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Abstract 

The Chimera antigen receptor (CAR)-T cell therapy has gained great success in the clinic. However, there are still major 
challenges for its wider applications in a variety of cancer types including lack of effectiveness due to the highly com-
plex tumor microenvironment, and the forbiddingly high cost due to the personalized manufacturing procedures. In 
order to overcome these hurdles, numerous efforts have been spent focusing on optimizing Chimera antigen recep-
tors, engineering and improving T cell capacity, exploiting features of subsets of T cell or NK cells, or making off-the-
shelf universal cells. Here, we developed induced pluripotent stem cells (iPSCs)-derived, CAR-expressing macrophage 
cells (CAR-iMac). CAR expression confers antigen-dependent macrophage functions such as expression and secretion 
of cytokines, polarization toward the pro-inflammatory/anti-tumor state, enhanced phagocytosis of tumor cells, and 
in vivo anticancer cell activity. This technology platform for the first time provides an unlimited source of iPSC-derived 
engineered CAR-macrophage cells which could be utilized to eliminate cancer cells.
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To the Editor,
Recently, CAR-iPSC-differentiated CAR-expressing T 
cells and NK cells have been reported to have potent 
cytotoxic activity against cancer cells, and they represent 
a new family of engineered stem cell-derived immune 

cells for CAR therapies [1, 2]. Myeloid cells such as mac-
rophages have been utilized as a type of effector cells 
to combat cancer cells by means of their phagocytosis 
function [3, 4]. However, immortalized macrophage cell 
lines are not applicable to clinical settings, and bone mar-
row or PBMC-derived primary macrophages are not 
efficiently engineered, thus leaving iPSC-derived mac-
rophage cells as a great source for myeloid cell-based 
immunotherapy. Upon challenge with antigen-expressing 
cancer cells, CAR-expressing iPSC-induced macrophage 
(CAR-iMac) cells showed antigen-dependent mac-
rophage functions. Expression of a CAR targeting tumor-
associated antigen conferred CAR-iMac cells in vitro and 
in vivo anti-tumor effects.

First, we started from deriving iPSCs from peripheral 
blood mononuclear cells (PBMC) of a healthy donor with 
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non-integrating episomal vectors encoding reprogram-
ming factors (Fig.  1a), and isolated single iPSC clones 
(Additional file 1: Fig. S1). The materials and methods are 
shown in detail in the Additional file  2. Then, we com-
pared different CD19 CARs and chose the conventional 
CAR to introduce into the iPSCs by lentiviral transduc-
tion (Fig. 1a and Additional file 1: Fig. S2a–g). Then, we 
established a protocol of myeloid/macrophage differen-
tiation to induce CAR-iPSCs toward myeloid cell lineages 

(Additional file  1: Fig. S2h). Differentiated cells showed 
typical macrophage marker gene expression (Fig.  1b, 
Additional file  1: Fig.  S4b–i). The products can be col-
lected from 20 to 30 day for multiple times to allow fur-
ther expansion to have a final yield of above 50-fold of 
the starting iPSCs (Additional file 1: Fig. S3a), with high 
purity indicated by ~ 100% of CD11b and CD14 expres-
sion at later days (Fig.  1b). Key macrophage marker 
genes were induced, whereas pluripotent marker genes 

