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Abstract 

Background:  Liver cancer remains the leading cause of cancer death globally, and the treatment strategies are dis-
tinct for each type of malignant hepatic tumors. However, the differential diagnosis before surgery is challenging and 
subjective. This study aims to build an automatic diagnostic model for differentiating malignant hepatic tumors based 
on patients’ multimodal medical data including multi-phase contrast-enhanced computed tomography and clinical 
features.

Methods:  Our study consisted of 723 patients from two centers, who were pathologically diagnosed with HCC, ICC 
or metastatic liver cancer. The training set and the test set consisted of 499 and 113 patients from center 1, respec-
tively. The external test set consisted of 111 patients from center 2. We proposed a deep learning model with the 
modular design of SpatialExtractor-TemporalEncoder-Integration-Classifier (STIC), which take the advantage of deep 
CNN and gated RNN to effectively extract and integrate the diagnosis-related radiological and clinical features of 
patients. The code is publicly available at https://​github.​com/​ruiti​an-​olivia/​STIC-​model.

Results:  The STIC model achieved an accuracy of 86.2% and AUC of 0.893 for classifying HCC and ICC on the test set. 
When extended to differential diagnosis of malignant hepatic tumors, the STIC model achieved an accuracy of 72.6% 
on the test set, comparable with the diagnostic level of doctors’ consensus (70.8%). With the assistance of the STIC 
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To the editor
Liver cancer is the sixth most commonly diagnosed can-
cer and the third leading cause of cancer death in the 
world according to 2020 global cancer statistics [1]. A 
substantial number of malignant liver tumors are primary 
tumors, including HCC and ICC [2]. In clinical settings, 
the metastasis of tumors to the liver is also frequently 
encountered [3]. The treatment regimen for the different 
subtypes of hepatic tumors is all distinct [4], and multi-
phase CECT has become the primary tool for diagnosis of 
hepatic tumors before surgery [5]. However, the differen-
tial diagnosis of malignant hepatic tumors is challenging, 
and misdiagnosis prior to surgery can mislead the treat-
ment decision. An automated diagnostic model is desir-
able to be developed, which can assist doctors in hepatic 
tumors diagnosis, reduce observer variations and improve 
diagnostic efficiency. Few preliminary studies utilized 
deep learning to differentiate hepatic tumors [6–9], but 
they lacked detailed classification for malignant hepatic 
tumors, especially for ICC. Herein, we proposed a novel 
deep learning model, which was specifically customized 

for the differential diagnosis of malignant hepatic tumors 
based on patients’ preoperative multi-phase CECT and 
clinical features. All 723 patients enrolled in our study 
were pathologically confirmed with one of the follow-
ing malignant hepatic tumors: HCC, ICC and metastatic 
liver cancer (Fig.  1A). The training and test sets were 
split, with 499 and 113 patients from center 1, respec-
tively. The external test set consisted of 111 patients from 
center 2, which was considered as additional verification 
(Additional file 2: Table S1). Our proposed model has the 
modular design of SpatialExtractor-TemporalEncoder-
Integration-Classifier (STIC), which takes the preproc-
essed multi-phase CECT images (Additional file 2: Figure 
S1) and corresponding encoded clinical features (Addi-
tional file  2: Table  S2) as input, and finally output the 
score for each category (Fig. 1B). The Python code imple-
menting the model is available at https://​github.​com/​ruiti​
an-​olivia/​STIC-​model. The materials and methods are 
shown in detail in the Additional file 1.

model, doctors achieved better performance than doctors’ consensus diagnosis, with an increase of 8.3% in accuracy 
and 26.9% in sensitivity for ICC diagnosis on average. On the external test set from center 2, the STIC model achieved 
an accuracy of 82.9%, which verify the model’s generalization ability.

Conclusions:  We incorporated deep CNN and gated RNN in the STIC model design for differentiating malignant 
hepatic tumors based on multi-phase CECT and clinical features. Our model can assist doctors to achieve better diag-
nostic performance, which is expected to serve as an AI assistance system and promote the precise treatment of liver 
cancer.

