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Circadian rhythms and cancers: the intrinsic 
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Abstract 

The circadian rhythm is an evolutionarily conserved time-keeping system that comprises a wide variety of processes 
including sleep–wake cycles, eating–fasting cycles, and activity–rest cycles, coordinating the behavior and physiol-
ogy of all organs for whole-body homeostasis. Acute disruption of circadian rhythm may lead to transient discomfort, 
whereas long-term irregular circadian rhythm will result in the dysfunction of the organism, therefore increasing the 
risks of numerous diseases especially cancers. Indeed, both epidemiological and experimental evidence has demon-
strated the intrinsic link between dysregulated circadian rhythm and cancer. Accordingly, a rapidly increasing under-
standing of the molecular mechanisms of circadian rhythms is opening new options for cancer therapy, possibly by 
modulating the circadian clock. In this review, we first describe the general regulators of circadian rhythms and their 
functions on cancer. In addition, we provide insights into the mechanisms underlying how several types of disruption 
of the circadian rhythm (including sleep–wake, eating–fasting, and activity–rest) can drive cancer progression, which 
may expand our understanding of cancer development from the clock perspective. Moreover, we also summarize the 
potential applications of modulating circadian rhythms for cancer treatment, which may provide an optional thera-
peutic strategy for cancer patients.
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Background
It is well known that the rotation of the Earth is a near-
24-h period which endows most organisms with an inter-
nal time-keeping system to adapt to the environmental 
changes. This evolutionarily conserved time-keeping 
mechanism termed circadian rhythm allows organisms 

to accommodate the changing environment, such as 
sleep and wake in animals and opening and closing of 
plant flowers [1]. As early as 1729, the French astrono-
mer de Mairan firstly reported the endogenous rhythms 
associated with persistent movements of plant leaves 
even in constant darkness. He extended his observa-
tions to patients with sleep disorders in human beings 
[2]. However, since these initial observations, research 
on circadian rhythms was minimal until the discov-
ery of circadian genes in Drosophila in the 1970s which 
opened the door for the in-depth understanding of cir-
cadian clocks [3, 4]. In the 1990s, an explosion of data in 
this field contributed to the canonical action model of the 
circadian clock in which the Clock/Bmal1 and Per/Cry 
complexes play the central role [5–9]. Although the com-
ponents of circadian rhythms are not conserved between 
species, the basic mechanisms are universal in almost 
all models which comprise various biological processes 
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including anabolism and catabolism, cell division and cell 
cycle, immune cell functions, apoptosis and DNA dam-
age repair [10]. Perturbation of circadian rhythms by 
environmental disturbances (e.g., shift work, jet lag) has 
been implicated in multiple pathological conditions, such 
as cardiovascular diseases, sleep disorders, neurodegen-
erative disorders, and cancers [11–13].

Several key biological processes are regulated by circa-
dian rhythms. Thus, the disruption of the circadian clock 
may contribute to abnormal cell proliferation, increased 
gene mutation, and resistance to apoptosis, which are 
important hallmarks of cancer [14, 15]. Based on the find-
ings from epidemiology and laboratory studies, abnor-
mal circadian rhythms have been listed as a potential 
carcinogen by the World Health Organization  (WHO), 
which has increased the focus on defining the underly-
ing mechanisms of circadian disruption-induced tumo-
rigenesis [16, 17]. Indeed, accumulating evidence has 
demonstrated that altered circadian rhythms are closely 
related to tumorigenesis in breast cancer, prostate cancer, 
colorectal cancer (CRC), pancreatic adenocarcinoma, 
liver cancer, lung cancer, and others [18–25]. In addition, 
therapeutic efficiency in cancer treatment is also partially 
dependent on the time of drug administration, which 
could be a new therapeutic chronotherapy strategy in 
cancer management [26, 27]. The intrinsic links between 
circadian rhythms and tumorigenesis have therefore 
raised interest in manipulating these rhythms to prevent 
malignant transformation, to develop more efficacious 
therapies or novel adjuvant strategies, and ultimately 
improve the treatment outcome of cancer patients.

In this review, we will introduce the mechanism of 
disruptions of circadian rhythms-derived cancer pro-
gression and discuss the potential application of phar-
macological modulation of the circadian clock and/
or treating cancer using the clock as new therapeutic 
options for improved cancer management.

Regulation of circadian rhythms and their 
functions in cancer
In almost all models, the signaling pathways regulating 
circadian rhythms are universal regardless of non-con-
servation of the clock components [28]. In mammals, 
the suprachiasmatic nucleus (SCN) of the hypothala-
mus holds the “master clock”, which clocks with the 
environmental light cycle by directly coordinating the 
autonomic nervous system efferent and neuroendocrine 
signals [29–31]. In detail, several proteins involved in 
the clockwork of the cell associate closely with the nega-
tive and positive transcriptional feedback loops (Fig.  1). 
For example, circadian locomotor output cycles kaput 
(CLOCK) and brain and muscle aryl hydrocarbon recep-
tor nuclear translocator 1 (BMAL1), which contain two 

basic helix-loop-helix domains, can bind to the Cryp-
tochrome (Cry) and Period (Per) genes through their 
E-boxes, thus positively regulating circadian transcrip-
tion [32–34]. In contrast, the mammalian CRY and PER 
proteins, as a heterodimer interacting with casein kinase 
Iε (CKIε), perform a negative effect for CLOCK/BMAL1-
driven transcription [35–38]. In addition, the expression 
of circadian genes is transcriptionally modulated by the 
RORs (subfamilies of nuclear hormone receptors) and 
REV-ERB, resulting in the activation or repression of 
gene transcription for several clock genes [39–42].

