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Abstract 

Although chimeric antigen receptor T cells demonstrated remarkable efficacy in patients with chemo-resistant 
hematologic malignancies, a significant portion still resist or relapse. This immune evasion may be due to CAR T cells 
dysfunction, a hostile tumor microenvironment, or resistant cancer cells. Here, we review the intrinsic resistance 
mechanisms of cancer cells to CAR T cell therapy and potential strategies to circumvent them.
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Introduction
In the last few years, chimeric antigen receptor (CAR) T 
cell therapy has emerged as a novel therapy for the treat-
ment of B cells malignancies. Remarkably, CAR T cells 
can rescue patients who have failed multiple lines of ther-
apies. Thus far, CAR T cells have been approved by the 
food and drug administration (FDA) for the treatment 
of B cell acute lymphoblastic leukemia (B-ALL), diffuse 
large B cell lymphoma (DLBCL), mantle cell lymphoma 
(MCL), follicular lymphoma (FL) and multiple myeloma 
(MM). Despite this progress, a significant portion of 
patients still experience primary or secondary resistance 
to this treatment [1]. Resistance mechanisms to CAR 
T cell immunotherapy can involve the CAR T cells, the 
tumor microenvironment, or the cancer cells (Table  1) 
[2]. The current review focuses on cancer cells’ intrinsic 
mechanisms of resistance to CAR T cells therapy, which 
include loss of the target antigen (Ag), expression of 
inhibitory receptors, lack of costimulatory ligands, and 
resistance to immune killing (Figs. 1 and 2). For each of 
these resistance mechanisms, we also discuss poten-
tial strategies which are envisioned to circumvent them 
(Table 2).

Loss of target‑Ag
Thus far, loss of target-Ag has been the most widely 
studied mechanism by which cancer cells may resist or 
escape CAR T cell therapy (Fig.  1) [3–5]. Relapses with 
a target-Ag-negative clone may occur by immune-editing 
resulting in the selection of a pre-existing Ag-negative 
subclone, or possibly by acquired loss of the target-Ag 
that was initially expressed by the tumor cells.

Incidence
The incidence of Ag-loss after CAR T cell therapy may 
vary across histology. In B-ALL, CD19-loss accounts 
for approximately 7–25% of relapses after CAR T cells 
[6–10]. CD19-negative relapses seem to be associated 
with high tumor burden at the time of lymphodeple-
tion [11]. In DLBCL, approximately a third of relapses 
exhibit CD19 loss or downregulation [12–18]. Impor-
tantly, CD19-negative or -low leukemia or lymphoma 
cells retain expression of other B cell markers such as 
CD22 for B-ALL, CD20 and CD79a for lymphoma [18]. 
In MCL, Wang and colleagues reported 14 (23%) relapses 
among the 60 patients in the primary efficacy analysis 
of the ZUMA-2 trial, of which 1 (7%) had undetectable 
CD19 at relapse [19]. In FL, all 13 patients with evalu-
able tumor biopsies at progression in the ZUMA-5 trial 
had detectable CD19 [20]. In MM patients treated with 
CAR T cells against B cell maturation antigen (BCMA), 
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1 (8%) out of 12 treated patients exhibited biopsy-proven 
BCMA-loss at relapse, 8 patients remained BCMA-posi-
tive, and 3 were not evaluable for BCMA expression (no 
biopsy at relapse/progression) [21]. In another cohort, of 
18 subjects with evaluable serial BCMA expression after 
BCMA CAR T cells infusion, 12 (67%) had a decline in 
BCMA intensity on myeloma cells, including 4 out of 9 
non-responders [22].

Mechanisms
Several mechanisms have been reported to explain Ag-
negative relapses, including selection of pre-existing 
Ag-negative tumor cells, mutation or splicing-variation, 
altered maturation/trafficking affecting target-Ag expres-
sion, epitope masking, and lineage switch/transdifferen-
tiation (Fig.  1). Most data regarding the mechanisms of 
Ag-loss come from the clinical experience of CD19 CAR 
T cells in pediatric B-ALL. Flow cytometry analysis of 
628 cases of relapsed or refractory (R/R) B-ALL from 
the Children’s Hospital of Philadelphia (CHOP) revealed 
that, before any treatment, about 17% of cases had more 
than 1% of CD19-negative tumor cells. Moreover, 7% of 
patients had a decreased expression of CD19, and about 
a quarter had low-normal CD19 expression [23]. Thus, 
a significant number of patients have pre-existing tumor 
cells with absent or low membrane expression of target-
Ag which can be selected upon immune pressure from 
CAR T cells. Such CAR T cell-mediated immunoediting 
shapes the initial tumor heterogeneity favoring the emer-
gence of target-Ag-negative relapses [24]. Furthermore, 
prior exposure to the CD19-directed, bispecific T cell 
engager (BiTE), blinatumomab was shown to be associ-
ated with a significantly higher rate of CD19-negative 
relapses after CAR T cell therapy [25].