Keywords:  Artificial intelligence, Liver cancer, Contrast-enhanced CT, Computer-assisted diagnosis, Multimodal data

(See figure on next page.)
Fig. 1  The flowchart of dataset setup, the architecture of the STIC model and the performance on primary malignant hepatic tumors classification. 
A This study consisted of 612 patients in method development cohort and 111 patients in external validation cohort, who were pathologically 
diagnosed with HCC, ICC or metastatic liver cancer. B The STIC model contains four different modules. SpatialExtractor module is a deep CNN that 
uses convolutional layers to extract detailed spatial features of CECT images. TemporalEncoder module uses gated RNN to mine the changing 
pattern among different CECT phases. In the Integration module, the TemporalEncoder module is concatenated with the vector of encoded 
dummy clinical variables. Finally, in the Classifier module, the Integration output is passed through the softmax activation function to implement 
the classification task. C The ROC curves of five-fold cross-validation of the STIC model for classifying benign and malignant hepatic tumors in 
the preliminary study, where the mean ROC curve was obtained by interpolation of the ROC curves of each fold, with mean AUC of 0.987. D 
Comparison of the performance for differencing HCC and ICC on the test set by ROC curve analysis. The AUC of the STIC model was 0.893 (95% 
CIs, 0.803–0.982), which was much higher than 0.709 (95% CIs, 0.573–0.845) in the Naive RBG model and 0.766 (95% CIs, 0.644–0.888) in the Naive 
joint model. E Among three models, the STIC model produced the best performance in distinguishing two primary malignant hepatic tumors, with 
accuracy of 86.2% (95% CIs, 74.6%-93.9%), sensitivity of 0.892 (95% CIs, 0.746–0.970) and specificity of 0.810 (95% CIs, 0.581–0.946), where sensitivity 
and specificity are defined by viewing HCC as positive and ICC as negative. The error bars represent 95% CIs calculated by Wald Z Method with 
Continuity Correction for accuracy, sensitivity and specificity and by DeLong method for AUC. F Using McNemar’s Chi-squared test, the STIC model 
outperformed the Naive RBG model with an increase of 25.9% (95% CIs 11.0%-40.7%, p value = 0.001) in accuracy and 0.270 (95% CIs 0.082–0.459, p 
value = 0.009) in sensitivity. It also outperformed the Naive joint model with an increase of 17.2% (95% CIs 3.7%-30.8%, p value = 0.016) in accuracy 
and 0.189 (95% CIs 0.015–0.363, p value = 0.046) in sensitivity. G The distribution of the predicted score for HCC and ICC according to three models. 
For two benchmark models, the score predicted had much wider distribution. Our proposed STIC model had a more concentrated distribution 
of predicted scores for both HCC and ICC. H Comparison of the performance of the STIC model and two benchmark models using different 
extractor’s backbone for binary classification of primary malignant hepatic tumors. Using Cochran’s Q test, there were no significant differences in 
the diagnostic level among STIC models with different extractor’s backbone. For Naïve RGB models with different extractor’s backbone, there were 
significant differences in sensitivity (p value < 0.001) and specificity (p value = 0.012). For Naïve joint models with different extractor’s backbone, 
there were also significant differences in sensitivity (p value < 0.001) and specificity (p value < 0.001)
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Differentiation between benign and malignant 
hepatic tumors: a preliminary study
As a preliminary study, we trained the STIC model for 
benign and malignant hepatic tumors classification on 
a relatively small dataset, with 152 pathologically con-
firmed benign hepatic tumors and 159 malignant hepatic 

tumors (Additional file 2: Table S3). Using five-fold cross-
validation, our proposed model achieved the mean accu-
racy of 93.2% and AUC of 0.987 (Fig. 1C and Additional 
file 2: Table S4), which demonstrated the ideal classifica-
tion ability of the STIC model.

Fig. 1  (See legend on previous page.)



Page 4 of 7Gao et al. J Hematol Oncol          (2021) 14:154 

Binary classification of primary malignant hepatic 
tumors
We then trained the STIC model for differentiating two 
primary malignant hepatic tumors on the training set 
and achieved the accuracy of 86.2% on the test set. For 
comparison, we also built two benchmark models, Naïve 
RGB model and Naïve joint model (Additional file  2: 
Figure S2), which used channel assignment strategy 
reported by previous studies [7]. According to ROC anal-
ysis, the STIC model achieved better performance than 
two benchmark models, with AUC of 0.893 (Fig. 1D). In 
terms of accuracy, sensitivity and specificity, the STIC 
models also produced the best performance (Fig. 1E and 
Additional file 2: Table S5), with significant increase com-
pared with two benchmark models (Fig. 1F). The scores 
predicted by the STIC model had more concentrated dis-
tribution both for HCC and ICC (Fig. 1G). Using differ-
ent extractor’s backbone in SpatialExtractor module, the 
STIC model’s performance always remained stable with-
out significant changes. However, the performance of two 
benchmark models using different extractor’s backbone 
fluctuates greatly, failing to maintain a balance between 
sensitivity and specificity (Fig.  1H and Additional file  2: 
Table S6). The combination of deep CNN and gated RNN 
in two modules of our STIC model can effectively extract 

the spatial and temporal features of multi-phase CECT, 
which is more powerful than the channel assignment 
strategy used in benchmark models.