Growing evidence from both epidemiological research 
and preclinical data based on animal models supports the 
relationship between chronic disruption of the circadian 
clock and the occurrence of cancer [43–47]. Indeed, cir-
cadian disruption was listed as a probable human carcin-
ogen in 2007 by the International Agency for Research on 
Cancer (IARC), part of the WHO [48].

For example, several studies have revealed that shift 
workers have a higher risk of developing breast and pros-
tate cancers, as evidenced by a strong correlation between 
a long period (> 20  years) of shiftwork and increased 
cancer risk [49–52]. Furthermore, previous studies have 
indicated that people in modern society have undergone 
a sub-health lifestyle change, including excessive calories 
intake at midnight or continuous caloric intake over the 
24 h throughout days, which mimics aspects of shiftwork 
and potentially promotes prostate and breast cancer risk 
[53, 54].

Interestingly, rest/activity rhythm was also identified as 
a key factor due to the significant impact on the clinical 
treatment of metastatic CRC patients, who have a poor 
quality of life with erratic periods of rest/activity [55, 56]. 
In line with this, the disruption of the core clock Per2 
gene further aggravated CRC cancer cell proliferation 
in ApcMin/+ genetic mice [57]. In addition, disruption 
of Per2 also accelerated KrasG12D and KrasG12D/p53−/− 
mutation-mediated lung cancer progression [23].

Additionally, mice with the core clock Per2 genes dis-
rupted were more tumor-prone following treatment with 
the carcinogenic agent diethylnitrosamine (DEN) [58, 
59]. Moreover, irradiation stimuli promoted the devel-
opment and progression of liver cancer and lymphoma 
in Per1 and Per2 mutant mice and Bmal1−/+ mice [60]. 
Mice with deleted Cry1 and Cry2 or Rorc showed simi-
lar effects in lymphoma [60, 61]. There has also been a 
report on a link between Clock mutation ClockΔ19/+ and 
Tp53 mutation-induced liver cancer and lymphoma [62].

However, some studies demonstrated that clock gene 
mutations (including Clock, Per1−/− or Per2−/−, Cry1−/− 
and Cry2−/−) potentially led to an adverse influence on 
cancer progression [63, 64]. In a RAS mutation-triggered 
cutaneous squamous tumor model, Bmal1 deletion 
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protects from tumorigenesis [65]. In addition, previous 
studies have revealed CLOCK and BMAL1 as key regula-
tors for acute myeloid leukemia (AML) by contributing 
to proliferation and stemness [66, 67]. Moreover, dele-
tions of Cry1 and Cry2 diminished tumor development in 
p53 null mice possibly due to triple mutant-induced gen-
otoxic stress [68, 69]. Taken together, the dual function of 
clock genes, either as oncogenes or as tumor suppressors, 
may be attributed to tissue-specific mechanisms and 

implies the existence of intricate clock-dependent net-
works, which are involved in the maintenance of homeo-
stasis during different tumor stages.

In summary, these rhythms mainly emerge from the 
interplay between circadian clocks and sleep–wake 
cycles, eating–fasting cycles, and activity–rest cycles. 
These circadian rhythms are able to modulate several key 
aspects of cellular and organ functions with profound 
implications in cancer management. In the following 

Fig. 1  Regulation of circadian rhythms and their functions in cancer. a the master regulator of circadian clock is located in the suprachiasmatic 
nucleus (SCN) of the hypothalamus. The SCN coordinates several organ clocks in response to the environmental factors (including sleep/wake, 
eating/fasting, activity/rest, etc.), for controlling body homeostasis, such as heart rate, body temperature, and hormone levels. b at the molecular 
level, CLOCK and BMAL1 can bind to the CRY and PER genes through their E-boxes, thus positively regulating circadian transcription. But the 
mammalian CRY and PER proteins, as a heterodimer interacting with CKIε, perform a negative effect for CLOCK/BMAL1-driven transcription. In 
addition, the expression of circadian genes is transcriptionally modulated by the RORs and REV-ERB, resulting in the activation or repression of gene 
transcription for several clock genes. c, the mutation or deletion of core clock genes (including Per1/2, Clock, Bmal1, Cry1/2 and Rorc) can accelerate 
the development of various tumors, such as liver, ovarian, lung, and colorectal cancer, and lymphoma. CLOCK: circadian locomotor output cycles 
kaput; BMAL1: brain and muscle aryl hydrocarbon receptor nuclear translocator 1; CRY: cryptochrome; PER: period; CKIε: casein kinase Iε
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sections, we will discuss the interplay between these 
cycles with cancer and describe the links involved.

The interplay between sleep–wake cycles 
and cancer
Disruption of sleep–wake circadian rhythm has a major 
impact on the entire neuroendocrine-immune system, 
which modulates immune defense and energy metabo-
lism, thus contributing to normal physiological activ-
ity by coordinating the biological response to everyday 
stresses, as well as cognitive and physical performance 
(Fig. 2).

Sleep–wake cycles regulate the immune system
Rhythmical biological regulation of the immune system 
is mediated by intricate crosstalk between the nervous 
and endocrine systems [70–72]. Dysregulation of sleep–
wake cycles, like prolonged sleep deprivation, disrupts 
the immune system, resulting in increased rates of viral 
infection and weak antigen processing and antibody for-
mation [70, 73, 74].