Mutations
Flow cytometry analysis of 17 samples from pediatric and 
young-adult patients with R/R B-ALL showed that 12 

patients had CD19-negative disease [7]. In all 12 patients, 
mutations in the CD19 domain were identified. These 
mutations were responsible for a truncated protein with 
a nonfunctional or absent transmembrane domain [26]. 
Such mutations affecting CD19 were also reported in the 
context of refractory DLBCL treated with CD19 CAR T 
cells [27] (Fig. 1B).

Alternative splicing
Sotillo and colleagues identified alternative splicing 
as a mechanism of Ag-loss by comparing CD19-neg-
ative samples at relapse with CD19-positive samples 
before CAR-T treatment from the same patients [28]. 
They found several CD19 splice variants expressed by 
B-ALL, especially affecting exon-2, resulting in the 
loss of the extracellular epitope of CD19 which is rec-
ognized by the CAR T cells. In other cases, alternative 
splicing resulted in lack of transmembrane domain 
precluding CD19 expression on the cell surface. Recent 
data reported the existence of CD19 isoforms at diag-
nosis which lack the CD19 epitope recognized by CAR 
T cells. This subclone may evolve as a dominant clone 
during CAR therapy and promote Ag-negative relapses 
[29] (Fig. 1B).

Defect in Ag‑processing
Defect in maturation and trafficking of CD19 has been 
reported as a cause of resistance to CD19/CD3 BiTE, bli-
natumomab [30]. CD81 is a chaperone protein that regu-
lates CD19 protein maturation and trafficking from the 
Golgi to the cell surface. In a patient, post-transcriptional 
regulation was responsible for CD81 loss, thus preclud-
ing CD19 processing and maturation in the Golgi. This 
alteration resulted in Ag-negative relapse 19 months after 
completion of blinatumomab treatment for B-ALL. This 
mechanism of resistance, reported with BiTE, may also 
be shared with CAR T cells, although not yet described 
(Fig. 1C).

Table 1  Mechanisms of resistance to CAR T cell therapy

Mechanisms of resistance References

CAR T cells Lack of expansion
Lack of persistence
Defective effector function (exhaustion)

[7, 8, 94]
[7, 8, 94]
[95, 96]

Tumor microenvironment Impaired trafficking
Metabolism/Hypoxia
Immune suppression:
Immunosuppressive cells (stroma, myeloid cells, regulatory T cells)
Immunosuppressive cytokines (TGF-b, IL-10, IL-35)

[97–101]
[102–104]
[105, 106]

Tumor cells Loss of target antigen
Expression of inhibitory ligands (PD-L1 expression)
Lack of costimulatory ligands (CD58 loss)
Resistance to immune killing

[3–10, 12–22]
[59–63]
[75–77]
[78–80]
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Fig. 1  Mechanisms responsible for loss of target antigen, conferring resistance to CAR T cell therapy. A Due to tumor heterogeneity before any 
treatment, pre-existing antigen-negative tumor cells may be responsible for resistance to CAR T cell therapy. B Point mutations or altered alternative 
splicing may lead to a truncated target antigen that can no longer be recognized by CAR T cells. C Defect in target antigen maturation and 
trafficking due to lack of appropriate chaperon proteins may be responsible for target antigen membrane expression loss. D Exceptionally, a tumor 
cell may be transfected with the CAR vector leading to an epitope masking by the CAR itself and hiding the target antigen from the CAR T cells. E 
Lineage switch may be responsible for a complete phenotypic markers remodeling including loss of the target antigen
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Epitope masking
Ruella and colleagues reported the insertion of the CAR 
transgene into a single leukemic B cell during CAR T cell 
manufacturing. Expression of the CAR at the blast sur-
face masked the CD19 epitope and thereby prevented the 
recognition of the tumor cell by CAR T cells. This rare 
event has been observed in a single patient with B-ALL 
who relapsed 9 months after treatment with CD19 CAR 
T cell [31]. Most CAR T manufacturing protocols now 
include T cell selection to avoid this potential complica-
tion (Fig. 1D).

