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Abstract

challenges with the use of each one of them.

The immune system is the core defense against cancer development and progression. Failure of the immune system
to recognize and eliminate malignant cells plays an important role in the pathogenesis of cancer. Tumor cells evade
immune recognition, in part, due to the immunosuppressive features of the tumor microenvironment. Immuno-
therapy augments the host immune system to generate an antitumor effect. Immune checkpoints are pathways
with inhibitory or stimulatory features that maintain self-tolerance and assist with immune response. The most well-
described checkpoints are inhibitory in nature and include the cytotoxic T lymphocyte-associated molecule-4 (CTLA-
4), programmed cell death receptor-1 (PD-1), and programmed cell death ligand-1 (PD-L1). Molecules that block
these pathways to enhance the host immunologic activity against tumors have been developed and become stand-
ard of care in the treatment of many malignancies. Only a small percentage of patients have meaningful responses to
these treatments, however. New pathways and molecules are being explored in an attempt to improve responses and
application of immune checkpoint inhibition therapy. In this review, we aim to elucidate these novel immune inhibi-
tory pathways, potential therapeutic molecules that are under development, and outline particular advantages and

Keywords: Cancer, Immunotherapy, Tumor microenvironment, Immune evasion, Cytotoxic T lymphocytes,
Immunotherapy, Immune checkpoint therapy, Inhibitory pathways

Background

Until recently, chemotherapy, radiation, and surgery
were considered the cornerstones of cancer treatment.
In 2011, with the approval of ipilimumab [1], immune
checkpoint inhibitors were added to the therapeutic arse-
nal and revolutionized cancer management. These drugs
not only introduced a new mechanism to treat cancer but
also, in select cases, allowed for durable responses with a
less toxic profile.

In contrast to old cytotoxic therapies, immune check-
point inhibitors augment the host immune system to
fight cancer. Under homeostatic conditions, there is a bal-
ance between pro-inflammatory and anti-inflammatory
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signaling maintained by immune checkpoints. These
immune checkpoints are a set of inhibitory and stimula-
tory pathways that directly affect the function of immune
cells [2]. Malignant cells disrupt this balance by promot-
ing an immunosuppressive state that favors immune
evasion and tumor growth [2, 3]. Cancer cells recruit
regulatory T cells (Tregs), downregulate tumor antigen
expression, induce T cell tolerance and/or apoptosis,
and produce immune suppressive cytokines that stimu-
late inhibitory immune checkpoints [3]. This leads to a
unique and highly immunosuppressive tumor microen-
vironment (TME) [4]. In an attempt to overcome these
immunosuppressive conditions, immune checkpoint
inhibitors act by blocking the effects of selected inhibi-
tory pathways [2, 3, 5].

The best described inhibitory immune checkpoints
are cytotoxic T lymphocyte-associated molecule-4
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(CTLA-4), programmed cell death receptor-1 (PD-1),
and programmed cell death receptor-1 ligand (PD-L1). T
cell receptors (TCR) activate T cells. CTLA-4 is a mole-
cule that is upregulated on the surface of active T cells to
prevent excessive stimulation by the TCR. CTLA-4 com-
petes with CD28, a TCR co-stimulatory receptor, to bind
ligands like B7-1 and B7-2. This prevents CD28-mediated
T cell activation [6]. PD-1 is also upregulated on activated
T cells. PD-1 binds to its ligand, PD-L1, and transmits a
negative costimulatory signal that limits T cell activation
[6]. The oncogenic and immunosuppressive phenotype of
the TME is characterized by overexpression of PD-L1 by
cancer cells and overexpression of PD-1 and CTLA-4 by
T cells [7]. Blockade of these molecules leads to immune-
mediated anti-tumor response.

Ipilimumab, an anti-CTLA-4 monoclonal antibody,
was the first FDA-approved immune checkpoint inhibi-
tor and was used in patients with advanced melanoma
[1]. Anti-PD-1 agents (nivolumab, pembrolizumab, cemi-
plimab) and anti-PD-L1 agents (atezolizumab, avelumab,
durvalumab) were developed later [6]. These agents have
been approved for use in multiple solid and hematologic
malignancies [6]. They have improved treatment out-
comes, and durable response has been seen even after
discontinuation of therapy [8]. Their efficacy, however, is
limited to a small number of patients [9].

In an attempt to improve response to therapy, combi-
nation strategies have been utilized. Anti-CTLA-4 agents
have been used in conjunction with anti-PD-1/PD-L1
therapies. Although improved responses have been seen,
the incidence and severity of toxicities is a concern [6, 7].
In particular, overactivation of the immune system leads
to autoimmune-like side effects that can affect any organ
and may require discontinuation of therapy, hospital
admission, or management with systemic immunosup-
pressive drugs [10, 11].

New inhibitory checkpoints and their target molecules
are being investigated to expand the use and efficacy of
existing immune checkpoint inhibition therapy [12, 13].
In this review, we focus on these new investigational mol-
ecules (phase I and II clinical trials) and immune check-
point inhibitory pathways that have emerged within the
last 3 years. Table 1 compares these new investigational
therapies to existing anti-CTLA-4, anti-PD-1, and anti-
PD-L1 drugs. This is an update from a prior review of
novel investigational molecules in immune checkpoint
therapy published in 2018 [13].

We conducted a PubMed search using the keywords
and MeSH terms immunotherapy, immune checkpoint
therapy, and immune checkpoint inhibitors. In addi-
tion, we used the American Society of Clinical Oncol-
ogy (ASCO), American Association for Cancer Research
(AACR) meeting abstracts and posters, and information
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from ClinicalTrials.gov. We included information from
February 1, 2018, through June 1, 2020. We focused on
phase I and phase II clinical trials using novel agents
that block inhibitory immune checkpoints (e.g., LAG-3,
TIM3) or pathways that act on other inhibitory immune
mechanisms (e.g., CCL2/CCR2, IL-1, Ang2). Our data
summarizes both preliminary results of ongoing trials,
as well as completed clinical trials. We excluded phase
IIT or later stage clinical trials, trials that explored well-
described targets such as CTLA-4, PD-1, and/or PD-L1,
immune stimulatory agents, vaccines, viruses, immune
cellular therapy, and clinical trials involving the pediatric
population. A total of 36 phase I, 9 phase I/II, and 7 phase
II clinical trials were included in this review. A summary
of the results can be found in Table 2.

Inhibitory pathways

As mentioned previously, cell growth and immune eva-
sion by malignant cells result from Treg recruitment,
promotion of chronic inflammation and exhaustion of T
cells, and expression of molecules like PD-L1 or CTLA-
4, which induce a state of anergy among immune cells
located in the TME [3, 7, 14, 15]. Other inhibitory mole-
cules have been described. We classified these molecules
as inhibitory immune checkpoints or inhibitory targets
beyond immune checkpoints. This depends on whether
the manipulation of the pathway has direct or indirect
repercussions on T cell effects [13, 15, 16]. Figure 1 out-
lines the inhibitory pathways described below and their
effects on immune-cell function and tumorigenesis.

Inhibitory immune checkpoint targets

LAG-3 (CD223)

Lymphocyte activation gene-3 (LAG-3, CD223) is a
molecule that interacts with major histocompatibility
complex (MHC) class II and is expressed by activated
T cells, natural killers (NK) cells, B cells, and dendritic
cells (DCs) [13, 17]. Although the mechanism of action
of LAG-3 is incompletely understood, its interaction with
MHC class II causes downregulation of T cell cytokine
production, CD4 and CD8 T cell expansion, and favors
Treg phenotype adoption to prevent tissue damage and
autoimmunity [17] T cells located in the TME, known
as tumor-infiltrating lymphocytes (TILs), overexpress
LAG-3 which results in cell dysfunction, immune exhaus-
tion, and favorable conditions for tumor growth [18].
Thus, LAG-3 blockade favors immune activation against
malignant cells, while enhancing the effect of other
immune checkpoint inhibitors (ICIs) (e.g., anti-PD-1
agents) and possibly other forms of immunotherapy [17,
19]. Combining LAG-3 inhibitors with other ICIs, how-
ever, could result in an increased incidence and severity
of adverse events (AEs) [2]. Unfortunately, there are no
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biomarkers to predict who may benefit and who is likely
to develop AEs from this therapy [19].

Six molecules are being investigated: five monoclonal
antibodies (LAG525, REGN3767, BI 754111, tebotelimab,
and FS118) and one LAG-3-Ig fusion protein (IMP321)
as outlined below.

LAG525 (IMP701) is a monoclonal antibody (mAb)
that targets LAG-3 and blocks the interaction with its
ligand MHC class II. Preliminary data from a phase I/
II clinical trial using LAG525 with or without spartali-
zumab in patients with advanced malignancies were pub-
lished (NCT02460224) [20]. Out of 240 patients, 119
received LAG525 as monotherapy and 121 as combina-
tion therapy. Seventy-nine percent of patients receiving
LAG525 monotherapy and 67% of patients on combina-
tion therapy discontinued therapy due to disease pro-
gression. Eleven of 121 patients in the combination
group achieved a partial response (PR) and 1 patient had
a complete response (CR). Data regarding response to

monotherapy were not available [20]. Although the ther-
apy was well tolerated, dose-limiting toxicities (DLTs)
occurred in 4 patients in each arm and included grade 3
and 4 pneumonitis, acute kidney injury, and autoimmune
hepatitis [20]. This trial has completed recruitment, and
final data analysis is ongoing. Preliminary results of com-
bination therapy revealed a 10% overall response rate
(ORR [CR+ PR]). However, it remains unclear whether
this response was due to spartalizumab, LAG525, or
both. This should be clarified once the finalized data are
published. It would also be important to determine the
efficacy of spartalizumab monotherapy in this setting.
Another phase II clinical trial investigated combina-
tion therapy with LAG525 and spartalizumab in patients
with relapsed and/or refractory advanced solid or hema-
tologic malignancies (NCT03365791) [21]. At the time
of publication, 76 patients had been recruited, but only
72 were eligible for analysis. The primary endpoint was
disease control rate (DCR [CR+ PR+ stable disease]).
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Preliminary results revealed a DCR that was particu-
larly encouraging for neuroendocrine tumors (86%), dif-
fuse large B cell lymphoma (43%), and small cell lung
cancer (27%) [21]. The gastroesophageal cancer cohort
was terminated because it did not reach the threshold
for clinical benefit and was deemed futile [21]. No DLTs
were mentioned. AEs affected 57% of all patients. Only
11/72 patients had grade 3 or 4 AEs including dyspnea,
fatigue, and poor appetite [21]. This trial was completed,
and final analysis is pending. Preliminary results suggest
that LAG525 with spartalizumab may be effective for
some but not all malignancies. Further research to iden-
tify patients who will benefit the most is warranted. In
addition, it is important to determine whether the DCR
seen was due to LAG525, spartalizumab, or combination
therapy.