During normal sleep–wake cycles, the immune system 
displays a biphasic shift that is linked with maintaining 
the balance of T-helper1 (Th1) and T-helper2 (Th2) cell-
derived cytokines (Th1 cytokines: IL-2, IFNγ, and IL-12; 
Th2 cytokines: IL-4 and IL-10) [75]. Mechanically, Th1 
activity in the initial hours of nighttime sleep is enhanced 
and accompanied by moderate promotion of interferon 
(IFN)-γ/IL-4-producing Th cells, while Th2 activity dom-
inates in the late hours of sleep or before wake up [76]. 
Once this pattern is broken, cytokines are excessively 
produced and directly induce immune disturbances, 
which subsequently lead to chronic inflammation and 
tissue damage. In sleep-deprived individuals, including 
stressed persons, insomniacs, and the elderly, a switch 
toward Th2 activity has been reported [76]. Sleep depri-
vation-induced production of growth hormone and pro-
lactin turning cytokine balance into Type 1 dominance, 
as well as cortisol and norepinephrine leading to Type 2 
dominance, are all involved in immune response altera-
tion [70, 76, 77].

In addition, decreased cellular immunity is also attrib-
uted to the elevation of sympathetic tone induced by 
sleep deprivation. During sleep, the number of mono-
cytes producing IL-12 or IL-10 is normally increased 
or decreased, respectively, thus resulting in a circadian 
rhythm. However, when chronic wakefulness occurs, 
rhythmic temporal variations of IL-12 and IL-10 pro-
duced from monocytes are lost, causing dysregulation 
of the immune system [77]. Furthermore, Irwin and col-
leagues revealed that the lytic activity of natural killer 
(NK) cell was diminished by an average of 28% in peo-
ple with sleep deprivation, i.e., wakefulness between 

03:00 to 07:00 h, compared with blood sampling between 
07:00 and 09:00  h from healthy men [78]. They then 
demonstrated that partial sleep deprivation potentially 
attenuates the natural immune response, evidenced by 
decreased numbers and weak lytic activity of NK cells, 
lymphokine-activated killer (LAK), and its precursors 
[79]. Notably, a marked decrease of CD8+ T cells (cyto-
toxic and memory), which are derived from tumor necro-
sis factor (TNFα) stimuli, is the most pronounced effect 
resulting from sleep deprivation, solidly implying an 
impaired immune response if exposed to carcinogenic 
risk [76]. These findings suggest that even modest dis-
ruption of sleep–wake cycles resulting from working the 
night shift can significantly induce the dysregulation of 
natural immune responses, T cell-cytokine production, 
etc. These dysregulations need more than a single day 
of sleep to recover to baseline and potentially lead to an 
increased risk of cancer [80–82].

Sleep–wake cycles regulate inflammatory responses
Inflammatory responses are abnormally activated follow-
ing dysregulation of the immune system caused by dis-
ruption of sleep–wake cycles, which is characterized by 
the activation of soluble intercellular adhesions molecule 
(sICAM)-modulated NF-κB inflammatory signaling and 
the subsequent induction of inflammatory markers TNF-
γ, IL-6, and C-reactive protein (CRP) [83, 84]. In addition, 
sleep deprivation alters IL-6-mediated trans-signaling 
by changing the levels of soluble IL-6 (sIL-6) receptor 
in various types of brain cells and neighboring organs 
[85]. An analysis using a DNA microarray indicated that 
sleep-deprivation-induced upregulation of inflamma-
tory genes in humans was a common response and might 
be not rapidly resolved [83]. Sleep restriction-triggered 
upregulation of proinflammatory cytokines (IL-6, IL-1β, 
IL-17, and CRP) were maintained at high expression lev-
els even through two nights of recovery sleep [86]. In line 
with this, increased levels of CRP were also found in shift 
workers, indicating a progression of an inflammatory 
state and an increased risk of cancer [87].

Rigorous studies profiling inflammatory markers in the 
human sleep–wake cycle are limited to a few methodo-
logical studies that have looked at profiles of systemic and 
cellular inflammatory markers obtained repeatedly over 
the course of a regular sleep–wake cycle, compared with 
continuous wakefulness over 24  h [88]. These studies 
have shown a close association between the levels of sev-
eral markers and sleep, the circadian oscillator, or both 
[70]. For example, IL-6 was reported to have a circadian 
profile whose levels peaked at 19:00 h and 05:00 h [89]. 
Furthermore, upregulation of IL-6 levels and production 
of TNF was attributed to nocturnal sleep [70]. A previ-
ous study indicated that experimental sleep deprivation 
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during the nocturnal period resulted in an undersecre-
tion of IL-6 and an attenuated secretion of TNF from 
Toll-like receptor 4 (TLR4)-induced monocytes [90]. 

Notably, sleep deprivation changed the nighttime pat-
tern of IL-6 secretion into daytime, therefore resulting 
in an IL-6 oversecretion during the day [89]. Similarly, 

