adjuvant therapy and not as monotherapy [252, 253]. 
However, the results from clinical trials have not been as 
promising and a deeper understanding of the underlying 
mechanisms of the pathways involved is needed in order 
to success in the clinical translation [254]. A similar result 
has been observed in treatment with IL-6 inhibitors and 
its receptor where preclinical trials showed antitumor 
efficacy against different tumor types, but the clinical tri-
als do not seem to show good results [255]. This suggests 

Table 2  US FDA-approved secretome targeting drugs

Drug Target Cancer type References

Abiraterone Androgen deprivation therapy Prostate cancer [309]

Aflibercept Bind VEGF A and B and PGF Colorectal cancer [315]

Axitinib Against VEGR1-3, PDGFRs, c-Kit and FGFRs Advanced renal cell carcinoma and soft tissue sarcoma [316, 317]

Bevacizumab Antibody against vascular endothelial growth factor 
(VEGF)

Breast, colon and lung cancer [238]

Cabozantinib MET and VEGFR2 inhibitor Renal cancer and hepatocellular carcinoma [318]

Dacomitinib EGFRs inhibitor Metastatic NSCLC [319]

Enzalutamide Androgen deprivation therapy Prostate cancer [309]

Erdafitinib FGF receptor (FGFR) inhibitor Urothelial carcinoma [320, 321]

Erlotinib EGFRs inhibitor NSCLC and pancreatic cancer [322]

Gefitinib EGFRs inhibitor NSCLC [322]

Lapatinib EGFRs inhibitor Breast cancer and NSCLC and pancreatic cancer [322]

Lenvatinib Against VEGFR1-3, FGFR1-4, RET, c-kit, and PDGFRα Thyroid cancer [323]

Mogamulizumab Antibody against CCR4 Skin lymphoma [324]

Oncolytic virus 
(talimogene laher‑
parepvec)

Expressing GM-CSF to enhance systemic antitumor 
immune responses

Melanoma [308]

Osimertinib EGFRs inhibitor NSCLC [322]

Panitumumab Antibody against endothelial growth factor receptor 
(EGFR)

Colorectal carcinoma [325]

Pazopanib Against VEGR1-3, PDGFRs, c-Kit, and FGFRs Advanced renal cell carcinoma and soft tissue sarcoma [316, 317]

Ramucirumab VEGFR2 inhibitor Metastatic gastric and gastro-esophageal junction 
adenocarcinoma

[326]

Regorafenib TKRs inhibitor, including VEGFR1-3, FGFRs and PDGFRs Colorectal cancer and hepatocellular carcinoma [327]

Sorafenib
Sunitinib

Tyrosine kinase receptors (TKRs) inhibitors, that target 
multiple TKRs, including VEGF receptors (VEGFRs) and 
PDGF receptors (PDGFRs)

Kidney cancer, renal cell carcinoma and gastrointestinal 
stromal tumors

[238]

Vandetanib VEGFR2 and EGFR inhibitor Medullary thyroid carcinoma [328]
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the need for biomarkers that may help identify target 
patients and the need for using combined therapies [256–
258]. SDF-1/CXCL12 is another protein related to the 
recruitment and activation of ECs in TME by CSCs [94], 
to chemoresistance processes, and trials with inhibitors 
of SDF-1/CXCL12 or its receptor CXCR4 have shown 
high antitumor potential [220, 259–262] (Fig. 3). In fact, 
it is already used in the clinical practice [263]. Moreover, 
there is evidence of its potential as adjuvant therapy by 
sensitizing the tumor to other therapies [262, 264–268].

Another strategy used has been to directly attack CSC 
maintenance. For example, IL-8 antagonists such as 
reparixin in monotherapy or combined with other drugs 
have shown their efficacy in in  vitro and in  vivo assays 
[149, 269–272]. In fact, ongoing clinical trials demon-
strate no adverse effects and good prognosis [273, 274]. 
Other clinical trials targeting TGF-ß have been carried 
out, but its pro-tumorigenic effect depends on the tumor 
stage and the number of signaling pathways where TGF-ß 
is involved require special attention and robust biomark-
ers to predict its effect [275].