REGN3767 (R3767) is another mAb that targets LAG-
3, blocking its interaction with MHC class II. A first-in-
human phase I clinical trial using RGN3767 alone or in
combination with cemiplimab in patients with advanced
solid and hematologic malignancies who had progressed
on prior lines of therapy is ongoing (NCT03005782). A
total of 67 patients (25 in the monotherapy cohort and 42
in the combination group) with a median age 60—66 years
were included [22]. In the monotherapy group, the ORR
was 0% and the DCR was 48%. There were no CR/PR
and 12 patients achieved stable disease (SD). The ORR
in the combination group was 5% and the DCR was 31%.
Two patients achieved PR and 11 had SD [22]. There
were 12 patients that crossed over from monotherapy to
the combination arm. Two of these achieved PR and 6
SD. Overall, the drug was well tolerated with only 1 DLT
in the combination group consisting of a grade 4 eleva-
tion of creatinine kinase associated with a grade 3 myas-
thenic syndrome and a grade 1 elevation of troponin. In
addition, there was 1 case of grade 3 hypothyroidism in
the combination group and 2 cases of grade 3 elevation of
AST and ALT in the monotherapy group. The most com-
mon AEs were mild and included nausea in the mono-
therapy group and fatigue in the combination group [22].
Currently, the trial is still open and actively recruiting.
Based on the available results, it appears that combina-
tion therapy with REGN3767 is more effective than mon-
otherapy. Combination therapy, however, is more likely
to result in severe toxicities. Future research should clar-
ify which immunotherapy agent (cemiplimab or other) is
best when combined with REGN3767.

BI 754091, another anti-LAG-3 mAb, is being
tested in combination with anti-PD-1 therapy in
three separate phase I clinical trials (NCT03156114,
NCT03433898, NCT03780725) and one phase II clini-
cal trial (NCT03697304). A review of the data from
these trials was published and included here [23]. There
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were 321 patients with advanced or metastatic solid
tumors included. The median age of patients was 63,
and 62% (n=200) were males. Although there is no
mention of efficacy or clinical response, this medica-
tion showed an overall acceptable safety profile and was
deemed similar to other ICIs. There were 21 cases of
DLTs, particularly infusion-related reactions (n=6).
Serious AEs occurred in 77 patients (27%) includ-
ing pleural effusion (n=6), deep venous thrombosis
(n=4), cardiac tamponade (n=1), and acute kidney
injury (m=1). Eighty-eight patients (30.9%) had grade 3
or 4 toxicities consisting of fatigue or immune-related
AEs (irAEs). Although 86.7% experienced any AE,
most were grade 1 and 2 and included fatigue (22.8%),
fever (18.6%), or nausea [23]. The phase I trials are not
actively recruiting patients. The phase II trial, however,
is actively recruiting. While no efficacy data is availa-
ble, results of these trials will help elucidate the role of
anti-LAG3 therapy in combination with existing targets
(anti-PD1 therapy). In addition, it will provide infor-
mation regarding which combination strategy is most
effective.

Tebotelimab (MGDO013), a bi-specific mAb targeting
both LAG-3 and PD-1, has been studied in a phase I
clinical trial NCT03219268. This drug was used alone
or in combination with margetuximab (for patients
who had expression of HER2 on their tumors) in 207
patients with advanced or metastatic solid or hemato-
logic malignancies [24]. Fifty of these patients were part
of the dose-escalation cohort; 157 were included in the
expansion cohort. Among the dose-escalation group,
only 29 patients were response-evaluable. The ORR in
this group was 10%, and DCR was 55% with 3 patients
achieving a confirmed PR, 1 unconfirmed PR, and
13 SD [24]. In the expansion cohort, 41 patients were
response-evaluable. The ORR in this group was 7% and
DCR 59% with 3 cases of PR, and 21 with SD. Among 6
response-evaluable patients with HER2 expression who
received margetuximab, 3 had PR [2 breast cancer (BC),
1 colorectal cancer (CRC)], and 2 SD [24]. There were
2 cases of DLTs including immune-mediated hepatitis
and increased levels of lipase. AEs were reported in 146
patients (70.5%), but only 23.2% were grade > 3 includ-
ing rash, pancreatitis, and colitis. Most common grade
1-2 AEs were fatigue (19%) and nausea (11%) [24]. This
trial is currently open for enrollment. Patients appear to
respond to monotherapy with tebotelimab. This inves-
tigational drug will likely advance to subsequent phases
of clinical trial. Five out of 6 HER?2 positive patients had
response. While the sample size was small, it raises the
question of whether HER2 positivity might increase
response to anti-LAG-3 therapy. It is also possible that
the response seen was due to the anti-HER2 therapy.
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FS118, a bi-specific antibody that targets LAG-3 and
PD-L1, is being studied in a first-in-human phase I clini-
cal trial in patients with advanced or metastatic solid
malignancies who have failed prior anti-PD-1/PD-L1
therapy (NCT03440437). Recruitment was completed,
but no results have been published to date. While no effi-
cacy data are available, results of this trial will be impor-
tant to help define the role anti-LAG-3 therapy when
rechallenging patients who failed previous anti-PD-1/
PD-L1 therapy.

Eftilagimod alpha (IMP321) is a soluble recombinant
fusion protein that binds directly to MHC class II and
blocks the interaction with LAG-3 on T cells. This mol-
ecule was tested in conjunction with pembrolizumab in
18 patients with advanced melanoma in a phase I clini-
cal trial (NCT02676869) [25]. Fifty percent of patients
showed a tumor reduction, but no specifics were pro-
vided. Of these, one patient achieved CR [25]. There were
no DLTs reported nor were there any grade > 4 toxicities.
This trial is currently closed, and data analysis is ongo-
ing. Those eligible for enrollment were actively receiving
treatment with pembrolizumab and had not achieved
a CR. The results will help assess the added benefit of
anti-LAG-3 therapy in those patients with suboptimal
response to anti-PD-1 therapy.

In another phase I clinical trial, subcutaneous eftilagi-
mod alpha (IMP321) was combined with intravenous
avelumab in 8 patients with advanced solid malignan-
cies (NCT03252938) [26]. Preliminary results in 6 evalu-
able patients out of 8 patients demonstrated an ORR of
17% and DCR of 33% with 1 PR, 1 SD, and 4 progres-
sive disease (PD). Overall, the therapy was well tolerated
without DLTs. There was one grade 5 AE (acute kidney
injury), no grade 4 AEs, and twelve grade 3 AEs, none of
which were attributed to the study drug. Most AEs were
grade 1 and 2 and included nausea, pain, and injection
site reaction [26]. This trial is still active but is not cur-
rently recruiting. Final results will be important to assess
the role of anti-PD-L1 therapy in combination with anti-
LAG-3 therapy. In addition, it will help clarify which
combination therapy is better tolerated and most effec-
tive. Of note, this trial will also assess for the safety of
intratumoral and intraperitoneal use of eftilagimod alpha
(IMP321) (NCT03252938).

Finally, a phase II clinical trial using eftilagimod alpha
(IMP321) with pembrolizumab is also being performed
in patients with advanced or metastatic non-small cell
lung cancer (NSCLC) and head and neck squamous
cell carcinoma (HNSCC) (NCT03625323). Preliminary
results of 48 patients (73% males) with a median age of
66 years were published [27]. Among 17 patients with
NSCLC who received eftilagimod alpha (IMP321) as first
line, the ORR was 47% and DCR was 82% with 8 PR and
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6 SD. Additionally, 6/15 patients (40%) with HNSCC who
received eftilagimod alpha (IMP321) as second line and
who had not received PD-1/PD-L1 therapy also achieved
a PR [27]. The therapy was well tolerated, and only 3
patients discontinued treatment due to AEs. The most
common toxicities included cough (31%), fatigue (19%),
and diarrhea (15%) [27]. This trial is active and recruiting
patients. While the sample size was limited, the clinical
response to therapy appeared promising. The conclu-
sion of this trial will help determine the added benefit
of upfront anti-LAG-3 therapy to anti-PD-1 therapy. In
addition, subset analysis may help define the role of anti-
LAG-3 therapy in those patients previously treated with
anti-PD-1/anti-PD-L1 agents.

TIM-3

T cell immunoglobulin-3 (TIM-3) is an immune check-
point that promotes immune tolerance. It is a receptor
expressed by multiple cells including effector T cells,
Tregs, B cells, macrophages, NK cells, DCs and even
tumor cells [28, 29]. The main ligands include galectin-9,
phosphatidyl serine, and carcinoembryonic antigen-
related cell adhesion molecule (CEACAM)-1 [18]. TIM-3
stimulation by its ligands favors T cell exhaustion and
promotes the expansion of myeloid-derived suppres-
sor cells (MDSCs) in the TME, which facilitates tumor
growth [29]. High TIM-3 levels have correlated with poor
prognosis in various malignancies (e.g., prostate, renal
cell, colon, cervical) [29, 30]. TIM-3 blockade results
in decreased MDSCs and increased proliferation and
cytokine production by T cells [29, 30]. Given its expres-
sion in a variety of T cells and its synergistic effects with
other anti-PD-1 agents, TIM-3 blockade has become a
particularly attractive target [28, 29]. The synergism may,
however, increase the incidence and severity of irAEs.
TIM-3 also plays a role in immune defense against organ-
isms such as listeria and mycobacteria. Its blockade could
result in an increased risk of these infections [29, 30].