Fig. 1  CAR-expressing iPSCs can differentiate into CAR-macrophage cells. a Overview of deriving CAR-iMacs from CAR-iPSCs. b Flow cytometry 
analysis of iPSC-derived cells at different stages of differentiation with stage-specific markers. c qRT-PCR showing pluripotent marker gene and 
key macrophage marker gene expression at different stages of CAR-iPSC differentiation. n = 3, error bar: standard error of the mean. d Hierarchical 
clustering of transcriptomes of CAR-iPSCs, their differentiated cells, and primary and untransduced iPSC-differentiated macrophages in different 
states. e Principal component analysis (PCA) of the same samples as in d. f Top GO terms enriched in genes up-regulated on day 28 differentiated 
CAR-iMac cells compared with CAR-iPSCs, and the right panel is an example of GSEA analysis of the GO terms. NES normalized enrichment 
score. P = 0: P value is a very small number. g UMAP plot showing separation between human iPSCs and CAR-iMac cells. h UMAP plot showing 
subpopulation clustering of CAR-iMac cells. Ten clustered C0–C9 were identified and labeled as 0–9 with different colors. i Heatmap showing 
blasting the C0-C9 clusters of cells illustrated in g against a human single-cell atlas database containing single-cell RNA-seq data of hundreds of 
cell types including macrophages (https​://scibe​t.cance​r-pku.cn). j Trajectory analysis of differentiated cells along a pseudotime axis. k Heatmap 
showing averaged expression of M1 or M2 signature pathway genes in different clusters of cells illustrated in i. l Heatmaps to compare (benchmark) 
the 10 clusters (C0-C9) of CAR-iMac cells against previously published M1 or M2 polarized macrophages using metabolism genes. Human iPS cells 
differentiated macrophages polarized by IFN-γ and LPS; IPS_M2: Human iPS cells differentiated macrophages polarized by IL-4; HM_M1: Human 
PBMC-derived macrophages polarized by IFN-γ and LPS; HM_M2: Human PBMC-derived macrophages polarized by IL-4

https://scibet.cancer-pku.cn
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disappeared (Fig.  1c; Additional file  3: Table  S1). RNA-
sequencing using differentiated cells showed that iPSCs 
clustered with precursor cells, and late-day differenti-
ated cells clustered with primary macrophage cells, or 
untransduced iPSC-differentiated macrophage cells from 
previous studies [5, 6](Fig.  1d, e). GO analyses showed 
strong enrichment of innate immunity-related functions 
in 28-day differentiated cells (Fig.  1f; Additional file  4: 
Table S2).

Next, we further dissected their subpopulations by 
performing single-cell RNA-sequencing analysis. These 
cells clustered away from undifferentiated CAR-iPSCs 
(Fig.  1g), and they appeared to be largely homogenous 
with only a small number of cells not clustered with the 
main population (Fig. 1h). Blasting the differentiated sin-
gle cells in a database of human cell atlas containing sin-
gle-cell RNA-sequencing data revealed that these iMac 
cells mainly clustered with macrophages (Fig.  1i and 
Additional file  1: Fig.  S6a). Trajectory analysis revealed 
that CAR-iMac cells went through a path from HSC 
to macrophage and DC cells without major branches 
(Fig. 1j, Additional file 1: Fig. S5c).

Moreover, all 10 clusters of differentiated cells showed 
strong signatures of M2 state [7–10] (Fig. 1k, Additional 
file 1: Fig. S6b). We further compared the single-cell data 
in the 10 clusters with bulk RNA-seq data from the LPS/
IFN-γ-polarized M1 cells or IL-4/IL-10-polarized M2 
cells, by examining M1/M2-associated genes (Fig.  1l, 
Additional file  1: Fig.  S5d), and found that most clus-
ters were more similar to the M2 state particularly when 
using metabolism genes as markers [5, 6, 11–15].

Next, we incubated the CAR (CD19)-iMac cells, CAR 
(meso)-iMac cells, or control iMac cells with CD19-
expressing K562 leukemia cells or mesothelin-express-
ing OVCAR3/ASPC1 ovarian/pancreatic cancer cells. 

Compared with K562 alone, K562-CD19 cells were more 
likely to be phagocytosed by CAR (CD19)-iMacs (Fig. 2a, 
b), and compared with control cells, CAR (meso)-
iMac showed increased phagocytosis activity against 
OVCAR3 and ASPC1 cells (Fig.  2g, h and Additional 
file 1: Fig. S7g). Intracellular signaling such as phospho-
rylation of ERK and NF-κB(P65) proteins were increased 
in CAR-iMacs co-cultured with CD19-expressing K562 
cells compared to K562 cells, or to CAR-iMac cells cul-
tured alone (Fig.  2c). We also examined cytokine gene 
expression in CAR(CD19)-iMac and CAR (meso)-iMac 
cells when they were incubated with tumor cells and 
found antigen-dependent increase in M1 pro-inflamma-
tory cytokine expression(Fig. 2d, j and Additional file 1: 
Fig.  S7h). Moreover, transcriptional analysis showed 
that CAR(CD19)-iMac cells and CAR(meso)-iMac cells 
showed strong enrichment of up-regulated genes in GO 
or KEGG terms of “positive regulation of cytokine secre-
tion,” “antigen processing and presentation,” and “Toll-
like receptor signaling pathway,” indicating these cells 
are more wired toward the pro-inflammatory state, when 
they encounter the antigen (Fig.  2e, f, i and Additional 
file 1: Fig. S7i).