Lineage switch and transdifferentiation
Ag-loss may also be due to a lineage switch [32]. Unlike 
other mechanisms previously described, lineage switch 
is not only responsible for CD19 loss but results in a 
broader phenotypic switch resulting in the acquisition 
of acute myeloid leukemia (AML) markers. Two patients 

with MLL-rearranged B-ALL treated with CD19 CAR 
T cells on the SCRI trial [33] and one patient from the 
Fred Hutchinson Cancer Center [10] were reported to 
experience a lineage switch with CD19-negative escape 
after CD19 CAR T cell therapy. As an exceptional event, 
MCL transdifferentiation into poorly differentiated sar-
coma has been described after CD19 CAR T cells in one 
patient [34]. This transdifferentiation process was associ-
ated with a profound reprogramming of the epigenome 
responsible for tumor progression two months after CAR 
T cell infusion (Fig. 1E).

Strategies to overcome Ag‑low/negative relapses
Ag-low relapses may be prevented by increasing the sen-
sitivity of CAR T cells to their target whereas Ag-negative 
relapses may be overcome by targeting multiple Ags or 
by killing tumor cells in an Ag-independent manner. In 

Fig. 2  Resistance mechanisms to CAR T cell therapy independent of target antigen loss. A Expression of inhibitory ligands (such as PD-L1) by tumor 
cells inhibit CAR T cell cytotoxicity despite target antigen recognition by CAR. B Lack of CD58 expression by tumor cells prevent CD2 to deliver a 
costimulatory to CAR T cell resulting in an impaired cytotoxicity despite target antigen recognition by CAR. C Impaired apoptotic machinery in 
tumor cells confer intrinsic tumor cell resistance to CAR T cell mediated immune killing despite target antigen recognition by CAR​
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both cases, strategies meant to re-induce or increase Ag-
expression may also be beneficial (Table 2).

CAR T cell constructs with enhanced sensitivity to prevent 
low‑Ag relapses
CAR T cells with higher affinity single-chain variable 
fragments (scFvs) have been developed to recognize Ags 
expressed at a low density. In vitro, CAR T cells harbor-
ing a high-affinity scFv were able to recognize their tar-
get when expressed at very low levels, including when the 
target was undetectable by flow cytometry [35]. Further-
more, adding immunoreceptor tyrosine-based activation 
motifs (ITAM) enhanced the strength of intracellular 
signaling, both in CD28 and 4-1BB CAR T cells, and thus 
enabled recognition of tumor cells with a low Ag-density 
[36]. Finally, the hinge region may impact the ability of 
CAR T cells to bind its epitope. As an example, replace-
ment of the CD8 hinge-transmembrane region of a 
4-1BBζ CAR with a CD28-hinge-transmembrane region 
lowered the threshold for CAR reactivity and enhanced 
the killing of CD19-low leukemic cells [36]. These 
approaches may be particularly beneficial in the context 
of CD22 and BCMA CAR T cells because patients often 
relapse with CD22dim [37, 38] or BCMAdim [22] upon 
these immunotherapies whereas relapses upon CD19 
CAR T cells mostly exhibit complete CD19 loss.

CAR T cells targeting multiple Ags to prevent Ag‑negative 
relapses
As discussed above, recent data suggest that prior to any 
treatment, a significant portion of patients harbor pre-
existing Ag-negative tumor cells. This initial tumor het-
erogeneity may lead to relapse upon CAR T cell therapy. 
To overcome Ag-negative relapses, CAR T cells directed 
against multiple Ags have been developed [39–41]. This 
may be achieved by infusing a cocktail of CAR T cells 
with unique but different specificities or by infusing CAR 
T cells with multiple specificities.

CAR T cells with different specificities can be admin-
istered simultaneously or sequentially to prevent Ag-
negative relapses. In a phase I trial, 21 B-ALL patients 
were treated with CD22 CAR T cells including 17 who 
had been previously treated with a CD19-directed immu-
notherapies [37]. CD22 is expressed in most cases of 
B-ALL and is usually retained following CD19 loss. In 
this study, all 5 patients with a CD19dim or CD19-neg-
ative B-ALL achieved a complete remission after receiv-
ing > 1 × 106 CD22 CAR T cells. The median duration 
of response was 6  months. Interestingly, relapses were 
associated with decreased CD22 expression by tumor 
cells. Similarly, Baird et al. reported 3 patients with CD19 
CAR resistant DLBCL who were treated with CD22 CAR 
T cells and achieved a complete remission [42]. From 