An IgG4 mAb against TIM-3 (MBG453) was inves-
tigated alone and in conjunction with spartalizumab
in a phase I/II clinical trial in patients with metastatic
solid malignancies (NCT02608268). Out of 173 patients
recruited, 87 received monotherapy and 86 received
combination therapy [31]. The ORR in the monotherapy
group was 0% and DCR was 29% with 25 patients achiev-
ing SD (four had received anti-PD-1/PD-L1 therapy).
In the combination group, ORR was 5% and DCR was
44% with 4 patients achieving a PR (one which had been
exposed to prior anti-PD-1/PD-L1 therapy), and 34 SD
(ten had been exposed to prior anti-PD-1/PD-L1 ther-
apy) [31]. There was one DLT reported in the combina-
tion cohort (grade 4 myasthenia gravis). Reported AEs
were mostly grade 1 and 2 with no grade 3 or 4 in the
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monotherapy cohort and only 11% in the combination
cohort. The most common AE was fatigue [31]. This trial
is active but no longer recruiting. Both DCR and ORR
were higher in the combination group. This suggests that
anti-TIM-3 therapy may be a good adjunct therapy. Addi-
tional trials are needed to determine the benefit gained
with addition of anti-TIM-3 agents to other existing
immune therapies.

Sym023 and TSR-022 are two additional monoclonal
antibodies targeting TIM-3 that are being investigated in
two phase I clinical trials in patients with advanced solid
tumors and lymphomas (NCT03489343, NCT02817633).
No preliminary results are available. The Symo023 trial
is now completed, and analysis is ongoing. The results
of this trial will provide clarity on the efficacy of single
agent anti-TIM-3 therapy. The TSR-022 trial is active and
recruiting. This anti-TIM-3 therapy is being used with
other investigational agents, nivolumab, or docetaxel.
Results will provide information regarding the benefit of
anti-TIM-3 agents combined with anti-PD-1 or chemo-
therapy agents. This will also help determine which com-
bination strategy should be used.

B7-H3 and B7-H4

B7 molecules are a family of transmembrane proteins
that interact with CD28 receptor family and modulate
either stimulatory or inhibitory immune signals [32,
33]. B7-H3 (CD276) is a member of the B7 family and is
expressed in different solid organs including the spleen,
liver, and heart. It is also expressed in immune cells such
as Tregs, DCs, NKs, B cells, and T cells. Although B7-H3
was thought to be an immune stimulator, more recently
it has been found to be an immunosuppressor. It damp-
ens T cell activation, proliferation, and cytokine produc-
tion and favors tumor progression [32, 33]. B7-H3 levels
can be elevated in various hematologic and solid malig-
nancies. Elevated levels correlate with poor prognosis in
patients with NSCLC, renal cell carcinoma (RCC), and
CRC [32, 33].

B7-H4 (B7S1, B7x, or Vtcnl), like B7-H3, is ubiqui-
tously expressed by solid organs like the brain, kidney,
liver, and spleen as well as immune cells particularly
tumor-infiltrating antigen-presenting cells (APCs) [34].
Although its biological effect remains controversial, it
appears to be mostly anti-inflammatory since it inhib-
its T cell activation and favors Tregs recruitment [34].
B7-H4 levels are elevated in different malignancies (e.g.,
lung, melanoma, RCC, CRC) and levels correlate with
worse outcomes [34].

Anti-B7-H3 and anti-B7-H4 agents enhance T cell
activation and promote cytotoxic activity and cytokine
release without a significant increase in irAEs. The
favorable side effect profile is thought to be due to a
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relatively low expression of B7-H3 and B7-H4 in nor-
mal tissues compared to the TME [32-34]. Better
understanding of B7-H3/B7-H4 and its contribution
to tumor growth, invasion, and immune evasion is
required in order to develop better molecules and bio-
markers to utilize these pathways [32].

MGCO018, a duocarmycin-based antibody drug con-
jugate (ADC) targeting B7-H3, was investigated as
monotherapy in a phase I/II clinical trial in 20 patients
with advanced solid malignancies (NCT03729596) [35].
Results revealed an ORR of 0% and a DCR of 15% with
3 patients achieving SD. These three patients had a sub-
stantial reduction in their target lesions. One patient
with small cell lung cancer (SCLC) had a 6% reduction,
one patient with NSCLC had a 24% reduction, and one
metastatic castrate-resistant prostate cancer (CRPC)
patient had a 29% reduction in tumor size [35]. Addi-
tionally, a metastatic CRPC patient had a substantial
improvement in his bone scan and PSA levels [35].
Unfortunately, the drug was toxic. Sixteen patients
(80.9%) experienced at least one AE, 11 of them with
at least a grade 3 AE. There were 3 serious AEs (pneu-
monitis, gastroenteritis, stasis dermatitis) and one DLT
(grade 4 neutropenia). Other common AEs included
leukopenia, skin toxicity, and infusion reactions [35].
The trial is ongoing and recruiting. Clinical responses
were limited; however, three patients did derive benefit.
It would be interesting to evaluate the characteristics
of these tumors that could explain the response. For
example, if pre-treatment B7-H3 levels were elevated in
responders, perhaps these levels could be used as a bio-
marker for patient selection. Lastly, clinical application
of this therapy may be limited due to the high incidence
and severity of toxicities.

FPA150, a mAb targeting B7-H4, has been evaluated
in a phase I clinical trial in patients with B7-H4 posi-
tive solid malignancies (NCT03514121). Recent reports
from 29 patients (median age 63) revealed an ORR 3%
and DCR of 38% with 1 PR and 10 SD. The PR patient
had platinum-resistant ovarian cancer and had received
treatment with seven lines of therapy and anti-PD-1
therapy [36]. No DLTs or grade 4/5 toxicities were
reported. AEs were seen in 18/29 patients with only
two grade 3 AEs (lymphopenia and hypertension). The
rest were grade 1 and 2 and included fatigue, decreased
appetite, and diarrhea [36]. This trial is currently active
but not recruiting patients. The clinical responses are
encouraging with acceptable toxicity profile. Additional
research is needed to validate the use of B7-H4 as a bio-
marker for patient selection. It would also be interest-
ing to assess whether other factors affect the response
in spite of high expression of B7-H4.
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A2aR and CD73

Adenosine, as a component of adenosine triphosphate
(ATP), mediates multiple physiologic and metabolic
pathways. Extracellular levels are usually low in nor-
mal tissues. Adenosine levels increase dramatically in
response to injury in an attempt to suppress excessive
inflammation and allow for wound healing [37]. These
effects are mediated by adenosine receptors including
A2aR and A2bR. These receptors are expressed on mul-
tiple immune cells including T cells, APCs, neutrophils,
and NK cells in which adenosine causes inhibitory effects
[38]. Unlike normal tissue, TMEs express high levels of
ATP as a consequence of tissue destruction, hypoxia, and
inflammation. Catabolism of ATP is mediated by CD73,
an enzyme that is normally expressed in tissues but over-
expressed by MDSCs, tumor-associated macrophages
(TAMs), Tregs, exhausted T cells, and tumor cells in the
TME. ATP catabolism leads to high concentrations of
extracellular adenosine which results in immune sup-
pression, cell exhaustion, and tumor growth [37]. High
levels of CD73 have been found in multiple malignancies
and are associated with an overall poor prognosis [39].

Several novel agents targeting these pathways are under
investigation in clinical trial. One potential advantage of
this therapy is its ability to be used in combination with
other anti-adenosine agents that target different steps
(e.g., A2aR with anti-CD73) and/or combination with
other types of immunotherapy. The main limitations with
these agents include their short half-lives, limited efficacy
when used as monotherapy, and uncertainty regarding
best combination approaches [40].

EOS100850 is an oral ICI that directly binds and
inhibits A2aR expressed by T-lymphocytes. It is being
evaluated as monotherapy in a first-in-human phase I
clinical trial in patients with refractory solid malignan-
cies (NCT02740985). Preliminary results of 21 patients
demonstrated an ORR of 0% and a DCR of 29% with 6
patients achieving SD [41]. Additionally, there were no
DLTs and no grade 3 or 4 AEs. The most common toxici-
ties included grade 1 and 2 nausea, vomiting, fatigue, and
elevation of liver enzymes [41]. This trial is active but not
enrolling patients at this time. Use of this agent as mono-
therapy resulted in limited activity, however, was well
tolerated. Further evaluation of this therapy in combina-
tion with other agents should help determine whether
improved response can be achieved. The oral administra-
tion of this drug is particularly attractive.

AB928 is an oral therapy with the ability to bind and
inhibit both A2aR and A2bR on immune cells. Three
phase I clinical trials are testing AB928 in combina-
tion with standard chemotherapy or anti-PD-1 therapy
in patients with advanced or recurrent solid malignan-
cies including triple-negative breast cancer (TNBC),
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ovarian cancer, gastroesophageal cancer, and CRC
(NCT03719326, NCT03720678, NCT03629756).
Recently, published results of 26 patients from all three
trials show an ORR of 4% and a DCR of 27% with 1
patient achieving a PR (ovarian cancer) and 6 SD (all
in the group receiving anti-PD-1 therapy) [42]. There
was one case of DLT consisting of a grade 1 rash, and 6
additional patients developed grade 3 or 4 AEs including
fatigue, nausea, and cytopenias [42]. The most common
AEs were grade 1-2 including nausea, fatigue, vomit-
ing, and elevated transaminases [42]. The NCT03719326
trial is actively recruiting, but the other two are no longer
enrolling patients. Preliminary results of these trials are
encouraging; however, ongoing investigation is needed
to determine the role of anti-A2aR and anti-A2bR as
adjunct therapy. It would be interesting to compare the
results of combination therapy to chemotherapy or anti-
PD-1 therapy alone.

CPI-006, a mAb directed against CD73, is being stud-
ied as monotherapy or combination therapy with an
anti-A2aR agent (CPI-444) in a phase I clinical trial in
patients with relapsed and incurable solid malignancies
(NCT03454451). Preliminary results for 17 patients (11
monotherapy, 6 combination therapy), predominantly
male (10 in the monotherapy cohort, 6 in the combina-
tion), and with a median age of 62—-64 were recently pub-
lished [43]. One patient in the monotherapy group with
widely metastatic CRPC had a substantial reduction
in the size of a target lesion after only 5 cycles, and this
response was sustained at the time of cutoff for the data
report. Although no other efficacy reports were available,
there was a substantial increase in the effector T cell-to-
Tregs ratio [43]. Therapy was well tolerated with no DLTs
and a few grade 1 infusion reactions that were easily con-
trolled with NSAIDs [43]. This trial is actively recruiting.
The data available is limited to one patient; however,
the patient appears to have had a robust response. It
will be interesting to assess whether others have similar
results. The use of T cell-to-Tregs ratio as a biomarker of
response to other adenosine-associated pathways (anti-
A2aR and anti-A2bR therapies, for example) could be
considered.