When injected into NSG mice, these CAR-iMac cells 
expanded in  vivo till around day 3 for about two  fold, 
and persisted till more than 20 days and gradually disap-
peared after around 30 days (Fig. 2k). To test their anti-
tumor cell activity, we first intraperitoneally injected 
ovarian cancer cells HO8910 expressing a luciferase 
gene into NSG mice. In order to further polarize CAR-
iMac cells toward M1, we treated them with IFN-γ and 
washed IFN-γ away before injection (Additional file  1: 
Fig. S8). CAR(meso)-iMac-treated mice showed reduced 
tumor burden compared to the control group on day 4, 
11, and 14 (Fig. 2l, m). These data demonstrate that the 

(See figure on next page.)
Fig. 2  CAR-iMac cells showed antigen-dependent phagocytosis and anticancer cell functions in vitro and in vivo. a Confocal microscopy pictures 
showing phagocytosis of K562 or K562-CD19 cells (red) by CAR (CD19)-iMac cells (green). b Flow cytometry showing phagocytosis of K562 or 
K562-CD19 cells by CAR (CD19)-iMac cells. c Western blotting showing phosphorylation of ERK and NF-κB P65 in CAR (CD19)-iMac cells in the 
indicated conditions. d qRT-PCR showing cytokine gene mRNA expression when CAR (CD19)-iMac cells were incubated with K562 or K562-CD19 
cancer cells for 24 h. n = 3, error bar: standard error of the mean. e Top GO terms enriched in genes up-regulated in CAR-iMac cells. Right panel is 
GSEA analysis of “positive regulation of cytokine production.” f Top KEGG pathways enriched in genes up-regulated in CAR-iMac cells. Right panel 
is GSEA analysis of “antigen processing and presentation.” g Confocal microscopic images showing phagocytosis of OVCAR3 cells (red) by iMac or 
CAR (meso)-iMac cells (green). h Flow cytometry showing phagocytosis of OVCAR3 ovarian cancer cells by iMac or CAR (meso)-iMac cells. i GO 
term analysis with RNA-seq data showing the up-regulated genes in CAR (meso)-iMac cells. Right panel is GSEA analysis of “cytokine activity gene.” j 
qRT-PCR showing cytokine gene mRNA expression when iMac or CAR (meso)-iMac cells were incubated with OVCAR3 cells for 24 h. n = 3. Error bar: 
standard error of the mean. k 3 × 106 DiR dye-labeled iMac cells were intraperitoneally injected into NSG mice. n = 3. Error bars represent standard 
error of the mean. l 4 × 105 of luciferase-expressing ovarian cancer cells (HO8910) were intraperitoneally injected into NSG mice. Mice were treated 
4 h later with I.P. injection of PBS, 4 × 106 iMac or 4 × 106 CAR (meso)-iMac cells. Bioluminescence showing tumor development on the indicated 
days. Statistical analysis was calculated via one-way ANOVA with multiple comparisons between the PBS group and the CAR-iMac group. *P < 0.05; 
**P < 0.01. m Quantification of tumor burden (total flux) by bioluminescent imaging on day 4, 11, 14, and day 25 after CAR-iMac treatment was 
plotted. Data are presented as the median ± SD, with statistical significance calculated via one-way ANOVA with multiple comparisons. *P < 0.05; 
**P < 0.01, ns not significant
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CAR confers anti-cancer cell activities in iMacs in vivo. 
The efficacy and persistency need to be further improved 
by designing more effective CARs or further modifying 
the CAR-iMac cells to stay constitutively active.
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