Table 2  Therapies envisioned to circumvent resistance mechanisms due to cancer cells

Mechanism Treatment

Loss of target-Ag CAR-T construct Higher affinity scFvs [35, 36]
Hinge region [36]

Target multiple antigens CAR T cells with different specificities [37, 39–43]
Tandem or bicistronic CARs [44–49]

Target tumor cells independently of the CAR T target “Armored” CAR T cells [50–54]
TRAIL-mediated death (low-dose radiation) [55]

Reducing antigen loss on target cell surface γ-secretase inhibitors [57]

Deplete transduced tumor cells in case of epitope masking Anti-CAR19 idiotype CAR T cells [58]

Expression of inhibitory ligands (PD-L1) Combination with CPI CAR T cells + anti-PD1 Ab [66–68]
Anti-PD1-secreting CAR T cells [69]

PD-L1-resistant CAR T cells PD1-KO [70–72]
PD1 dominant-negative receptor [73]
PD1 switch receptor [74]

Lack of costimulatory ligand (CD58) Provide CD2 costimulation independently of CD58 CAR with a CD2 signaling domain [77]

Resistance to immune killing Enhance expression of death receptors DNA damaging agents [81]
Histone deacetylase (HDAC) inhibitors [82, 85]
Proteasome inhibitors [83]
Cyclooxygenase-2 (COX2) inhibitors [84, 85]

Enhance sensitivity to CAR T cell killing Smac mimetics (IAP inhibitors) [80]
Bcl2 inhibitors [80, 86, 87]
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these observations, Pan and colleagues hypothesized 
that a sequential administration upfront of 2 CAR T 
cell products targeting different Ags may improve long-
term outcomes. They conducted a phase 1 trial evaluat-
ing a sequential administration of CD19 and CD22 CAR 
T cells in pediatric patients with R/R B-ALL [43]. In this 
trial, 17 (85%) of the 20 patients treated with sequential 
CAR T cells remained in CR at the end of the study and 3 
relapsed at 6.6, 6.9 and 11.4 months, resulting in a 1-year 
PFS and OS of 79.5% and 92.3%, respectively. Among 
relapsed patients, one exhibited CD22 downregulation 
on leukemic cells and CD19 Ag-loss was observed in 2 
patients.

CAR T cells with multiple specificities have also been 
developed which can be i) tandem (or bivalent) CARs 
with two distinct Ag-binding sites on a single extracellu-
lar domain, or ii) bicistronic CARs which are engineered 
using a single vector encoding two distinct CARs to allow 
dual targeting through separate extracellular motifs. 
CD19/CD22 tandem CAR constructs were administered 
to 12 patients with R/R B-ALL: 11 achieved a CR and 1 
experienced primary progressive disease with CD19 
retention [44]. In a recent study focusing on adult R/R 
B-ALL, 6 out of 6 infused patients achieved an MRD-
negative CR after infusion with tandem CD19/CD22 
CAR T cells. Of note, one patient experienced a relapse at 
5  months post-infusion with CD19-negative and CD22-
low blasts [45]. Such strategies have also been applied to 
R/R aggressive B lymphomas. In a phase I dose-escala-
tion study, 11 patients (5 DLBCL, 4 MCL, 2 CLL) were 
treated with CD19/CD20 tandem CAR T cells [46]. The 
ORR was 82% at day 28 (6/11 CR and 3/11 PR). All pro-
gressing patients retained either CD19 or CD20 positivity 
suggesting alternative resistance mechanisms to Ag-loss. 
Toxicity was acceptable [47]. The AUTO3 trial evaluated 
a bicistronic CAR T cell targeting both CD19 and CD22 
in pediatric R/R B-ALL. All 7 evaluable patients achieved 
a CR/CRi following CAR T cells infusion with a nega-
tive minimal residual disease (MRD) [48]. Three relapses 
were reported including one with CD19 negative/CD22 
low expression. Thus, Ag escape may be observed as a 
resistance mechanism even upon multi-targeted strate-
gies. This bicistronic construct has also been evaluated 
in the phase I Alexander study for the treatment of R/R 
DLBCL, combined with the anti-PD1 antibody, pem-
brolizumab [49]. In this study, among the 11 patients 
treated at a dose > 50 × 106, the ORR and CRR were 64% 
and 55%, respectively. Toxicities were acceptable and in 
line with CAR T cells targeting a single Ag.