Multinomial classification of malignant hepatic 
tumors and performance of the STIC‑assisted 
diagnosis
We extended the proposed STIC model to classify three 
types of malignant hepatic tumors and achieved the total 
accuracy of 72.6% on the test set. The micro-average and 
macro-average AUC of the STIC model was 0.868 and 
0.852 (Fig.  2A). The AUC for diagnosis of HCC, ICC 
and metastasis was 0.937, 0.727 and 0.878, respectively 
(Fig. 2B). We further evaluated the performance of doc-
tors’ consensus diagnosis and model assisted diagnosis 
on the test set. The total accuracy of the doctors’ consen-
sus was 70.8%, and three STIC-assisted doctors achieved 
the average accuracy of 79.1%, with an increase of 8.3% 
than doctors’ consensus (Fig.  2C and Additional file  2: 
Table S7). There were no significant differences in accu-
racy, sensitivity and specificity for each type of tumors 
between the STIC model and doctors’ consensus diag-
nosis (Fig.  2C and Additional file  2: Table  S8), which 
showed that our proposed STIC model is comparable 
with human experts’ performance. When comparing the 

Fig. 2  Model’s performance on the multinomial classification of malignant hepatic tumors A Micro-average and macro-average ROC curves of the 
STIC model for differentiating HCC, ICC and metastasis on the test set. B The ROC curves of the STIC model for HCC, ICC, metastasis diagnosis on 
the test set and corresponding diagnosis points of doctors’ consensus and three STIC-assisted doctors. The orange star represents the diagnostic 
performance of doctors’ consensus. Three triangles with different colors represent the diagnostic performance of three STIC-assisted doctors, 
respectively, and the red pentagon represents the average diagnostic level of these three doctors. For the ICC diagnosis, the performance of 
doctors’ consensus diagnosis was below the ROC curve of the STIC model, and the performances of three STIC-assisted doctors were all above the 
ROC curve. C The total accuracy of the STIC model was 72.6% (95% CIs, 63.4%-80.5%), and the total accuracy of the doctors’ consensus was 70.8% 
(95% CIs, 61.5%-79.0%). Three STIC-assisted doctors achieved the total accuracy of 77.0% (95% CIs, 68.1%-84.4%), 78.8% (95% CIs, 70.1%-85.9%) 
and 81.4% (95% CIs, 73.0%-88.1%) on the test set, respectively. Using Cochran’s Q test, there was no significant differences in the diagnostic level 
among three STIC-assisted doctors. When comparing the diagnostic level between three STIC-assisted doctors and doctors’ consensus diagnosis, 
there were significant differences in sensitivity for ICC (p value = 0.038). D The case study of three test samples pathologically diagnosed with 
ICC. For case 1, the enhancement pattern of CECT was typical, where ICC tumor showed homogeneously low attenuation on NC phase, faint 
peripheral enhancement on ART phase and gradual centripetal enhancement on PV phase. The diagnosis of doctors’ consensus was ICC. The 
output of the STIC model was {HCC: 0.067, ICC: 0.646, metastasis: 0.287}. All three STIC-assisted doctors independently diagnosed it as ICC. For 
case 2, the enhancement pattern of CECT was similar with the typical pattern of HCC tumor, exhibiting low attenuation on NC phase, the early 
peak of enhancement on ART phase, and followed by a continuous decrease in PV phase. The doctors’ consensus misdiagnosed it as HCC. The 
output of the STIC model was {HCC: 0.881, ICC: 0.067, metastasis: 0.052}, which also diagnosed it as HCC incorrectly. All three STIC-assisted doctors 
misdiagnosed it as HCC. For case 3, there was peripheral enhancement on ART phase, but it was not obvious to the human eyes. The doctors’ 
consensus misdiagnosed it as metastasis. The output of the STIC model was {HCC: 0.114, ICC: 0.587, metastasis: 0.299}, which diagnosed it as 
ICC correctly. All three STIC-assisted doctors diagnosed it as ICC correctly. E The case study of three test samples pathologically diagnosed with 
metastasis. For case 1, the doctors’ consensus misdiagnosed it as ICC. The output of the STIC model was {HCC: 0.031, ICC: 0.343, metastasis: 0.626}. 
Two STIC-assisted doctors independently diagnosed it as metastasis correctly. One STIC-assisted doctor misdiagnosed it as metastasis. For case 2, 
the doctors’ consensus misdiagnosed it as ICC. The output of the STIC model was {HCC: 0.306, ICC: 0.240, metastasis: 0.454}. All three STIC-assisted 
doctors independently diagnosed it as metastasis correctly. For case 3, the doctors’ consensus misdiagnosed it as ICC. The output of the STIC model 
was {HCC: 0.173, ICC: 0.176, metastasis: 0.651}. All three STIC-assisted doctors independently diagnosed it as metastasis correctly. F The ROC curve 
analysis of the STIC model for HCC, ICC, metastasis diagnosis on the external test set for additional verification. The AUC for diagnosis of HCC, ICC 
and metastasis on the external test set was 0.986, 0.881 and 0.920, respectively. G Comparison of the performance of the STIC model on the test set 
from center 1 and on the external test set from center 2 for differentiating malignant hepatic tumors. Using McNemar’s Chi-squared test, the STIC 
model’s performance has no significant difference on the center 1 and center 2 for the accuracy, sensitivity and specificity of each type of malignant 
tumors. Using DeLong test for two ROC curves’ comparison, the STIC mode achieved significant better performance on the external test set from 
center 2 than on the test set from center 1 for the AUC of HCC diagnosis (p value = 0.048) and ICC diagnosis (p value = 0.039)