Fig. 2  The interplay between sleep–wake cycles and cancer. a sleep–wake cycles regulate the immune system. During normal sleep–wake 
cycles, SWS sustains the function of immune system by maintaining the balance of T-helper1 (Th1) and T-helper2 (Th2) cell-derived cytokines 
(Th1 cytokines: IL-2, IFNγ, and IL-12; Th2 cytokines: IL-4 and IL-10), which benefit the antigen presenting process. b sleep–wake cycles regulate 
the inflammatory response. Disturbance of sleep continuity (sleep time and efficiency) and architecture (SWS and REM sleep) may lead to body 
inflammatory response, including abnormal systemic inflammation, cellular inflammation and inflammation transcriptional activity, which are 
associated with development of chronic inflammation related disease, such as cancers. c Sleep–wake cycles and endocrine. Endocrine factors, 
including growth hormone, prolactin, thyroid hormone, cortisol, gonadal steroids, insulin, and so on, have been identified to be secreted during 
certain time periods. Disruption of sleep–wake cycles may break these balances and influence their secretions. d Sleep–wake cycles regulate DNA 
damage and repair. On the one hand, sleep disruption can reduce the levels of melatonin, an important antioxidant, which may lead to increased 
oxidative DNA damage. On the other hand, sleep deprivation downregulates the expression of several genes involved in DNA repair, such as ERCC6, 
PARP1, and RAD50, which may ultimately promote tumorigenesis. e, Feedback from cancer to sleep–wake cycles. IL-1β in the brain can regulate 
REM and NREM sleep by modulating various molecules and neurotransmitters, including COX-2, GABA, and nitric oxide (NO), while IL-6 enhances 
SWS and decreases REM sleep. SWS: slow-wave sleep; REM: rapid eyes movement; TSH: thyroid-stimulating hormone; PRL: prolactin; RAAS: renin–
angiotensin–aldosterone systems; COX-2: cyclooxygenase-2.
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by investigating people with sleep disturbances, TLR4-
mediated IL-6 production from monocytes was also 
found to be decreased at night and increased in the day 
[91]. Nevertheless, IL-6 levels were partially mediated by 
the circadian oscillator as indicated by the observation of 
transient (less than 1 h) peaks during nocturnal wakeful-
ness [85].

Different stages of sleep, including slow-wave sleep 
(SWS) and rapid eyes movement (REM) sleep, differ-
entially induced nocturnal changes of inflammatory 
cytokine activity. However, the levels of the inflammatory 
cytokines during the detailed period were not clear. The 
levels of inflammatory cytokines were reported to peak 
early in SWS, but higher levels of IL-6 were found during 
REM sleep compared with being awake [92]. Consistent 
with increased IL-6 during REM sleep, IL-6 and sIL-6R 
were upregulated later during the night, and the morning 
levels of TLR4-stimulated IL-6 production from mono-
cytes were found to correlate with the amount of REM 
sleep [85, 91, 92].

In conclusion, sleep disruption may lead to abnormal 
inflammatory responses as evidenced by the upregula-
tion of proinflammatory cytokines (especially IL-6 and 
CRP), which are potential risk factors for several cancers, 
including ovarian, brain, breast and colorectal cancers.

Sleep–wake cycles and endocrine factors
Endocrine factors, especially those governed by the 
hypothalamic-pituitary axis, have been identified to 
be regulated by circadian rhythms, therefore fluctuat-
ing over the day. These include growth hormone (GH), 
prolactin (PRL), thyroid hormone, cortisol, and gonadal 
steroids [93–95]. Insulin and adipokines, a form of nutri-
ent-sensitive hormones, are also mediated by circadian 
rhythms (light/dark and feeding/fasting cycles) giving 
rise to varying circulating levels, partially controlled by 
time-of-day-dependent patterns [93].

Growth hormone and prolactin have been reported to 
change their secretory pattern due to exposure to acute 
sleep deprivation [96]. This treatment also mitigated 
nighttime peaks of growth hormone and prolactin, lead-
ing to dysregulation of the immune system [70]. Further-
more, a previous study demonstrated that the 24-h mean 
and amplitude of several endocrine factors modulated by 
the circadian clock, including thyroid-stimulating hor-
mone, prolactin, and leptin, were suppressed by semi-
chronic sleep deprivation with sleep debt during 6  days 
[93]. Sleep debt also influenced the circadian pattern of 
plasma cortisol, resulting in higher plasma levels in the 
afternoon and early evening [93].

Notably, hyperphagia and weight gain are closely 
associated with sleep deprivation. Mechanically, sleep 
deprivation triggers downregulation of the plasma 

concentration of the appetite-restraining adipokine lep-
tin and upregulation of the plasma concentration of the 
appetite-stimulating peptide ghrelin, in which adipokine 
leptin and peptide ghrelin are produced in adipose tissue 
and the stomach, respectively [97]. Accordingly, this pro-
cess leads to greater hunger and appetite, subsequently 
resulting in triglyceride metabolism and disturbed lipid 
levels [98]. Inhibition of appetite is required for the 
secretion and blood levels of leptin, which are positively 
regulated by daily sleep length and display significant 
reduction with sleep deprivation [97, 99]. Indeed, over-
weight or obesity risk in shift workers is found to have 
a potential relationship with sleep deprivation-induced 
changes of the hormonal milieu. Numerous studies have 
comprehensively revealed that weight gain or various lev-
els of obesity, defined by increased body mass index and/
or elevated waist-hip ratio, was potentially mediated by 
prolonged shift work-induced circadian disruption [100, 
101]. In addition, marked weight gain was also confirmed, 
even 4–5  years after shift work exposure in prospective 
cohort studies [102]. However, weight modulation in shift 
work is a cumulative effect because it is also regulated by 
various factors, such as age, lifestyle as well as “night eat-
ing syndrome” [103]. Nevertheless, either overweight or 
obesity facilitated increased secretion of adipokines and 
release of macrophages from adipose tissue, thus trigger-
ing chronic inflammation and subsequent oxidative stress 
and DNA damage [104]. These events likely contribute to 
breast cancer promotion and poor prognosis at least in a 
subpopulation, for example, postmenopausal female shift 
workers [105].