CAR T cells to kill cancer cells in an Ag‑independent manner
“Armored” CAR T cells have been developed to secrete 
immune stimulatory cytokines (e.g., IL12 or IL18) or 

express costimulatory ligands (e.g., CD40L, Flt3L, or 
4-1BBL) in order to enhance CAR T cell efficacy (“auto/
transactivation”) and/or generate/recruit natural antitu-
mor T cells (“epitope spreading”).

Armored CAR T cells secreting IL12 and IL18 dem-
onstrated enhanced activity in preclinical models. IL12 
secretion by CAR T cells resulted in increased antitumor 
efficacy [50]. IL12 can increase the antitumor function 
of CAR T cells in an autocrine manner. It can also shape 
the tumor microenvironment, rendering CAR T cells 
resistant to regulatory T cells and myeloid-derived sup-
pressor cells immunosuppression. Avanzi and colleagues 
designed armored IL18-secreting CAR T cells, which 
increased IFN-γ secretion and tuned the tumor microen-
vironment toward an IFN-γ signature [51]. These IL18-
secreting CAR T cells were able to modulate the tumor 
microenvironment and enhance the endogenous antitu-
mor immune response.

Kuhn and colleagues developed CAR T cells express-
ing CD40L constitutively. This construct enables CD40L 
expressed on the CAR T cells to engage with CD40-
positive tumor cells (resulting in direct cytotoxicity) and 
with antigen-presenting cells (APC). CD40L-CD40 inter-
action triggered activation of tumor-adjacent APC and 
increased expression of costimulatory molecules such 
as CD40, CD86 and major histocompatibility complex 
(MHC) class II. Thus, constitutive expression of CD40L 
by CAR T cells can generate endogenous antitumor T 
cells which can recognize and kill tumor cells through 
their TCR, thereby preventing the risk of immune escape 
via the loss of a single Ag [52]. Similarly, Lai et al. engi-
neered T cells to secrete the dendritic cell (DC) growth 
factor Fms-like tyrosine kinase 3 ligand (Flt3L) [53]. This 
construct induced the activation of endogenous T cells, 
enabling a broader repertoire of tumor Ags to be targeted 
via the expansion of intratumoral APCs, significantly 
improving tumor responses.

Costimulatory ligands such as CD80 and 4-1BBL may 
also be expressed on CAR T cells to stimulate bystander 
endogenous and CAR T cells (transactivation). CD80 and 
4-1BBL bind to two costimulatory receptors expressed 
on T cells, CD28 and 4-1BB, respectively. Primary human 
T cells overexpressing CD80 and 4-1BBL were shown to 
eradicate tumor cells very efficiently, even in the absence 
of costimulatory ligands [54]. CD80/4-1BBL express-
ing CTL were able to induce trans-costimulation of 
bystander T cells. These strategies could be applied to 
CAR T cells. By stimulating endogenous T cells locally, 
they may promote/enhance tumor cell killing beyond 
their target-Ag.

Alternative death signaling pathways may also be 
used to enable CAR T cells to kill cancer cells indepen-
dently of their target. For instance, low-dose radiation 
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induces expression of death receptors such as TRAIL-
receptors on the tumor cells’ surface. Thus, tumor cells 
are sensitized to TRAIL-mediated apoptosis by CAR T 
cells. CAR T cells activated by Ag-positive tumor cells 
can then induce bystander killing of Ag-negative tumor 
cells through the death receptors pathway. This strategy 
increased both on-target and bystander CAR T cell cyto-
toxicity, enabling tumor control even in the case of Ag-
loss variants [55].

Reducing Ag‑loss on target cell surface
Although CAR T cells may exert their action indepen-
dently of their target-Ag, their efficacy is thought to be 
tightly associated with the density of target-Ags on the 
cell membrane. Thus, combining CAR T cells with treat-
ments that increase target expression on the tumor cells 
could be of interest. Efficacy of BCMA CAR T cells for 
the treatment of multiple myeloma is thought to be lim-
ited by BCMA cleavage from the tumor cell surface by a 
γ-secretase, which decreases ligand density on myeloma 
cells [56]. In murine models, inhibition of the γ-secretase 
activity reduced Ag-loss on the target cell and improved 
antitumor efficacy of BCMA CAR T cells [57]. Based on 
these data, clinical trials evaluating the combination of 
γ-secretase inhibition with concurrent BCMA CAR T 
cell treatment are ongoing (NCT03502577).