(See figure on next page.)
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diagnostic level between three STIC-assisted doctors and 
doctors’ consensus diagnosis, there were significant dif-
ferences in sensitivity for ICC (p value = 0.038) (Fig.  2C 
and Additional file  2: Table  S9). With the assistance of 
STIC predicted scores, all three doctors achieved higher 
diagnostic sensitivity for ICC, with an increase of 26.9% 

on average. In addition to resection of the involved liver, 
portal lymphadenectomy is recommended for ICC dur-
ing surgery [10]. The accurate diagnosis for ICC can avoid 
the risk of skipping portal lymphadenectomy, which is of 
great clinical value.

Fig. 2  (See legend on previous page.)
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Case study of test samples that doctors initially 
misdiagnosed
We performed the case study of test samples that doctors 
initially misdiagnosed to illustrate the process of STIC-
assisted diagnosis. We list three cases pathologically 
diagnosed with ICC (Fig. 2D) and three cases pathologi-
cally diagnosed with metastasis (Fig. 2E) on the test set 
as examples. The enhancement pattern of ICC case 1 was 
typical for ICC samples, but ICC case 2, 3 represented 
the ICC samples that have atypical radiological features 
and were easily misdiagnosed clinically. The scores out-
putted by the STIC model for ICC case 3 effectively 
assisted doctors to make an accurate diagnosis, which 
can guide them specifying the surgical protocol. Clini-
cally, it is important but challenging to differ ICC from 
metastasis. Metastases 1, 2 and 3 were all misdiagnosed 
as ICC by doctors’ consensus. With the assistance of 
our STIC model, doctors were more likely to diagnose 
them as metastasis correctly. These results show that the 
cooperation paradigm that combines the experience and 
knowledge of doctors with our established AI assistance 
system can provide more accurate differential diagnosis 
of malignant hepatic tumors.

Generalization performance of the STIC model 
on the external test set
On the external test set from center 2, our STIC model 
achieved an accuracy of 82.9%, the micro-average AUC 
of 0.944 and the macro-average AUC of 0.931 (Fig. 2F 
and Additional file  2: Table  S10). The accuracy, sensi-
tivity and specificity for each type of malignant tumors 
have no significant difference on the test set from 
center 1 and on the external test set from center 2 
(Fig. 2G). Using AUC as the evaluation index, our STIC 
model even achieved significant better performance for 
HCC and ICC diagnosis on the external test set (Fig. 1G 
and Additional file 2: Table S10), which may be related 
to the lower missing rate of clinical data on the exter-
nal test set (Additional file 2: Table S1). The complete-
ness of preoperative clinical data is expected to further 
improve the accuracy of our model. The diagnostic per-
formance on the external test set from center 2 verifies 
the generalization ability of the STIC model. Consider-
ing the flexibility of our model’s architecture, the pre-
diction of some prognostic indicators such as MVI for 
hepatic tumors and differentiation of metastases among 
distinct primary cancers will be incorporated in our 
future work.

In conclusion, our proposed deep learning model can 
differentiate HCC, ICC and metastasis through using 
deep CNN and gated RNN to integrate multimodal input 
of multi-phase CECT images and clinical features, with 

promising performance comparable with experienced 
doctors and good generalization ability on different cent-
ers. Doctors assisted with our model can improve diag-
nostic performance, especially for the diagnosis of ICC, 
showing the great potential of AI assistance system in 
precise diagnosis and treatment of liver cancer.

Abbreviations
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