Sleep–wake cycles regulate DNA damage and repair
Stress-induced DNA damage has long been recognized 
as an important risk factor for the development of sev-
eral chronic diseases, including cancer [106–108]. Sleep 
disruption in shift workers may lead to increased oxida-
tive DNA damage due to decreased secretion of mela-
tonin (an important cellular antioxidant) caused by sleep 
disruption [109–112]. For example, urine samples from 
217 dayshift workers and 223 nightshift workers were 
collected for analysis of 8-OH-dG (a marker of oxida-
tive DNA damage) and aMT6s (a marker of circulat-
ing melatonin) levels by using high-performance liquid 
chromatography with electrochemical detection [113]. 
The results found that disruption of melatonin in night-
shift workers is associated with impaired DNA repair 
machinery and increased cellular oxidative DNA damage, 
as evidenced by the positive correlation between aMT6s 
and urinary 8-OH-dG levels [113]. Another study also 
demonstrated that night work is associated with reduced 
DNA repair, and that this effect was probably due to mel-
atonin suppression caused by night work, which raises 
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the potential of melatonin supplementation for pre-
venting DNA damage-induced chronic diseases [114]. 
Moreover, an observational study on 49 healthy doctors 
has found that nightshift doctors with sleep depriva-
tion showed lower expression of DNA repair genes and 
increased DNA breaks compared with the dayshift col-
leagues, which was linked to the development of chronic 
disease [115]. In a recent controlled laboratory study, 
transcriptomic analysis of genes and associated path-
ways in circulating leukocytes obtained from night shift 
workers and healthy adults demonstrated a significantly 
impaired DNA repair pathway, which increased DNA 
damage and cancer risk in shift workers [116]. Taken 
together, these findings indicate that chronic disruption 
of sleep–wake cycles may cause increased DNA damage 
and decreased DNA repair, serving as potential risk fac-
tors for tumorigenesis [117–119].

Feedbacks from cancer to sleep–wake cycles
Various cytokines, such as TNF-α, TGF-β, IL-10, and 
especially IL-1β and IL-6, are well studied and have been 
shown to be involved in the complex crosstalk between 
cancer initiation/progression and sleep–wake cycles 
[120, 121].

Notably, IL-1β can not only act as a pleiotropic cytokine 
to promote cancer progression in the tumor microen-
vironment but can also gain access to the brain through 
passive diffusion, subsequently interacting with IL-1R1 
expressed on endothelial cells at the blood–brain bar-
rier or vagal afferents [122–124]. Accordingly, IL-1β in 
the brain has been identified as the key mediator to affect 
rhythmical behavior. A previous study reported that both 
duration and delta power (~ 0.5–4  Hz oscillations) of 
NREM (non-rapid eye movement) sleep were markedly 
enhanced by injecting central or systemic IL-1β, which 
might play a role in hypnosis [125]. In contrast, sponta-
neous NREM sleep could be inhibited by the administra-
tion of IL-1β receptor antagonists or IL-1β neutralizing 
antibodies [126, 127]. For REM sleep, IL-1β regulates it in 
a time and dose-dependent manner, shown by high levels 
of IL-1β inhibiting REM sleep, while low levels of IL-1β 
have no effect [121]. Moreover, IL-1β can influence sleep 
by modulating various molecules and neurotransmitters, 
including cyclooxygenase-2, NF-κB, GABA, nitric oxide 
(NO), prostaglandins, and adenosine [128]. For instance, 
inhibition of NO synthesis by an inhibitor, L-NAME, 
could decrease NO production and IL-1β-induced 
NREM sleep [129]. Notably, sleep deprivation could in 
turn stimulate the expression of IL-1β in the brain [130]. 
Overall, these studies suggest that IL-1β is under circa-
dian and homeostatic control and has effects on multiple 
sleep nuclei.

IL-6 has been suggested to follow diurnal rhythms, but 
its detailed role is not yet totally clear [121, 131]. Like 
IL-1β, IL-6 during wakefulness is normally at low levels 
and peaks during sleep [89]. Sleep deprivation elevates 
plasma levels of circulating IL-6 [92]. A study in humans 
revealed that IL-6 enhanced SWS and decreased REM 
sleep following subcutaneous injection [132]. Paradoxi-
cally, human recombinant IL-6 injected intracerebroven-
tricularly into rabbits seemed to be not somnogenic but 
pyrogenic [133]. However, recombinant rat IL-6 reduced 
NREM sleep after temporarily enhancing NREM sleep in 
rat models [134]. In fact, the relationship between IL-6 
and sleep–wake cycles is intricate. For example, sleep 
enhanced the levels of sIL-6R to over 70% of the wake 
levels at the termination of sleep, and simultaneously 
induced IL-6 trans-signaling regardless of classical/mem-
brane-bound IL-6 signaling [85]. This process further 
supports the role of sleep in immune defense [135, 136].

In summary, the above findings suggest that the dis-
ruption of sleep–wake cycles may serve as a potential 
risk factor for tumors mainly through modulating the 
neuroendocrine-immune system, the inflammatory 
responses, and the DNA damage repair systems. Moreo-
ver, increased levels of inflammatory cytokines secreted 
from tumors or tumor-associated leukocytes could in 
turn control the homeostasis of several sleep process, 
implying the complex crosstalk between cancers and 
sleep–wake cycles. Therefore, maintaining regular sleep 
pattern is highly encouraged in daily life for prevention of 
not only cancer but also other disorders.