NKG2A

Natural killer group protein 2A (NKG2A) is a cell sur-
face receptor and member of the NKG2 family. It is
present on approximately 50% of circulating NK cells
and on about 5% of circulating CD8+T cells [44].
These levels substantially increase with chronic anti-
gen exposure and under chronic inflammatory con-
ditions [44]. Upon activation by its ligand HLA-E, a
nonclassical MHC class I molecule, NKG2A dimerizes
with CD94 and triggers a cascade of intracytoplasmic
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tyrosine-based inhibitory signals that suppress T and
NK cell effector function [45]. Virally infected cells,
for example, downregulate HLA-E favoring NK and T
cell activation and antiviral responses [46]. In contrast,
cancer evades the immune system by overexpressing
HLA-E as well as recruiting TILs with high NKG2A/
CD94 expression [45, 47]. High NKG2A expression
correlates with worse survival in ovarian and colon
cancer [45, 47].

Blockade of NKG2A enhances antitumor response by
T and NK cells. However, currently available data sug-
gest that monotherapy may be insufficient to achieve
anti-tumor effects [45]. Thus, combination therapy is
a more promising strategy to enhance other treatments
like anti-PD-1/PD-L1 or anti-EGFR agents [44, 45]. The
most effective combination strategy has not yet been
elucidated.

Monalizumab, a humanized mAb targeted against
NKG2A, was studied as monotherapy in a phase II clini-
cal trial in patients with platinum-resistant, recurrent
or metastaticc HNSCC (NCT03088059). Results of 27
patients (median age of 62), 16 (59%) of which had been
exposed to anti-PD-1/PD-L1 agents, were recently pub-
lished [48]. Specific cancers included oral cavity (26%),
oropharynx (41%), hypopharynx (26%), and larynx (7%).
Median progression-free survival (PFS) was 7.4 weeks,
and median overall survival (OS) was 27.7 weeks. ORR
was 0% and DCR was 22% with no objective responses
and 6/27 patients with SD [48]. The study was terminated
early because it did not meet its primary endpoint, objec-
tive response [48]. The safety profile was acceptable, and
none of the grade 3 or higher toxicities were attributed
to this drug [48]. The trial results presented confirm the
limited clinical efficacy of anti-NKG2A therapy when
used alone. While this arm of the trial was terminated
early, the combination arm is currently open and enroll-
ing patients.

In a separate phase II clinical trial, monalizumab is
being used in combination with cetuximab in patients
with platinum-resistant, recurrent or metastatic,
HNSCC who have received 2 or fewer lines of ther-
apy (NCT02643550). Recently published results of 40
patients revealed an ORR of 20% and a DCR of 58% with
a total of 8 patients achieving PR and 15 SD [49]. After
a median follow-up of 7.3 months, the median time to
response was 1.6 months. Therapy was well tolerated
according to previously published results from the same
group [50]. Most AEs were grade 1-2 and were easily
treated; however, no further details were provided [50].
This trial is currently enrolling patients. The results dem-
onstrate the role of anti-NKG2 therapy as an adjunct
treatment. It would be important to compare patients
treated with combination therapy to those receiving
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cetuximab alone. Further research is needed to assess its
use with other immune therapies.

PVRIG/PVRL2

Poliovirus receptor-related immunoglobulin domain
containing (PVRIG), also known as CD112R, is a recently
described protein and member of the immunoglobulin
superfamily receptors. It is expressed by CD4+ /CD8+T
and NK cells [51]. Its ligand, poliovirus receptor-related
2 (PVRL2, also known as CD112 and nectin-2), is
expressed by DCs under normal conditions. PVRIG
interferes with T cell activation, cytokine secretion, and
expansion once bound with its ligand [51]. This pathway
is often upregulated in cancer and TMEs. PVRIG is over-
expressed particularly in CD4 +and CD8+ TILs in ovar-
ian, breast, endometrial, lung, and kidney cancers [52].
PVRL2 can also be overexpressed in different malignan-
cies including ovarian, prostate, and endometrial cancers
[52]. Blockade of the PVRIG/PVRL2 pathway is attractive
because its effects are independent of the PD-L1 path-
way. This serves as an alternative therapeutic approach
for individuals who lack PD-L1 expression or whose
tumors are refractory to anti-PD-1/PD-L1 therapy [52].
Given its relatively recent discovery, it is unclear whether
these agents will be potent enough to be used alone or
whether they are more effective in conjunction with
existing therapies.

COM701, a first-in-class mAb targeting PVRIG, is
being studied in a phase I clinical trial in patients with
advanced or metastatic solid malignancies refractory to
standard therapies (NCT03667716). Recent results of 28
patients (16 treated with monotherapy and 12 in com-
bination with nivolumab) demonstrated a DCR of 57%
(16/28 patients) [53]. There were no CRs. There was 1
confirmed PR in the monotherapy group in a patient with
primary peritoneal cancer who had received therapy for
over 15 weeks. There was 1 additional patient in the com-
bination group who achieved an unconfirmed PR and
had been on therapy for over 34 weeks [53]. There were
no DLTs reported, and the most common AEs were grade
1 and 2 fatigue, rash, edema, and nausea [53]. The trial
is active and enrolling. There are limited data available;
however, the results suggest potential benefit of this ther-
apy without significant side effects. It may not only have a
role as an adjunct therapy but could also become a viable
alternative stand-alone treatment.

Inhibitory Targets Beyond Immune Checkpoints
CEACAM1, CEACAMS5, CEACAMS6, and FAK

CEACAM is a family of proteins that mediate different
physiological effects ranging from tissue organization and
angiogenesis to immune modulation [54]. CEACAMI1
serves as a ligand of TIM-3 and inhibits the function of
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NK and T cells [18, 55]. This molecule is expressed by
normal tissue, and it is often overexpressed in malignan-
cies [55].

CEACAMS5 serves as an adhesion molecule and is
widely expressed by normal tissue. It has been found in
various malignancies including breast, lung, gastrointes-
tinal, and genitourinary cancers. It plays a role in inhibi-
tion of cell differentiation, inhibition of apoptosis, and
interference with normal tissue architecture development
[56]. It also interacts with CEACAMI1 to inhibit NK-
mediated killing, release of inflammatory cytokines, and
interferes with the functioning of TILs [57]. CEACAMS5
serves as a tumor marker, particularly in CRC [56].

CEACAMSG6 (CD66c) is expressed by healthy tissue and
immune cells. It assists with tissue architectural organi-
zation and immune modulation including neutrophil
adhesion and activation [58]. In malignant cells, it pro-
motes proliferation, angiogenesis, tumor invasion, and
immune suppression by interfering with myeloid and T
cell activation [54, 56]. Importantly, CEACAMS6 stimula-
tion leads to the activation of various signaling pathways
including FAK, an important driver in the switch to an
invasive phenotype in cancer cells [56].

A theoretical advantage of targeting CEACAM pro-
teins is the dual antitumor effect by directly interfering
with tumor cell proliferation and invasion, while enhanc-
ing the immune system against cancer. A limitation of its
use, however, includes CEACAM’s effects on neutrophil
adhesion and activation [58]. Additionally, the lack of
expression of CEACAM family proteins in mice has lim-
ited the ability to test these agents in the preclinical, ani-
mal setting [56].

CM24, a recombinant humanized mAb directed
against CEACAM]1, is being studied as monotherapy
in a phase I clinical trial in patients with advanced or
recurrent solid malignancies (NCT02346955). Results
available for 27 patients (13 males, 14 females) with a
median age of 60 demonstrated an ORR of 0% and a DCR
of 30% with 8 patients achieving SD [59]. The median
OS was 4 months in the low-dose group compared to
6.2 months in patients who received higher doses. This
suggests that response may be dose-dependent. There
were no reported DLTs. The most severe AE was grade
3—4 gamma-glutamyl transferase (GGT) elevation seen
in 4 individuals. Most common AEs were grade 1 and 2,
particularly elevation in transaminases (7 patients) [59].
The study was terminated for unclear reasons. Publica-
tion of the final results is still pending. While it appears
the drug was well tolerated, there were no reports of PR
or CR. Perhaps the use of this agent in combination with
other therapies may enhance its efficacy.

NEO-201, a humanized mAb that targets CEACAMS5
and CEACAMES, is being studied as monotherapy in a
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phase I clinical trial in patients with CEACAMS5/6 posi-
tive, advanced solid malignancies (NCT03476681). Safety
and pharmacokinetic data for this drug were recently
published [60, 61]. Among 9 patients studied, the ORR
was 0% and DCR was 33% with radiological SD seen in 3
patients. The remaining 6 patients experienced radiologic
PD after 2 cycles. Those patients with SD were found to
have low-serum CEACAMS5 and low NK cell expression
of CEACAMLI. The opposite was true in those with PD
[60]. The authors concluded that low NK CEACAM1
expression and low-serum CEACAMS5 expression cor-
related with clinical response to this agent [60, 61].
NEO-201 was overall well tolerated with mild infusion
reactions seen in all patients, and moderate fatigue seen
in 3 of them [60, 61]. This study is actively enrolling. Pre-
liminary results did demonstrate modest clinical efficacy;
however, as outlined above perhaps combination ther-
apy could improve response. NK CEACAM1 and serum
CECEAMS5 expression could represent new biomarkers
to determine response to anti-CEACAM therapy. Addi-
tional trials are needed to validate these findings.

Defactinib, an oral tyrosine kinase inhibitor of FAK,
is being used in conjunction with pembrolizumab and
gemcitabine in patients with advanced pancreatic adeno-
carcinoma in a phase I clinical trial (NCT02546531). A
total of 28 patients were evaluated and divided into dose-
escalation phase (#=8) and expansion cohort (n=20).
In the dose-escalation cohort, ORR was 13% and the
DCR was 50% with 1 PR, 3 SD, and 4 PD. In the expan-
sion cohort, the ORR was 5% and the DCR was 60% with
1 PR, 11 SD, 7 PD, and 1 had a non-evaluable response
[62]. The median duration of treatment was 4.6 months.
No DLTs were seen and the most common grade 1 and
2 AEs included fatigue, anorexia, nausea, and vomit-
ing [62]. This trial is active but not recruiting. While the
preliminary results did demonstrate efficacy, it is hard
to determine the role anti-FAK therapy played given
the concurrent use of pembrolizumab and gemcitabine.
Further research is needed to determine the benefit of
anti-FAK therapy with or without immune and chemo-
therapeutic agents. In addition, it would be interesting
to assess the effects of anti-FAK therapy in combination
with anti-CEACAM therapy.