As previously reported, CSC-secreted factors promote 
EMT and confer drug resistance, and therefore, many 
studies have focused on EMT. For example, one of the 
most studied drugs is salinomycin, which inhibits EMT 
and sensitizes the tumor to the action of other drugs 
such as doxorubicin [276–282] (Fig.  3). Metformin also 
selectively acts against CSCs by targeting EMT, block-
ing the IL-6/STAT3 axis or decreasing EMT transcrip-
tional factors, and by increasing tumor sensitivity against 
other current therapies [197, 283–287]; therefore, it has 
been included in clinical trials [288]. Furthermore, to 
overcome the resistance acquired by EMT from EGFRs 
inhibitors, several studies that combine EGFRs inhibitors 
with drugs targeting other pathways, such as with FGFRs 
inhibitors, have been performed [289–292]. Despite 
some good results with some drugs against EMT, their 
toxicity and ability to promote metastasis still remain a 
concern [222].

In addition to the previous results, new therapies tar-
geting both the ECM [20, 293] and the MMPs are now 
emerging [294]. Since one of the main problems is that 
tumor ECM prevents the correct diffusion of drugs, 
numerous studies focus on either degrading the matrix, 
using collagenases, hyaluronidases or hyperthermia 
[295–300], and on blocking ECM synthesis de novo 
[301–305], although the latter has not provided positive 
results in clinical trials [306, 307]. MMPs, which pro-
mote angiogenesis, metastasis and the release of factors 
within the matrix, are also the target of new therapies 
like andecaliximab and several MMPs antibodies, specific 
or broad-spectrum MMP inhibitors, which have shown 
promising results in clinical trials [294] (Fig. 3).

Targeting cancer cell secretome involves not only 
inhibiting the release or binding with receptors, but 
rather to stimulate the release of certain factors. For 
example, talimogene laherparepvec (T-VEC), an onco-
lytic virus FDA approved for the treatment of advanced 
melanoma, has been engineered to selectively replicate 
within tumors and to promote the priming of T cell 
responses and produce granulocyte–macrophage colony-
stimulating factor (GM-CSF) to enhance systemic anti-
tumor immune responses [308]. The role of the tumor 
secretome in general, and of CSCs in particular, is emerg-
ing as an indicator of the response to treatment as shown 
by the two FDA-approved drugs for androgen depriva-
tion therapy for metastatic prostate cancer, abiraterone 
and enzalutamide, whose resistance seems to be related 
to a potentially immunosuppressive tumor microenvi-
ronment and whose treatment efficacy can be predicted 
using IL-6 levels [309].

Finally, a deeper knowledge about the components and 
dynamics of the CSC secretome has allowed the devel-
opment of new therapies specifically targeting CSCs 
through different factors and their overexpressed recep-
tors. In this respect, several clinical trials are conducted 
to determine the effect of different drugs against CSC 
secretome and to establish predictive biomarkers for bet-
ter treatment outcomes (Table 3).

Importantly, as the previous studies have shown, only 
some patients will effectively benefit from combined 
therapies while for other patients this type of therapy will 
be ineffective or even harmful, due to the high hetero-
geneity between patients. In this respect, several clinical 
trials are currently conducted to test and validate person-
alized therapies. A prospective clinical trial that began 
in 2015 is testing in  vitro 73 drugs in different combi-
nations in CSCs from glioblastoma samples to study 
the effect of personalized therapies [ClinicalTrials.gov 
identifier: NCT02654964]. Indeed, another prospective 
clinical trial suggested that personalized antitumor thera-
pies based on molecular profiles of cancer patients had 
a significant improvement in treatments, compared with 
current clinical strategies [ClinicalTrials.gov identifier: 
NCT02534675]. There is increasing evidence that the use 
of biomarkers would substantially improve clinical prac-
tice and patient well-being. Several factors of the CSC 
secretome have been proposed as biomarkers, like ceru-
loplasmin identified in pancreatic cancer, which could 
be used in addition to CA19-9 [310]. Ceruloplasmin was 
also identified in serum from ovarian cancer patients 
as a possible prognostic biomarker of chemoresistance 
[311]. Its overexpression by CSCs in glioma has also been 
studied, but currently only in vitro and in vivo [312]. In 
blood samples from breast cancer patients, CSC-secreted 
programmed death ligand-1 (PD-L1) was related with 
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Table 3  Clinical trials with CSCs and secretome

NTC number Target Status Drug Combined therapy Cancer type

NCT01861054 CXCR1 Completed Reparixin Breast cancer

NCT02001974 CXCR1 Phase 1/completed Reparixin Paclitaxel Breast cancer

NCT01190345 VEGF Phase 2/completed Bevacizumab Chemotherapy Breast cancer

NCT01283945 VEGFR/
FGFR/
PDGFR

Phase 1/2a completed Lucitanib Solid tumor

NCT02491840 CXCR4 Recruiting Prognostic biomarkers Gastric and cardia adenocarci‑
noma