The interplay between eating–fasting cycles 
and cancer
Dietary-related risk factors have been identified as one of 
the key determinants for cancer development [137–139]. 
In line with this notion, 14–20% of all cancer-related 
mortality in the USA is associated with obesity induced 
by dysregulation of eating–fasting cycles, and guidelines 
for nutrition administration that advocate maintaining 
eating–fasting cycles are thus suggested for reducing can-
cer incidence [138, 139]. In addition, preclinical data have 
revealed that cancer cells with hyperproliferation usually 
fail to adapt to fasting conditions, implying the possibility 
that calorie-limited diets based on eating–fasting cycles 
could become a potential strategy for the prevention and 
treatment of cancer [140, 141]. Notably, balancing eat-
ing–fasting cycles seems to improve acute and/or chronic 
side effects from treatments in cancer patients. Herein, 
we summarize the detailed mechanisms behind eating–
fasting cycles-mediated signaling pathways for cancer 
initiation and development, and emphasis the important 
role of ordered eating–fasting cycles in cancer prevention 
or therapy (Fig. 3).
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Effects of eating–fasting cycles on hormones 
and metabolites
The levels of metabolites and circulating hormones are 
changed in response to eating–fasting. This is character-
ized by downregulation of glucose, IGF1, leptin, and insu-
lin, and upregulation of adiponectin, which contribute 
to either antitumor effects and/or protection from side 
effects [142, 143]. Increasingly strong evidence is demon-
strating that fasting or fasting-mimicking diets (FMDs) 
inhibits the effect of IGF1 and glucose against cancer 
[144]. Mechanistically, fasting or an FMD compro-
mises various onco-pathways, such as cAMP-PKA and 
IGF1R-AKT-mTOR-S6K signaling, activates anticancer 

immunity, and enhances the tolerance of normal cells in 
stress conditions by inducing autophagy [145–147]. In 
addition, fasting has been revealed to induce ketone body 
accumulation, leading to mitigation of tumor prolifera-
tion and promotion of differentiation by inhibiting his-
tone deacetylases (HDACs) [148].

Eating–fasting cycles regulate differential stress resistance 
and sensitization of cancer cells
Fasting triggers metabolic reprogramming of adipose 
tissue and muscle, where carbon-related metabolic 
pathways are modulated to change the levels of certain 
metabolites and circulating hormones. On the one hand 

Fig. 3  The interplay between eating–fasting cycles and cancer. a eating–fasting cycles regulate differential stress resistance and sensitization 
of cancer cells. Fasting triggers metabolic reprogramming of adipose tissue and muscle, which on the one hand sensitizes cancer cells to 
chemotherapy and other cancer therapies while on the other protects healthy cells from side effects from tumor therapy. b fasting or FMDs is 
able to decrease the levels of growth-promoting nutrients and factors, including glucose, IGF1 and insulin. Decreased glucose levels coupled 
with reduced glucose uptake via inhibition of GLUTs result in downregulated aerobic glycolysis and increased OXPHOS. This metabolic switch 
increases the accumulation of cellular ROS levels in cancer cells in response to chemotherapy, resultantly causing oxidative DNA damage and cell 
death. In addition, fasting or FMDs can also regulate IGF1R-mTOR-AMPK signaling to activate anticancer immunity by inducing autophagy. FMD: 
fasting-mimicking diets; GLUT: glucose transporter; OXPHOS: oxidative phosphorylation; ROS: reactive oxygen species
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these processes sensitize cancer cells to chemotherapy 
and other cancer therapies, while on the other they pro-
tect healthy cells from side effects from tumor therapy 
[140, 141].

Several studies using animal models have demon-
strated that short-term fasting (STF) promoted the 
anticancer effects of chemotherapeutic agents against 
numerous cancers, including pancreatic cancer, breast 
cancer, colorectal cancer, melanoma, and neuroblas-
toma, while simultaneously diminishing toxic effects of 
the treatments [149–151]. Furthermore, a 24–60-h fast-
ing regime reinforced chemotoxicity tolerance of healthy 
cells, and further enhanced anticancer effects of chemo-
therapy compared to chemotherapy alone in different 
strains of mice with tumor xenografts [145, 152–154]. 
The distinct outcomes derived from STF in healthy or 
tumor cells are termed differential stress resistance (DSR) 
[155]. Similarly, healthy cells faced with nutrient depriva-
tion utilize energy for tissue repair that facilitates resist-
ance to chemotherapy, while tumor cells still maintain 
hyperproliferation thus resulting in increased DNA dam-
age and apoptosis during chemotherapy [141, 152, 156]. 
Thus, differential stress sensitization (DSS) is defined as 
a phenomenon whereby STF protects healthy cells from 
chemotherapy-induced toxicity and enhances the antitu-
mor effect of chemotherapy.

Differential stress resistance (DSR)
The hypothesis that starvation plays an adverse effect in 
cancer compared to normal cells is reasonable, especially 
when the organism simultaneously faces cell stressors 
such as chemotherapy. In detail, healthy cells during star-
vation reduce global ribosome biogenesis and growth-
related gene transcription which facilitates entry into 
the self-maintenance mode to resist damage caused by 
various cancer treatments. By contrast, the self-mainte-
nance mode is terminated due to onco-pathways in can-
cer cells, thus leading to the reduction of stress response 
signaling [141]. This study also demonstrated that low-
glucose triggered further cell death of mouse or human 
glioma and neuroblastoma cancer in hydrogen peroxide 
or cyclophosphamide-treated models, while protecting 
healthy glia cells from treatment-induced toxicity [141]. 
In line with these results, etoposide treatment markedly 
promoted the survival rate of neuroblastoma allograft-
bearing mice following 2-day fasting, while resulting in 
only moderate effects in non-fasted mice [141].