CCL2/CCR2

Chemokines promote migration, recruitment, differ-
entiation, and activation of immune cells, including T
effector cells, Tregs, neutrophils, and macrophages [63].
Chemokines are used by cancer cells to recruit immu-
nosuppressive cells (e.g., TAMs), promote angiogenesis,
and facilitate tumor growth, proliferation, and metas-
tasis [64]. Elevated levels of chemokines, particularly
C-C motif chemokine ligand 2 (CCL2), have been found
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in the TME. CCL2 exerts its activity through its recep-
tor, C—C motif chemokine receptor 2 (CCR2), which is
highly expressed by monocytes, DCs, and T cells [65].
In the TME, CCL2 activates Treg and inhibits CD8+ T
effector cell activation [66]. CCL2 is often overexpressed
by tumor cells, and CCR2/CCL2 overexpression has
been associated with worse outcomes in multiple malig-
nancies [65—67]. Blockade of this pathway may be used
to enhance the effects of T effector cells and potentiate
other forms of immunotherapy [66]. An area of concern
is the unknown effects of its blockade in healthy tissues,
given that the CCL2/CCR2 axis normally helps with
infection control and facilitates wound healing [68].

PF-04136309, an oral inhibitor of CCR2, is being stud-
ied in a phase I clinical trial in combination with nab-
paclitaxel and gemcitabine in patients with metastatic
pancreatic adenocarcinoma (NCT02732938). Results of
21 patients revealed an ORR of 23.8% and a DCR of 38%
with no CR, 5 confirmed PR, 1 unconfirmed PR, and 3
SD [69]. Response was indeterminate in 7 patients. Four
patients had PD, 1 of which was an early death. DLTs
included dysesthesia, hypokalemia, and hypoxia. There
was a 24% incidence of pulmonary toxicities includ-
ing three patients with grade 3 pneumonitis, one grade
4 hypoxia, and one grade 5 pneumonia. The authors
concluded that the use of PF-04136309 was associated
with worse pulmonary toxicities and no additional clini-
cal benefit compared to gemcitabine and nab-paclitaxel
alone [69]. The study was terminated early for adminis-
trative reasons and toxicity appears to be a concern based
on preliminary data. Further exploration of this target in
other cancers could be considered.

LIF

Leukemia inhibitory factor (LIF) is a crucial peptide
in embryogenesis. It promotes an immunosuppressive
microenvironment that protects the embryo from the
mother’s immune system, allowing its implantation and
survival [70].

LIF also plays a role in cancer because it favors the
immunosuppressive features of the TME by increas-
ing CCL-2 and decreasing CXCL-9 release by TAMs.
CXCL-9 is an important chemoattractant for cytotoxic
CD8+T cells [70]. LIF also enhances cancer cell prolif-
eration, favors the development of a pro-invasive phe-
notype, and promotes chemotherapy and radiotherapy
resistance [70]. Blocking this pathway could potentiate
the effects of immunotherapy, chemotherapy, and radio-
therapy. It is unclear whether the synergistic effects with
existing therapy would come at the expense of increased
immune toxicities. There is also concern that this therapy
could affect pregnancy, particularly since low LIF levels
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have been associated with poor blastocyst implantation
and infertility [71, 72].

MSC-1, a humanized IgG1 mAb targeting LIF, is being
evaluated in a phase I clinical trial as monotherapy in
patients with advanced, refractory solid malignancies
(NCT03490669). Results available from 41 patients who
received a median of 3 prior lines of therapy revealed a
DCR of 22% with 9 patients achieving SD that lasted over
16 weeks [73]. In addition, tissue samples confirmed an
increase in both M1:M2 ratio and cytotoxic CD8+T
cells. There were no DLTs. Although no grading is speci-
fied, the most common AEs included fatigue (20%) and
gastrointestinal symptoms (20%). There was one patient
with HNSCC who developed grade 2 osteonecrosis of
the jaw; however, he had previously received radiation
therapy to the area and had been exposed to denosumab
[73]. Unfortunately, this trial was terminated early due to
safety concerns. While the preliminary results were sug-
gestive of clinical benefit, further research is needed to
modify this agent to achieve better tolerability. If a safe
and efficacious alternative is developed, perhaps this
therapy could be combined with other agents in future
trials.

CDA47/SIRPa

CD47 is a molecule expressed by nearly all normal tissue
and serves as a marker of self-recognition. After bind-
ing the transmembrane protein ‘signal regulatory protein
alpha’ (SIRPa) located on the surface of macrophages,
CD47 prompts an anti-phagocytic signal [74, 75]. Under
normal conditions, CD47 is under expressed in damaged
cells to allow phagocytosis and tissue repair [75]. This
molecule is often overexpressed in malignant cells, which
blocks phagocytosis and favors metastatic dissemination.
Overexpression of CD47 has been considered a poor
prognostic factor in several malignancies including gas-
tric, liver, lung, and BC [75-79].

Myeloid cells, including TAMs and DCs, are the most
abundant type of cells in the TME. Inhibiting CD47 may
boost macrophage phagocytosis against malignant cells
[75, 80]. Additionally, the increase in antigen process-
ing and presentation by DCs and TAMs indirectly leads
to an enhanced tumor-specific cytotoxic T cell activ-
ity [81]. Anti-CD47 therapy may be safer than T cell-
directed therapy because phagocytosis of cancer cells
by macrophages would limit cancer cell content leakage
[75]. The widespread expression of CD47 within normal
tissues may limit its use. In particular, this therapy may
be associated with red blood cell destruction and anemia
[74, 82]. Lastly, higher or more frequent doses of therapy
may be needed to achieve therapeutic blockade, an effect
known as ‘antigen sink’ [74].
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Hu5F9-G4 (5F9) is a humanized mAb that binds
directly to CD47 and prevents its interaction with mac-
rophages. One phase I clinical trial used this mAb as
monotherapy in 43 patients with CRC, ovarian, adenoid
cystic carcinoma, breast, pancreatic, and head and neck
cancers (NCT02216409). The reported ORR was~5%
and DCR was 19% with 2 patients achieving PR (ovar-
ian and fallopian tube cancers) and 6 SD (CRC) [83]. The
median treatment duration was 18 weeks [83]. The most
common AEs occurred with higher doses of therapy and
included constitutional symptoms (50%), headache (34%),
and hematological toxicities including anemia (39%) and
lymphopenia (28%) [83]. This trial has been completed,
and final publication is pending. Early results did demon-
strate modest clinical benefit. Finals results will further
evaluate the efficacy of this therapy. If the data are con-
sistent with preliminary results and the toxicity is toler-
able, then future research could evaluate the use of this
therapy with other treatments in an attempt to increase
response further.

Another phase I/II clinical trial evaluated Hu5F9-G4
combined with rituximab in relapsed and refractory non-
Hodgkin’s lymphoma (NHL) patients (NCT02953509).
Data were available for 100 patients with a median age of
66 and a median of 3 prior lines of therapy [84]. Among
the 75 evaluable patients, the CR rate (CRR) was 21%
and ORR was 49% with 16 patients achieving CR and
21 achieving PR [85]. The median time to response was
1.8 months, and the median duration of response had not
been achieved after 12 months of follow-up [84]. DLTs
were reported in 4% of patients, but no specifics were
provided. Grade 3 AEs consisted of anemia affecting 15%
of patients. Most frequently reported AEs were limited
to grade 1 and 2 and included infusion reactions (38%),
gastrointestinal AEs (37%), headache (34%), and anemia
(27%) [84]. This trial is active and recruiting. The avail-
able data suggest an impressive clinical response. These
results support the use of this agent as an adjunct ther-
apy. While this trial was limited to patients with NHL,
future research can investigate whether this therapy is
helpful in other malignancies.

ALX148 is a SIRPa fusion protein bound to an inacti-
vated Fc domain that binds CD47 and results in blockade
of both CD47-downstream signaling and its interaction
with SIRPa on macrophages. A phase I clinical trial used
this agent alone and in combination with pembroli-
zumab, trastuzumab, rituximab, ramucirumab, 5FU,
paclitaxel, or cisplatin in patients with advanced solid
malignancies or refractory NHL (NCT03013218). Pre-
liminary results for 86 patients with HNSCC (n=53)
and gastric/gastroesophageal cancer (n=33) were
recently published [86]. Among patients with HNSCC,
52 received ALX148 with pembrolizumab and 1 patient
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received 5FU, a platinum, ALX148, and pembroli-
zumab. In this cohort, only 20 patients were evaluable for
response. Ten were naive to ICIs and 10 had received ICI
therapy before. Among ICI-naive patients, ORR was 40%
(4/10), the median PFS was 4.6 months, and the median
OS was not reached after 14 months of follow-up. Among
the patients who were not ICI-naive, the ORR was 0%,
the median PFS was 2 months, and the median OS was
7.4 months [86]. Patients with gastric/gastroesophageal
cancer received either ALX148 with trastuzumab (z = 30)
or ALX148, trastuzumab, ramucirumab and paclitaxel
(n=3). Among patients who received ALX148 and tras-
tuzumab alone that were response-evaluable (n=20),
ORR was 20%, median PFS was 2.2 months, and median
OS was 8.1 months [86]. As a group, 82/86 patients expe-
rienced an AE; however, most (=57, 66.2%) were of low
grade. The most common AEs included fatigue, elevated
transaminases, cytopenias, and pruritus [86].

Another cohort sub-analysis from the same trial
(NCT03013218) used ALX148 monotherapy in 25
patients with other solid malignancies [87]. DCR was 16%
with 4 patients achieving SD, including 1 patient with
NSCLC who had a 15% tumor reduction [87]. Twenty-
two patients developed a toxicity. There were two DLTs
consisting of neutropenia with infection and thrombocy-
topenia with a significant bleed. There was one grade 5
(fatal) toxicity that was under investigation. Four patients
developed grade 3 and 4 toxicities including infection,
pancreatitis, thrombocytopenia, and neutropenia. The
other AEs were grade 1-2 [87]. This trial remains open
and is actively recruiting. Final results will help assess
clinical efficacy across a broad range of malignancies and
provide comparison data. In addition, it will evaluate
ALX148 as both adjunct and monotherapy. Information
regarding the grade 5 toxicity will determine the future
application of ALX148.