Depleting tumor cells in case of epitope masking
Unintentional transduction of B-ALL blasts during CD19 
CAR T cells manufacturing can lead to CD19 CAR T 
cells treatment resistance through epitope masking. Anti-
CD19 CAR idiotype CAR has been developed to specifi-
cally recognize and deplete transduced B-ALL blasts [58].

Expression of inhibitory ligands (PD‑L1 expression)
The programmed death-1 (PD-1)/programmed death-1 
ligand-1 (PD-L1) axis is a well-known immune check-
point inhibitor pathway. The inhibitory ligands PD-L1 
and PD-L2 may be expressed by tumor cells or their 
microenvironment. These ligands prevent T cell activa-
tion upon binding to their receptor (i.e., PD-1), allowing 
immune escape (Fig. 2A).

Incidence
PD-L1/L2 have been reported to be expressed in B cell 
malignancies. In R/R DLBCL, 16% of all evaluable sam-
ples exhibited low-level copy gain and 3% had amplifica-
tion of 9p24.1, the locus encoding for PD-L1 and PD-L2 
[59, 60]. By immunohistochemistry, 4 out of 46 cases 
(9%) showed membrane expression of PD-L1 on biopsy 
specimens. Primary mediastinal large B cell lymphoma 
(PMBCL) has been reported to be frequently associ-
ated with genetic aberrations at 9p24, resulting in tumor 

expression of PD-L1 and PD-L2 [61]. Finally, PD-L1 has 
also been reported to be expressed in a subset of B-ALL 
[62, 63].

Mechanisms
PD-1 is expressed on activated CAR T cells [64]. PD-L1 
expression by the tumor cells or the tumor microenvi-
ronment may inhibit CAR T cell cytotoxicity and induce 
immune resistance. Neelapu et al. demonstrated that 13 
(62%) out of 21 DLBCL patients who had progressed 
after Axi-Cel therapy in the ZUMA-1 trial expressed 
PD-L1[65]. Hence, unleashing the inhibition of immune 
checkpoints such as PD-1 may enhance the efficacy of 
CAR T cell therapy.

Strategies to overcome PD‑L1‑mediated resistance
Several strategies may be envisioned to overcome PD-
L1-mediated immune suppression, including combina-
tion of CAR T cells with anti-PD1/PD-L1 antibodies, 
anti-PD1-secreting CAR T cells, or PD-L1-resistant CAR 
(Table 2).

Combination of anti‑PD1/PD‑L1 antibodies with CAR T cells
The combination of an immune checkpoint blocker with 
CAR T cells has been evaluated in 2 different setting: i) 
at the time of relapse after CAR T cell therapy and ii) at 
the time of CAR T cell infusion (i.e., upfront). Thus far, 
only small cohorts of patients have been treated with this 
combination. In a single-center study, 12 DLBCL patients 
in relapse or progression after CD19 CAR T cells received 
an anti-PD1 antibody (Ab), pembrolizumab [66]. Among 
11 evaluable patients, 1 achieved a complete response, 2 
a partial response, 1 a stable disease, and 7 progressed. 
Interestingly, 9 of the 12 patients showed a re-expansion 
of the CAR T cells as measured by transgene copy num-
ber. However, no correlation could be made between 
the peak of CAR T cells and the clinical response in this 
small cohort. Anti-PD1 antibodies have also been com-
bined with CAR T cells at the time of adoptive transfer. 
In a small study, 6 DLBCL patients received the anti-PD-
L1 Ab durvalumab 21–28  days after CAR T cells infu-
sion, and 9 patients were treated with durvalumab the 
day before infusion [67]. The overall response rate was 
50%. With a median follow-up of 10.6 months, only one 
patient among the 5 patients who achieved a CR has 
relapsed. In this study, 5/13 patients developed a cytokine 
release syndrome (CRS) including one grade 4, and one 
patient experienced a neurotoxicity. In the ZUMA-6 
study, CD19 CAR T cells were given in combination with 
the anti-PD-L1 Ab atezolizumab for the treatment of R/R 
DLBCL [68]. In this study, atezolizumab was adminis-
tered starting either on day 21, 14 or 1 post CAR T cell 
infusion. The most common grade 3–4 AEs were anemia 
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(9/12), encephalopathy (5/12), and neutropenia (5/12). 
Grade 3–4 CRS and neurotoxicity occurred in 3/12 and 
6/12 patients, respectively. After a median follow-up of 
4.4 months, 9 out of 10 patients experienced an objective 
response, including 6 CR and 3 PR. The ALEXANDER 
trial evaluated the combination of a bispecific CD19/
CD22 CAR T cell (Auto3) and pembrolizumab [49]. 
Among 11 patients treated at a dose > 50 × 10^6, the ORR 
and CRR were 64% and 55%, respectively. At this dose 
level, there were no case of severe CRS nor neurotoxicity 
of any grade. These observations indicate that combina-
tion strategies of immune checkpoint blockers with CAR 
T cells may be beneficial for a subset of patients and sug-
gest that other resistance pathways might play a crucial 
role.