A subsequent study indicated that fasting-triggered 
inactivation of IGF1 signaling protected glia and neu-
rons from the oxidative stress agent cyclophosphamide 
and reduced doxorubicin-induced mouse embryonic 
fibroblasts, but not glioma and neuroblastoma cells 
[144]. Furthermore, mice with a conditional liver Igf1 

gene deletion, which mimics fasting characterized by 
decreased levels of circulating IGF1, showed a toxicity-
resistant ability against chemotherapeutic drugs, such as 
doxorubicin [157]. Histopathology studies suggested that 
compromised cardiac myopathy induced by doxorubicin 
was present in control mice but not in limited ingredient 
diet (LID)-treated mice [144]. Taken together, these data 
demonstrate that fasting-induced IGF1 downregulation 
is involved in increased tolerability to chemotherapy.

Fasting also contributes to overcoming the bottleneck 
for clinical application of both mTOR inhibitors and dexa-
methasone, which are used as anti-emetics and anti-aller-
gics or as anticancer agents in cancer therapy, but have 
non-negligible side effects, such as hyperglycemia [149]. 
Indeed, the high glucose-induced cAMP-PKA pathway, 
which was attributed to both dexamethasone and rapa-
mycin treatment, was revealed to enhance the toxicity of 
mouse cardiomyocytes from doxorubicin [149]. These 
results could possibly be reversed by decreasing circulat-
ing glucose concentration via fasting or insulin injections. 
In addition, fasting and/or FMD-triggered autophagy is 
also involved in the reduction of doxorubicin-induced 
cardiomyopathy by removing damaged mitochondria 
and toxic aggregates, therefore resulting in the reduction 
of reactive oxygen species (ROS) with protective effects 
on cardiomyocytes [158].

Differential stress sensitization (DSS)
Dietary treatment alone (like fasting and FMDs) shows 
limited effects on cancer. However, based on the DSS-
derived mechanism, dietary interventions combined 
with canonical cancer therapy potentially display prom-
ising anticancer effects [159–161]. Previous observations 
on glioma, melanoma, and breast cancer indicated that 
fasting induced unexpected upregulation of ribosome 
biogenesis and expression of assembly genes or prolif-
eration-related genes, which contribute to the activa-
tion of AKT and S6K and subsequent ROS accumulation 
and DNA damage, further increasing the effect of DNA-
damaging drugs [140]. In fact, periodic cycles of fasting 
or FMDs in mice were reported to inhibit cell growth in 
several solid tumors and lymphoid leukemia [147, 159]. 
Notably, periodic fasting or FMDs were also revealed to 
enhance the anticancer effects of chemo- or radiotherapy 
and tyrosine kinase inhibitors (TKIs) [162–164].

In addition to regulating glucose utilization and fatty 
acid β-oxidation in cancer, fasting or FMDs can also 
accelerate the conversion of energy metabolism mecha-
nisms in cancer cells from aerobic glycolysis to mitochon-
drial OXPHOS for maintaining the growth of cancer cells 
in the nutrition-deprivation environment [152]. Subse-
quently, mitochondrial OXPHOS promotes ROS accu-
mulation and decreases glutathione synthesis primarily 
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derived by glycolysis and the pentose phosphate pathway, 
which leads to reduced ROS-mediated DNA damage. 
Strategies inhibiting glycolysis and glutaminolysis and 
promoting OXPHOS in order to delay tumor growth and 
overcome drug resistance are under investigation [152]. 
Of note, fasting or FMDs seem to promote metastasis, 
since several types of aggressive and metastatic cancer 
cells tend to be dependent on high-lactate production 
from high glycolytic activity [165].

Fasting or FMDs can trigger other alterations besides 
the metabolism changes that induce DSS in cancer cells. 
For example, fasting upregulated equilibrative nucleoside 
transporter 1 (ENT1) expression (gemcitabine trans-
porter) to improve the anticancer activity of gemcitabine 
against pancreatic cancer [166]. In breast cancer and 
melanoma cells, fasting could induce SUMO modifica-
tion of REV1 (a p53-binding protein and DNA polymer-
ase) by the SUMO2 and/or SUMO3-dependent ways, 
consequently relieving the suppressive effect of REV1 
on p53, which inhibited cancer cells by transcriptionally 
promoting expression of the pro-apoptotic genes [151]. 
In addition, a fasting-mimicking diet enhances the effect 
of the anti-estrogens tamoxifen and fulvestrant by reduc-
ing circulating IGF1 through EGR1 and PTEN-mediated 
inhibition of AKT/mTOR signaling [159]. In leukemia, a 
previous study reported that fasting could slow the pro-
gression of acute lymphoblastic leukemia (ALL) but not 
acute myeloid leukemia (AML) by activating the protein 
PR/SET domain 1 (PRDM1)-mediated leptin receptor 
and downstream signaling [167]. Furthermore, transcrip-
tion factors PAX5 and IKZF1, commonly identified with 
more than 80% mutations in pre-B cell ALL, were indi-
cated as tumor suppressors by exhibiting a persistent 
restriction on glucose uptake and energy supply [168]. 
Accordingly, energy crisis and cell death were observed 
in PAX5 and IKZF1 reconstituted pre-B-ALL cells, indi-
cating a potential for developing the clinical application 
of fasting or FMDs in ALL [168].

Taken together, these observations demonstrate that 
although dysregulation of eating–fasting cycles have 
been identified as a key determinant for cancer develop-
ment, fasting or FMDs can not only increase the sensi-
tivity of cancer therapies but also reduce the side effects 
from chemotherapy, indicating a promising strategy for 
the prevention and treatment of cancer.