TTI-662 is another SIRPa fusion protein bound to
an inactivated 1gG4 Fc domain that targets CD47 and
results in blockade of both CD47-downstream signal-
ing and its interaction with SIRPa on macrophages.
Unlike other anti-CD47 agents, TTI-662 does not bind
to human erythrocytes and does not cause hemoly-
sis [88]. A phase I clinical trial investigated this drug in
patients with advanced relapsed or refractory lympho-
mas (NCT03530683). Results were recently published
for use of this drug as monotherapy [88]. They included
19 patients (11 males, 8 females) with a median age of
62 years and a median of three previous lines of therapy.
The authors reported 1 patient (diffuse large B cell lym-
phoma) who had received 5 prior lines of therapy and
achieved a PR by week 8 and a CR by week 36 of treat-
ment. There were no DLTs reported, and two patients
developed grade 3-4 neutropenia. Grade 1 and 2
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post-infusion thrombocytopenia was seen but was usu-
ally transient. No severe thrombocytopenia or anemia
was reported [88]. This trial is actively enrolling. While
preliminary clinical response is hard to assess given
the limited data, the patient included had a remarkable
response. If the final results demonstrate similar out-
comes, this therapy may be a viable option for patients
with refractory lymphoma. Further research could assess
whether the addition of other therapies could augment
TTI-662's effect.

RRx-001 is a molecule that targets and downregu-
lates both CD47 on cancer cells and SIRPa on mac-
rophages [89]. A phase I clinical trial using this drug in
combination with nivolumab in patients with advanced
solid malignancies or lymphomas (NCT02518958) was
completed. Results available for 12 patients at 12 weeks
revealed an ORR of 25% and a DCR of 67% with 3
patients achieving PR, 5 SD, and 3 PD [90]. Although no
DLTs were reported, one patient discontinued therapy
due to pneumonitis and one voluntarily withdrew after a
post-procedural infection. The most common AE related
to RRx-001 was pain with the infusion (33%). Both pneu-
monitis (n=1, 8.3%) and hypothyroidism (n=1, 8.3%)
were attributed to nivolumab [90]. This trial is closed,
and final data analysis is pending publication. Early data
suggests that this therapy is well tolerated and provided
promising clinical response. The results will help assess
the benefit of the addition of anti-CD47 and anti-SIRP«
therapy to existing immunotherapy. If a benefit is seen,
further research could evaluate the ideal ICI to use in
combination with this therapy.

CSF-1 (M-CSF)

As mentioned previously, TAMs are abundant in the
TME. Under normal conditions, immature macrophages
can differentiate into an active, pro-inflammatory, antitu-
mor subtype (M1) or an immunosuppressive, pro-angio-
genic, and pro-tumoral subtype (M2) [91]. In the TME,
TAM:s tend to express an M2 profile which favors tumor
growth, angiogenesis, invasion, and early metastasis [92].
Increased number of TAMs within the TME correlates
with poor prognosis [93].

TAM recruitment and differentiation into an M2
phenotype occur, in part, due to the interaction of col-
ony-stimulating factor-1 (CSF-1 or macrophage-CSF
[M-CSF]) with its receptor, colony-stimulating fac-
tor-1 receptor (CSF-1R or M-CSF-R) [94]. The latter
is expressed by both TAMs and MDSCs. High levels of
CSE-1R have also been associated with poor survival in
several malignancies [95]. Blockade of the CSF-1 and
CSE-1R interaction enhances the antitumor effects of
immunotherapy and serves as an attractive therapeu-
tic target [96]. It is unclear how big a role of the CSF-1/
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CSE-1R interaction plays in TAM activity. For this rea-
son, it is also unclear what potential consequences this
blockade will have or even how efficacious it will be [97].
It is also uncertain who will derive benefit from these
therapies or what drug combination is most appropriate
[95].

Lacnotuzumab (MCS110) is a recombinant mAb
directed against CSE-1. It is being investigated in con-
junction with spartalizumab in a phase I/II clinical trial
in patients with advanced malignancies (NCT02807844).
Preliminary results from 48 patients with melanoma,
endometrial, pancreatic, and TNBC have been published
[98]. The DCR was 27%, and 3 of the patients included
had pancreatic cancer. One of them had a PR and 2 had
durable SD lasting more than 300 days [98]. No addi-
tional details regarding response were provided. No DLTs
were mentioned. There were some cases of grade>3
AEs including elevation of transaminases (12%) and
hyponatremia (10%). Most AEs were grade 1 and 2 and
included periorbital edema and elevated creatine kinase
(CK) [98]. This trial was recently completed, and final
results are pending publication. While clinical response
was seen, further information is needed to assess efficacy
and safety of this adjunct therapy. The trial evaluated ICI-
naive patients and those who had previously received
this therapy. It will be interesting to evaluate the subset
of melanoma patients who had been treated with ICIs. If
response is favorable, perhaps lacnotuzumab can be used
to augment response to ICls.

LY3022855 is a human mAb against CSF-1R which is
being studied in a phase I clinical trial as monotherapy
in patients with metastatic BC and metastatic CRPC
(NCT02265536). Results available for 34 patients (22 BC,
12 CRPC) were recently published [99]. In the BC group,
there were no CR or PR but 1 had a noticeable reduction
in a non-target neck mass. Only 7 of the CRPC patients
were evaluable for response. ORR was 0% and DCR was
43% with 3 patients achieving SD lasting up to 4 months
[99]. The severity of AEs was not available for review;
however, some side effects included fatigue (38.2%), ano-
rexia and nausea (26.5%, each), elevated lipase (23.5%),
and elevated CK (20.6%) [99]. This trial was completed,
and recently published data are consistent with the pre-
liminary findings. Among the breast cancer population,
the ORR was 0% and the DCR was 23% with no objective
responses and 5/22 SD. Two of these responses lasted
more than 9 months [100]. Future research can compare
the response of anti-CSF-1R to anti-CSF-1 therapies. In
addition, efforts could assess the efficacy of combination
therapy with anti-CSF-1R, anti-CSF-1, and other immune
therapies to improve clinical response.

SNDX-6352, another mAb targeting CSE-1R, is being
evaluated in a phase I clinical trial as monotherapy and



Marin-Acevedo et al. J Hematol Oncol (2021) 14:45

in combination with durvalumab in patients with refrac-
tory, advanced solid malignancies (NCT03238027).
Results from 32 patients with a median age of 61 and a
median of 5 lines of prior therapy demonstrated a DCR
of 13%. Four patients achieved SD that lasted more than
4 months [101]. There were two patients who developed
DLTs, one with grade 3 fatigue and one with grade 3
pneumonitis. Other grade 3 and 4 AEs were seen in 12
patients (38%) and included elevated CK (n=5), elevated
transaminases (n=3), elevated amylase (#=3), and
elevated lipase (n=2). Other non-severe AEs reported
included periorbital edema (31%), nausea (13%), and
anorexia (13%) [101]. This trial is active but not enroll-
ing patients. Clinical response was modest; however, this
was in the setting of heavily pre-treated disease. Finalized
data will help determine safety of combination strategies
and the benefit of monotherapy. Research utilizing alter-
native ICIs could be explored to determine the optimal
combination therapy if safety profiles are satisfactory.

Emactuzumab (RG7155) is another humanized mAb
that targets CSF-1R and is being studied as monotherapy
or in combination with paclitaxel in a phase I clinical
trial in patients with advanced or metastatic solid tumors
(NCT01494688). Finalized results from 153 patients (99
treated with monotherapy, 54 with combination ther-
apy) were published [102]. In the monotherapy cohort,
ORR was 0% and DCR was 13% with 13 patients achiev-
ing SD. Based on the PET-CT results, 11 patients had a
partial metabolic response and 40 had stable metabolic
disease. Eighty-nine patients in the monotherapy group
were unenrolled from the trial due to PD [102]. In the
combination group, ORR was 7% with 4 patients (3 BC,
1 ovarian cancer) achieving PR, including 2 patients who
had previously received a Taxane. DCR was 50% with
23 patients achieving SD. Based on the PET-CT results,
there were 21 patients with partial metabolic response
and 16 patients with stable metabolic disease. Forty-two
patients in the combination group discontinued the trial
due to PD [102]. Although no DLTs were reported in the
monotherapy group, there were 2 DLTs in the combina-
tion cohort. One patient developed both grade 4 hypoka-
lemia and grade 3 hemorrhagic enterocolitis, and one
patient died (grade 5 AE) from a bowel perforation [102].
The authors concluded that emactuzumab did not result
in clinically significant antitumor activity [102]. This trial
has been completed. While the trial did not reveal any
clinically significant benefit, perhaps combination with
other agents may yield different results. Further research
comparing the combination of anti-CSF-1R agents with
alternative chemotherapy or immunotherapy may be
beneficial.

Pexidartinib (PLX3397) is an oral inhibitor of
the tyrosine kinase activity of CSF-1R that is being
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studied in combination with paclitaxel in a phase I clini-
cal trial in patients with advanced solid malignancies
(NCT01525602). The results of 54 patients were available
for review [103]. Out of 38 patients evaluable, ORR was
16%, DCR was 50%, PD rate was 45% with 1 CR, 5 PR,
13 SD, and 17 PD. Two patients could not be assessed or
lacked confirmatory scans. There were 2 DLTs: one grade
3 atrial fibrillation and one grade 3 hypophosphatemia.
Grade 3 and 4 toxicities were seen in 38 patients (70%)
and included cytopenias, elevated transaminases, and
hypertension. Other AEs were grade 1 and 2 and included
fatigue, anemia, and gastrointestinal toxicities [103]. This
trial has been completed. Results are encouraging, and as
outlined previously, assessment of optimal combination
strategies are needed. In addition, it would be important
to study differences among responders and non-respond-
ers to better select patients for this therapy. The oral
administration of this drug is particularly attractive and
convenient for patients.