Anti‑PD1‑secreting CAR T cells
Rafiq and colleagues developed “armored” CAR T cells 
capable of secreting PD1 blocking scFv which can act 
both in a paracrine and autocrine manner [69]. In murine 
models, the efficacy of these CAR T cells against PD-
L1-expressing tumors was at least as good as the combi-
nation of CAR T cells with an anti-PD1 Ab. Such CAR 
T cells allow local delivery of anti-PD1 scFv which could 
limit the toxicities of a systemic exposure to checkpoint 
inhibitors.

PD‑L1‑resistant CAR T cells
CAR T cells have been engineered to be resistant to PD-1 
signaling. This can be achieved by knocking-out the PD1 
gene using the CRISR-Cas9 technology [70–72] or by 
transducing a PD1 dominant-negative receptor [73]. CAR 
T cells can also be transduced with a PD1/CD28 chimeric 
switch receptor. This receptor contains the extracellular 
domain of PD1 fused with the transmembrane and cyto-
plasmic domain of the costimulatory molecule, CD28. 
Ligation of PD-L1 to its receptor (PD1) transmits an acti-
vating signal (via the CD28 cytoplasmic domain) instead 
of the inhibitory signal normally transduced by the PD1 
cytoplasmic domain [74]. These CAR T- cells have been 
shown to resist PD1 mediated inhibition in preclinical 
models. However, no clinical data are yet available with 
these constructs.

Lack of costimulatory ligand (CD58 loss)
CD58 is the ligand for the CD2 molecule expressed on 
human T cells. CD2 provides a costimulatory signal for 
T cell proliferation, cytokine production and activation 
via TCR signaling [75, 76]. Similar to natural cytotoxic 
T cells, CD2 ligation is crucial for CAR activation and 
cytoskeletal rearrangement required for tumor cell killing 
(Fig. 2B).

Incidence
CD58 alteration (mutation or loss of expression) is seen 
in approximately a quarter of DLBCL. Furthermore, 
CD58 alteration is associated with a worse outcome after 
CD19 CAR T cell treatment [77].

Mechanisms
CD58 alteration may be due to mutations or lack of 
expression as measured by IHC [77]. CD58 alteration 
decreases CAR T cell activation and cytotoxicity in pre-
clinical models.

Strategies to overcome lack of costimulatory ligands
Lack of CD58-CD2 signaling may be overcome by add-
ing a second CAR construct containing a CD2-signaling 
domain integrated in the cytoplasmic tail of the CAR 
(Table 2). CAR binding to its target-Ag will induce CD2 
signaling independently of CD58 expression by the 
tumor cells. Such construct demonstrated increased 
activity in preclinical models but have not yet been tested 
in patients [77].

Resistance to immune killing
Tumor cells may be resistant to immune cell killing by 
CAR T cells by a mechanism called “intrinsic resist-
ance” (Fig. 2C). This specific mechanism of resistance 
has been recently reviewed in details elsewhere [78].

Incidence
The intrinsic resistance of tumor cells to CAR T cell 
killing has been recently reported. However, its preva-
lence in hematologic malignancies remains unknown.