NCT01955460 TGF-ß Phase 1/recruiting Aldesleukin Chemotherapy and lympho‑
cytes

Melanoma

NCT01248637 HIF-1 Completed Pimonidazole hydrochloride Pancreatic

NCT04137627 HIF-1 Phase 3/completed Melatonin Adjuvant chemotherapy Oral squamous cell carcinoma

NCT02499458 HIF-2 Completed Biomarkers Renal cancer

NCT03401788 HIF-2 Phase 2/not recruiting PT2977 VHL-associated renal cell 
carcinoma

NCT03108066 HIF-2 Phase 2/not recruiting PT2385 VHL-associated renal cell 
carcinoma

NCT01283945 FGF Phase ½ completed Lucitanib Solid tumors

NCT00657423 FGF Phase 3 Endostar Docetaxel and cisplatin Lung neoplasms

NCT01440959 FGF Phase 2/completed Dovitinib Gastrointestinal stromal tumors

NCT00372775 FGF Phase 2/completed Sunitinib Non-small cell lung cancer with 
brain metastasis

NCT01791985 FGF Phase 1
Phase 2
Completed

AZD4547 Anastrozole or letrozole Breast cancer

NCT01945164 FGF Completed XL999 Advanced malignancies

NCT00021229 FGF Phase 1/2 Imatinib mesylate Local irradiation therapy Glioma

NCT04207086 FGF Phase 2/recruiting Pembrolizumab
Lenvatinib

Melanoma stage III

NCT03303885 FGF Recruiting Preclinical biomarkers Liposarcoma

NCT00216112 PDGF Phase 2/completed Matinib, mesylate
Docetaxel

Ovarian cancer

NCT03851614 PDGF Phase 2/recruiting Cediranib Durvalumab Colorectal cancer
Pancreatic adenocarcinoma
Leiomyosarcoma

NCT01372813 PDGF Phase 2/completed Vandetanib Renal carcinoma

NCT04042597 PDGF Phase 2/recruiting Anlotinib hydrochloride Chordoma advanced cancer

NCT00367679 PDGF Phase 2/completed Pazopanib Non-small cell lung cancer

NCT00372775 PDGF Phase 2/completed Sunitinib Non-small cell lung cancer

NCT01105533 PDGF Phase 1/completed PF-00337210 Neoplasm

NCT00600821 PDGF Phase 2/completed AG-013736 (axitinib) Paclitaxel and carboplatin Non-small cell lung carcinoma

NCT04207086 PDGF Phase 2/completed Lenvatinib Pembrolizumab Melanoma stage III

NCT02178072 CCL5 Phase 2/recruiting 5-Azacitadine Head and neck squamous cell 
carcinoma

NCT03126630 CCL5 Phase 1/2 recruiting Pembroli
Anetumab ravtansinezumab

Pleural malignant mesothelioma

NCT03964337 CCL5 Phase 2 Cabozantinib Prostate cancer

NCT02125344 CCL5 Phase 3/completed Chemotherapy Breast cancer

NCT02432378 CCL5 Phase ½ recruiting Cisplatin and DC vaccine Celecoxib
CKM

Ovarian cancer

NCT00653250 PEG2 Completed Celecoxib Lung cancer
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metastasis and has been proposed as a potential follow-
up biomarker by immune checkpoint blockers [313]. 
However, finding robust markers can be challenging. As 
for antiangiogenic therapies, numerous biomarkers have 
been proposed since the approval of bevacizumab, being 
VEGF-A the most promising. However, in clinical trials 
its efficacy could not be proven [314] and more research 
is still needed to identify predictive and prognostic 
biomarkers.

Conclusion
The evidence included in this review demonstrates 
that CSCs regulate multiple tumor hallmarks through 
the expression of several growth factors, interleukins, 
cytokines and extracellular vesicles, and that a greater 
understanding of the pathways that dictate tumor behav-
ior is needed for the development of new antitumor ther-
apies. Furthermore, these therapies must target not only 
tumor proliferating cells and CSCs, but also they need to 
be combined with other therapies targeting TME. The 
interconnected signaling pathways involved in the altered 
secretome must also be targeted, since tumors can 
develop evasion mechanisms and have different alter-
native routes to fulfil their functions. Lastly, robust bio-
markers are needed to identify those patients most likely 
to benefit from these therapies in order to personalize 
antitumor treatments (Fig. 4).
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