Another phase I clinical trial evaluated the use of pex-
idartinib with durvalumab in patients with advanced
or metastatic pancreatic adenocarcinoma or CRC
(NCT02777710) [104]. Nineteen patients were included:
12 males and 7 females with a median age of 56 years.
At 2 months, the ORR was 0% and the DCR was 21%.
Four patients achieved SD, including 2 microsatel-
lite unstable CRC patients whose response lasted more
than 6 months [104]. There were 2 DLTs consisting of
transaminase elevation, one which also included hyper-
bilirubinemia. Although no specific grading was pro-
vided, the most common AEs included rash, edema,
and gastrointestinal toxicities. The most common grade
3 or 4 toxicities related to pexidartinib included cytope-
nias, elevated transaminases, and fatigue [104]. The trial
has been completed, and final publication is pending.
It is hard to assess the efficacy of this therapy given the
limited results. In addition, 2 of the reported responses
occurred in patients with microsatellite unstable disease,
which is more likely to respond to PD-1/PD-L1 inhibitors
like durvalumab [105]. Further analysis will help deter-
mine the added benefit of the pexidartinib therapy. Per-
haps, future research could assess whether microsatellite
unstable disease also serves as a marker of response to
anti-CSF-1R therapy.

A phase I clinical trial evaluated pexidartinib mono-
therapy in Asian patients with symptomatic, advanced
solid malignancies (NCT02734433). The results were
available from 11 patients (6 males and 5 females) with a
median age of 64 years. Among the 8 evaluable patients,
the DCR was 67% with 1 PR and 4 SD [106]. The PR was
ongoing at the time of cutoff at 7.6 months, and the mean
duration of SD was 3.9 months. There were 3 patients
with PD. Although all patients experienced an AE, 5
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of them experienced at least one grade 3 or 4 AE. The
most frequent grade 3 or 4 AEs reported were elevated
transaminases and anemia [106]. This trial is ongoing but
not actively enrolling. Clinical response was promising,
and the therapy seemed to offer a reasonable side effect
profile. Further research should evaluate the efficacy
across a more diverse patient population as only Asian
patients were included.

IL-1 and IL-1R3 (IL-1RAP)

IL-1 was the first interleukin to be identified and is an
important regulator of inflammation and innate and
acquired immunity [107]. IL-1 has two basic isoforms,
IL-1a and IL-1f. IL-1a is present in the cytoplasm of non-
immune cell types and is released after cell death. IL-1f is
released by DCs and macrophages in response to inflam-
mation [108]. IL-1 (both a and P) exerts its function via
the IL-1 receptor 1 (IL-1R1) expressed by T cells, B cells,
NK cells, monocytes, macrophages, and DCs [108, 109].
IL-1R3 (also known as IL-1R accessory chain [IL-1RAP])
does not bind directly to IL-1, but it is recruited by the
complex formed when IL-1 binds IL-1R1. It is essential
for initiation of downstream signaling [109].

IL-1 overexpression in malignant cells contributes
to chronic inflammation within the TME and T cell
exhaustion [110, 111]. IL-1 promotes MDSC and TAM
recruitment which further enhances immunosuppres-
sion, angiogenesis, and endothelial activation that favors
tumor growth and metastasis [112, 113]. The IL-1 path-
way has become an attractive therapeutic target. Block-
ade of this pathway can be achieved either by directly
neutralizing IL-1 or by interfering with the IL-1R1 func-
tion (e.g., IL-1RAP inhibitor) [111]. An advantage of this
pathway is that blockade can occur at multiple steps. Pre-
liminary data suggest that this therapy is safe; however,
data are unavailable regarding long-term toxicities. Given
IL-1’s role in immune activation, the potential risk for
infection is also of concern [111].

CANO4 is a first-in-class, fully humanized, mAb that
targets IL-1RAP and blocks IL-1 a and [ signaling. A
phase I clinical trial using CANO4 as monotherapy in
patients with advanced or metastatic NSCLC, CRC,
BC, or pancreatic adenocarcinoma is being conducted
(NCT03267316). Results from 22 patients (14 males and
8 females) with a median age of 62 years and a median
of 3 prior lines of therapy were available [114]. Among
the 20 patients evaluated, the DCR was 45% with 9 SD
including 2 (1 NSCLC and 1 pancreatic adenocarci-
noma) whose response lasted more than 4 months. No
DLTs or grade 4-5 AEs were reported. There were three
grade 3 AEs including one infusion reaction, one leu-
kopenia, and one hypokalemia. The most common AEs
were grade 1-2 and included infusion-related reactions
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(41%), fever (27%), chills (23%), and nausea (23%) [114].
This trial is open and recruiting, and additional research
will help confirm clinical efficacy and tolerability. In the
future, efforts can evaluate combination therapy to fur-
ther improve response. In addition, the application of this
therapy could be explored in hematologic malignancy.

Canakinumab (ACZ885), a recombinant human IgG
mAb, binds and blocks IL-1p and is being investigated as
monotherapy and in combination with pembrolizumab
in a phase II clinical trial in patients with early-stage
NSCLC (NCT03968419). No results are available yet.
The trial is open for enrollment.

IL-8

IL-8, also known as CXCL8, is an inflammatory
chemokine that mediates its effects via IL-8R-A and B
(also known as CXCR1 and 2) [115]. Under normal con-
ditions, IL-8 is produced by monocytes, endothelial cells,
and epithelial cells in response to infection or tissue
injury. It plays a role in neutrophil recruitment and pro-
motion of angiogenesis to facilitate healing [116].

The IL-8/IL-8R axis is overexpressed in solid and
hematologic malignancies (e.g., breast, ovarian, lung,
Hodgkin’s lymphoma). It promotes angiogenesis and
facilitates oncogenic signaling, invasion, and resistance
[116]. IL-8 also induces an immunosuppressive TME by
recruiting MDSCs [116]. Elevated levels of IL-8 correlate
with worse outcomes and ICI resistance [117]. Inhibition
of IL-8 and its receptors are a promising target in immu-
notherapy. One potential limitation of this therapy is the
effect it may have on angiogenesis and immune response,
particularly in response to tissue injury and infection
[115].

BMS-986253, a fully human anti-IL-8 mAb, is being stud-
ied as monotherapy in a phase I clinical trial in patients with
metastatic or unresectable solid tumors (NCT02536469).
Preliminary results available for 15 patients demonstrated
an ORR of 0% and a DCR of 73% with 11 cases of SD and
4 PD [118]. PES was 73% at 24 weeks. Although no serious
or life-threatening AEs were reported, 33% (n=>5) devel-
oped mild constitutional symptoms, hypersomnia, or mild
hypophosphatemia [118]. The trial is completed, and final-
ized results are consistent with the preliminary data. The
final PFS was 53.3% at 5.5 months, and no grade>3 AEs
were reported [119]. Further research is needed to assess its
use in practice. Perhaps combination therapy will provide
improved clinical response.

Another phase Ib/II clinical trial is evaluating BMS-
986253 in combination with nivolumab in patients with
advanced solid malignancies (NCT03400332). No prelimi-
nary results are available. The study is active but not enroll-
ing. The results will help to determine whether the addition
of existing ICIs improves clinical response to BMS-986253.
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Semaphorins/SEMA4D
Semaphorins are a family of transmembrane proteins that
assist with axonal repair after neuronal injury, cytoskel-
etal changes, and migration of endothelial and immune
cells [120]. They also play a role in modulating immunity
and angiogenesis in the TME as well as favoring cancer
cell survival and metastasis [121]. Among this family,
SEMA3A, SEMA3B, and SEMA4D have all been impli-
cated in the recruitment of TAMs to the TME, and they
promote an immunosuppressive microenvironment [121].
SEMA4D (CD100) binds 3 types of receptors, Plexin-
Bl (PLXNBI), Plexin-B2 (PLXNB2), and CD72, which
are all expressed by APCs (B cells, monocytes, DCs),
endothelial cells, and tumor cells [122]. Upon bind-
ing to its receptor, SEMA4D promotes activation and
migration of endothelial cells and tumor cells. It blocks
immune infiltration of active T cells and favors a shift
toward Tregs. It also increases the levels of monocyte
chemoattractant protein 1 (MCP-1), the most important
chemokine for macrophage recruitment and differen-
tiation into TAM/M2 phenotype in the TME [122, 123].
The use of anti-SEMA4D agents has shown to revert
these effects and leads to an increased number of active
immune cells within the TME [122]. Anti-SEMAD4D
agents have been used in conjunction with ICIs to
improve response in those who failed prior ICI therapy.
Although the safety profile has been acceptable, there is a
risk for “on-target, oft-tumor” effects and immunological
defects given its widespread expression in normal tissue
[122]. Lastly, given the role of semaphorins in the nerv-
ous system, there is a theoretical risk of neurotoxicity,
particularly in developing or injured neuronal tissue.
Pepinemab (VX15/2503), a humanized IgG4 mono-
clonal antibody against SEMA4D, is being studied in a
phase I/II clinical trial in combination with avelumab in
patients with advanced-stage NSCLC (NCT03268057).
Preliminary results from 62 patients (only 50 were evalu-
able for response) were recently published [124]. Among
21 evaluable patients who were immunotherapy naive,
the ORR was 24% and the DCR was 81% with 5 patients
achieving PR and 12 SD. There were 3 of these patients
whose benefit extended beyond 1 year. A subgroup anal-
ysis revealed that patients who had a negative or low
PD-L1 expression had an ORR that was twofold—2.5-fold
greater with combination therapy than with single ICI
agents. In fact, 97% of patients with PR or SD had tumors
with negative or low PD-L1 expression [124]. Among 29
evaluable patients of the ICIs-refractory group, the ORR
was 7% and the DCR was 59% with 2 patients achiev-
ing PR and 15 SD. There were 7 patients in whom the
clinical benefit extended beyond 23 weeks. Although no
specific details about AEs were available, no AEs led to
drug discontinuation or death [124]. The trial has been
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completed, but the final results are pending publication.
Overall clinical response to therapy was promising, par-
ticularly in tumors with negative or low PD-L1 expres-
sion and those treated with combination therapy. Perhaps
additional research will support the use of anti-SEMA4D
agents as adjunct therapy in patients with low PD-L1
expression with NSCLC and other malignancies.