Mechanisms
Recently, accumulating data revealed that impaired apop-
tosis machinery in tumor cells could render tumor cells 
resistant to immune killing by CAR T cells. Two unbiased 
genome-wide loss-of-function screens in B-ALL and B 
cell lymphoma cell lines revealed the crucial role of the 
death receptor pathway of apoptosis to mediate CAR T 
cell cytotoxicity [79, 80]. These studies demonstrated that 
disruption of genes associated with pro-apoptotic death 
receptor signaling pathway such as FADD, BID, CASP8, 
and TNFRSF10B conferred resistance to CAR T cell kill-
ing. Conversely, knock-out of anti-apoptotic genes such 
as CFLAR, TRAF2, and BIRC2 led to an increased sus-
ceptibility to CAR T cell killing. Using samples from two 
multicenter trials of relapsed/refractory pediatric and 
adult B-ALL, Singh and colleagues found a significantly 
higher death receptor signaling signature in samples from 
patients who had achieved complete remissions com-
pared to patients who did not respond despite retaining 
CD19 expression [79].
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Strategies to overcome intrinsic resistance to CAR T cell 
killing
Based on these observations, strategies have been consid-
ered to sensitize tumor cells to death receptor mediated 
apoptosis (Table 2). Lowering the threshold necessary to 
induce this type of cellular death may indeed overcome 
intrinsic resistance of tumor cells to CAR T cell therapy. 
Several cancer therapeutic agents may modulate death 
receptor expression by tumor cells including DNA dam-
aging agents [81], histone deacetylase (HDAC) inhibitors 
[82], proteasome inhibitors [83] and cyclooxygenase-2 
(COX2) inhibitors [84]. In preclinical models, HDAC 
inhibitors (SAHA and LBH589) and COX2 inhibitors 
(celecoxib) were able to partially reverse CD19 CAR T 
cell resistance of non-Hodgkin lymphoma cell lines due 
to altered death receptor pathway machinery [85]. To 
identify novel candidate molecules, Dufva and colleagues 
carried out a high-throughput drug screen using a cocul-
ture assay with CD19-directed CAR T cells in presence 
of the CD19-positive B-ALL cell line, NALM6. Strikingly, 
the three drugs that most significantly enhanced CAR T 
cell cytotoxicity all belonged to the same pharmacologi-
cal class, namely second mitochondrial-derived activa-
tor of caspases (Smac) mimetics or inhibitor of apoptosis 
proteins (IAP) inhibitors (Birinapant, AT-406, and LCL-
161) [80]. Another pharmacologic class which may be 
of interest are the B cell lymphoma 2 (Bcl-2) inhibitors. 
Bcl-2 prevents apoptosis. Its overexpression can promote 
tumor cells survival and may lead to treatment resistance. 
Thus, the combination of Bcl-2 inhibitors with CAR T 
cells may be an attractive strategy. In a coculture model 
containing B-ALL and CD19 CAR T cells, Bcl-2 inhibi-
tion decreased the apoptosis threshold in leukemic cells 
leading to an enhanced CAR T cell cytotoxicity [86]. 
Moreover, in vitro pre-sensitization of B-ALL cells with 
the Bcl-2 inhibitor venetoclax resulted in an enhanced 
CAR T cell mediated cytotoxicity by upregulating the 
CD19 expression and pro-apoptotic proteins [87]. How-
ever, these strategies are yet to be tested in clinic.

Conclusion
Understanding how tumor cells resist CAR T cell therapy 
is a crucial step toward the development of strategies to 
improve CAR T cell efficacy. Fundamental and clinical 
studies on evasions to monoclonal antibody treatment 
were instructive as some resistance mechanisms are 
shared with CAR T cells given that both treatments are 
responsible for a selection pressure on a specific tumor 
marker. Indeed, loss of target antigen was previously 
reported as a resistance pathway to monoclonal antibod-
ies or BiTE as rituximab for CD20, blinatumomab for 
CD19 and inotuzumab ozogamicin for CD22 [30, 88–90]. 

Thus, in the CAR T cell field, loss of target-Ag has been 
the best-characterized mechanism of resistance, and new 
approaches are being developed to overcome or prevent 
this issue, including CAR T cells directed against multi-
ple Ags. Recent studies unveiled other resistance mecha-
nisms developed by cancer cells to evade eradication by 
CAR T- cells, including expression of inhibitory ligands, 
lack of costimulatory ligands, and intrinsic resistance 
to CAR-T killing. Each of these resistance mechanisms 
may be circumvented by strategies directed toward the 
CAR T cells or the tumors cells. However, most of these 
strategies remain to be evaluated in patients. From a 
broader perspective, one shall remember that three com-
partments may contribute to CAR T cell resistance: the 
tumor cells (reviewed here), the tumor microenviron-
ment, and the CAR T cells. The role of tumor microen-
vironment may be particularly important in solid tumors 
due to the extracellular matrix and cytokine milieu pre-
sent in non-hematopoietic tissues [91–93]. Thus, novel 
CAR T cell designs should address the resistance mecha-
nisms of all three compartments. Finally, as this field is 
moving forward, it will become increasingly important 
to characterize the resistance mechanisms of each indi-
vidual tumor in order to personalize CAR T cell therapy 
with the optimal product or combination.
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