Ang-2

Angiopoietins 1 (Ang-1) and 2 (Ang-2) are growth fac-
tors that help maintain vascular integrity and play a role
in vascular homeostasis and growth [125]. Although
both molecules act on the same receptor, Tie2, they
have opposite effects. Ang-1 promotes vessel stability,
but Ang-2 disrupts the vascular integrity while promot-
ing sprouting and endothelial cell apoptosis [126]. Ang-2
also plays a role in inflammation by facilitating myeloid
cell adhesion and trafficking, increasing capillary leak-
age, and inducing monocyte polarization into M2/TAMs
phenotype that releases anti-inflammatory cytokines and
recruits Tregs [126, 127]. Ang-2 is overexpressed in the
TME and tumor vasculature. High levels of Ang-2 cor-
relate with worse outcomes in many malignancies [128].
Blockade of this pathway could simultaneously affect two
pro-tumorigenic pathways: angiogenesis and inflamma-
tion [126]. Additionally, increased Ang-2 levels are seen
in patients with ICI-resistant disease. Therapy targeting
this pathway could also help patients with ICI-resistant
cancers [128]. It remains unclear whether the use of anti-
Ang-2 molecules will impact non-tumor tissues. If it
does, it is also unclear what angiogenic and immunologic
implications would arise from this therapy.

Trebananib, an anti-Ang-1/Ang-2 neutralizing anti-
body that interferes with Tie-2 activation, is being stud-
ied in combination with pembrolizumab in a phase I
clinical trial in patients with advanced solid tumors
(NCT03239145). Results from 18 heavily pretreated
patients with microsatellite stable (MSS) CRC and a
median age of 51 years were recently published [129]. In
the 15 evaluable patients, DCR was 33% and ORR 7% with
1 patient achieving PR and 4 SD. Median time to progres-
sion was 2.6 months, and OS was 11.4 months. There
were no DLTs, and no grade 3 or 4 AEs attributed to tre-
bananib. Other reported AEs included abdominal disten-
tion, diarrhea, edema, and proteinuria, each occurring in
40% of patients [129]. The trial remains open and is cur-
rently recruiting patients. While results are only available
for MSS CRC patients, the results are suggestive of some
benefit to combination therapy with pembrolizumab and
trebananib. A previous clinical trial reported an ORR of
0% and a PES of 11% among MSS CRC patients receiving
pembrolizumab monotherapy [130]. Additional studies
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will be needed to confirm these findings and determine
the benefit of this combination.

CLEVER-1

Common lymphatic endothelial and vascular endothelial
receptor-1 (CLEVER-1) is a scavenger receptor that is
found on endothelial cells and tissue-M2 phenotype mac-
rophages [131]. This molecule mediates cellular adhe-
sion and cell trafficking, and it has also been linked with
immune modulation mediated by M2 macrophages [132].
CLEVER-1 is expressed by TAMs. Elevated CLEVER-1
levels have been associated with poor prognosis in cer-
tain malignancies [132]. Blockade of the pathway results
in a reduced number of CLEVER-1-expressing TAMs. It
also induces an M1 macrophage phenotype in the TME
and reactivates and recruits CD8+T cells [132]. Anti-
CLEVER-1 agents could be effective when combined
with other ICIs, particularly in aggressive, non-respon-
sive tumors and even in the so-called cold tumors [132].
The ideal sequence of therapy is uncertain. It is unclear
whether this therapy should be used before or after
immunotherapy in an attempt to turn “cold tumors” into
“hot tumors” Additionally, the ideal combination of ther-
apies and long-term toxicities, particularly given its role
in endothelial cell function, are unknown.

FP-1305, a humanized IgG4 mAb targeting CLEVER-1,
is being studied as monotherapy in a phase I/II clini-
cal trial in patients with advanced and refractory solid
malignancies (NCT03733990). Preliminary results are
available for 30 patients (22 females and 8 males) with
a median age of 65 years [133]. ORR was 3% and DCR
was 27% with 2 patients achieving PR (one was a heav-
ily treated CRC), 6 SD, and 22 PD. At the time of cut-
off, only 1 patient remained in the study, and the other
29 patients had been unenrolled due to PD or provider’s
choice [133]. Patients’ serum Treg levels decreased, and
CD8+T cells and NK cells were increased compared to
baseline. There were no DLTs. Although 67% of patients
experienced an AE, there was only one grade 3-4 AE
(infected seroma). One individual developed serious AEs
including pneumonitis (grade 1), dermatitis, myositis,
and thyroiditis (each grade 2). The most common grade 1
and 2 AEs included fatigue, fever, elevated transaminases,
and gastrointestinal toxicities [133]. This trial is active
and recruiting. The preliminary data suggests a poten-
tial change in the TME from a “cold” to “hot” TME using
this therapy. If this finding is confirmed, perhaps this will
allow for a better response to other immune therapies.
As mentioned above, the sequence of therapy or need for
upfront combination treatment could also be explored.
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Axl

Axl (also known as UFO, ARK, Tyro7, or JTK11) is a
tyrosine kinase receptor member of the TAM (Tyro3/
Axl/Mer3) receptor family. It is generally expressed by
platelets, endothelial, cardiac, hepatic, nervous, and
immune cells such as monocytes, macrophages, NKs,
and DCs [134]. After binding to its ligand, Gas6, Axl pro-
motes cell survival, activates phagocytosis, and induces
an immunosuppressive phenotype in DCs, macrophages,
and NK cells [134, 135]. In addition to its direct immu-
nosuppressive effects, Axl decreases antigen presentation
and increases immunosuppressive cytokines, indirectly
interfering with T cell activation [136].

Axl also plays a role in the development of cancer. It
favors cancer cell proliferation and promotes resistance
to chemotherapy, targeted therapy, radiation therapy,
and immunotherapy. Axl enables malignant cell migra-
tion and invasion. This is made possible by AxI’s ability to
regulate vessel growth and induce an epithelial-to-mes-
enchymal transition (EMT) which favors the develop-
ment of the malignant cell invasive phenotype [135]. Axl
is upregulated in hematologic and solid malignancies and
is associated with poor prognosis [134].

Ax] may have therapeutic benefit, and agents target-
ing the receptor or its tyrosine kinase activity are being
developed [135]. Blockade of Axl may result in “on-tar-
get, off-tumor” toxicities given its widespread expression.
It is uncertain whether these agents are potent enough to
be used as monotherapy. If they must be combined, it is
unclear which agents to use [135].

Enapotamab vedotin (EnaV) is an ADC formed by an
IgG1 mAb against Axl and a microtubule inhibitor. It is
being evaluated as monotherapy in a phase I, first-in-
human clinical trial, in patients with relapsed, refractory
solid malignancies (NCT02988817). Preliminary results
from 47 patients, predominately female (87%) with a
majority age less than 65 were published [137]. The
reported ORR was 6%. The DCR was 55% with 3 patients
achieving PR and 26 SD. There were 6 DLTs including
constipation, vomiting, GGT elevation, febrile neutro-
penia, and diarrhea. Forty-six patients experienced an
AE. Thirty-one cases were grade 3 and 4 AEs including
fatigue, diarrhea, and vomiting. The most common grade
1 and 2 AEs included fatigue, nausea, constipation, and
poor appetite [137]. This trial remains open for enroll-
ment. Initial clinical response is encouraging; however,
toxicity is a concern. Further research could expand the
use of this therapy to include hematologic malignancy.

Phosphatidylserine
Phosphatidylserine (PS) is a phospholipid located in the
inner layer of the plasma membrane of eukaryotic cells.
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Once the cell dies, the PS is moved to the outer layer of
the membrane and is exposed [138].

PS receptors (PSR) are a family of receptors expressed
by endothelial cells, MDSCs, macrophages, DCs, B, T,
and NK cells. PSRs can directly or indirectly (with the
help of bridging proteins) bind PS [138]. Examples of PSR
include the TIM receptors (directly bind PS) and TAM
receptors (indirectly bind PS) [138]. The PS/PSR interac-
tion triggers efferocytosis and activates inhibitory path-
ways that prevent the development of inflammation in
response to apoptosis [138].

PS is overexpressed by tumor and endothelial cells
by the tumor vasculature and TME. Levels are further
increased with chemotherapy and radiation exposure
that result in cancer cell death and PS release [139]. Tar-
geting this pathway, either by blocking PS directly or the
PSRs (e.g., TIM or TAM receptors as discussed above),
can enhance immune response against the tumor and
potentiate the effects of chemotherapy and radiother-
apy [138]. Use of this therapy could be limited given the
widespread PSR expression and potential effects of its
blockade in healthy tissue.

Bavituximab, an IgG3 mAb against PS, is being investi-
gated in combination with sorafenib in a phase II clinical
trial in patients with advanced, unresectable hepatocel-
lular carcinoma (HCC) (NCT01264705). Results from 38
patients with a median age of 61 were available for review
[140]. The ORR was 5%. The DCR was 58% with 2 patients
achieving PR and 20 SD. The median time to progres-
sion was 6.7 months, and the median OS was 6.1 months.
Although this was better than historical controls, the
primary endpoint of median time to progression of
8.2 months was not met, and thus, results were deemed
inconclusive [140]. There were no DLTs, or grade 4—5 AEs
reported. The reported incidence of AEs was 63%, all were
grades 1-3 and included diarrhea (32%), fatigue (26%),
and anorexia (24%) [140]. The trial was completed, and
final results are pending publication. Unfortunately, the
preliminary results did not meet their primary endpoint.
The study was limited to HCC, and it is unclear how other
malignancies might respond to this therapy.

Conclusion

Immunotherapy revolutionized oncology and improved
outcomes and survival for many cancer patients. ICIs
targeting CTLA-4 and PD-1/PD-L1 have become a
cornerstone in the management of malignancy. Unfor-
tunately, response to ICIs remains low. In an attempt
to improve response to immunotherapy, additional
agents and inhibitory pathways are being explored, but
their development remains a challenge. Often, these
novel therapies are not potent enough to be used alone
but can potentiate the effects of existing therapy. This
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synergism may result in an increased incidence and
severity of immune-related AEs. New toxicities includ-
ing ‘on-target off-tumor’ effects have been described,
and the effects of these therapies on healthy tissue
remains a concern. Future research is needed to iden-
tify biomarkers that could help select patients who may
benefit the most while also avoiding significant tox-
icities. Many of these therapies lack activity in ‘cold’
TMEs. Strategies to promote a switch to ‘hot” TMEs
may enhance the efficacy and expand the application
of these therapies. Despite these challenges, immune
checkpoint inhibitors remain a vital and promising tool
in the fight against cancer.
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