The interplay between activity–rest cycles 
and cancer
Based on epidemiological analyses, physical activity 
is associated with decreased risk of multiple cancers, 
including colorectal, breast, and prostate cancer [169–
173]. Preclinical studies have also indicated that exer-
cise has potential for cancer prevention (Fig. 4). Exercise 

training, such as treadmill running, voluntary wheel run-
ning, and swimming has been found to inhibit tumor 
initiation and progression in chemical, genetic or trans-
plantable-triggered tumor mouse models [174–177]. 
However, exercise training has been shown to display 
different effects against a variety of cancers with different 
genetic backgrounds. For example, in the p53-deficient 
MMTV-Wnt mouse model bearing breast cancer, exer-
cise training seemed to be ineffective against this cancer 
[178]. Nevertheless, strengthening physical exercise is 
still suggested for combating cancer regardless of cancer 
diagnosis. Notably, physical activity-driven antitumor 
effects can potentially be attributed to several mecha-
nisms, which have different effects on different kinds of 
cancers.

Activity–rest cycles modulate immune functions
Exercise can modulate the circulation of immune cells 
by a mechanism mediated by adrenergic signaling and 
blood flow-induced shear stress, facilitating immune sur-
veillance by eradicating identified malignant cells [179]. 
Indeed, an increasing number of studies have found 
exercise-induced immune cell mobilization as a common 
phenomenon independent of age, gender, or tumor type 
[180, 181]. A study focusing on patients with breast can-
cer convincingly demonstrated that NK cell mobilization 
in breast cancer survivors during exercise was compara-
ble to that in age-matched healthy people [182]. How-
ever, a recent randomized controlled trial suggested that 
exercise displayed no significant impact on resting NK 
cell function and circulating myokines in women with 
high-risk breast cancer [183], indicating a potentially 
ambiguous role of exercise in regulating NK cell function 
for cancer immunotherapy.

In terms of preclinical studies, transplantable or genetic 
animal cancer models are usually used to investigate the 
association between exercise and cancer [184, 185]. For 
example, exercise was found to activate the immune sys-
tem to suppress tumor progression in a genetic mouse 
model of mammary cancer following exercise training 
[186]. In addition, exercise-mediated immune system 
activation, such as NK cells and cytotoxic T cells infiltra-
tion, was also revealed in genetic tumor models, suggest-
ing that additional immunological response was induced 
in the exercise-induced effect besides the initial immune 
response to the inoculated tumor cells [180, 187]. In a 
wheel-running mouse model, exercise was revealed to 
promote immune cell infiltration by epinephrine-driven 
NK cells circulation, resulting in a marked inhibition of 
cancer growth [185]. Exercise also enhances naïve T cell 
populations and mitigates detrimental effects on T cells, 
leading to more efficient generation of immunological 
memory [188, 189].
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Increased body temperature is a major outcome 
of exercise, promoting the function and stimulus of 
immune cells [190]. A well-known observation is that 

hyperthermia can expand the diameter of intratumor 
blood vessels, therefore enhancing NK cells infiltration 
into the tumor and inhibiting cancer cell growth [191]. 

Fig. 4  The interplay between activity–rest cycles and cancer. a activity–rest cycles regulate immune function for tumor suppression. Exercise has 
been found to promote immune cell infiltration by epinephrine-driven NK cells circulation, resulting in a marked inhibition of cancer. Moreover, 
exercise also enhances naïve T cell populations and mitigates detrimental effects on T cells, leading to more efficient generation of immunological 
memory. b activity–rest cycles regulate the crosstalk between muscle and tumor. The crosstalk between muscle and tumor depends on skeletal 
muscle-secreted myokines. Exercise-induced myokines, including OSM, irisin, and SPARC, may play a role in cancer prevention and therapy. In 
addition, exercise-induced myokines can also induce the secretion of immune regulatory cytokines, including IL-6, IL-7, and IL-15, which indirectly 
regulate immune cell function. c, activity–rest cycles regulate tumor microenvironment. Exercise-mediated promotion of pro-angiogenic cytokines 
(such as VEGF) induces vascular remodeling to increase density and perfusion and reduce hypoxia in the tumor microenvironment. Furthermore, 
exercise was involved in the regulation of the Hippo signaling pathway, in which exercise-driven epinephrine markedly inhibited tumor formation 
by inducing Yap and Taz phosphorylation and subsequent degradation. NK cells: natural killer cells; OSM: oncostatin M; SPARC: secreted protein 
acidic and rich in cysteine; VEGF: vascular endothelial growth factor
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Furthermore, hyperthermia accelerates cytotoxic T cell 
recruitment into the tumor microenvironment by IL-6 
trans-signaling-mediated tumor vasculature remodeling 
[184]. In fact, hyperthermia has been applied to clini-
cal treatment for certain cancers, although the therapy 
temperature is generally higher than if exercise training-
induced [192–194].

In summary, exercise could therefore be considered for 
cancer prevention or therapy due to its potential to pro-
mote an anticancer immunological response. However, 
exercise-mediated modulation of the immune system is 
complex, and the detailed mechanisms need to be further 
investigated [195–197].

Activity–rest cycles regulate the crosstalk between muscle 
and tumor
The crosstalk between muscle and tumor depends on 
skeletal muscle-secreted myokines produced during 
muscle contractions [198–201]. Recently, with the emer-
gence of omics-based strategies, new exercise-induced 
myokines are gradually being identified in the muscle 
secretome [202–206]. Although the evidence, that exer-
cise-driven myokines may play a role in cancer preven-
tion or therapy, is still limited, several preclinical studies 
have indicated muscle-derived Oncostatin M (OSM) and 
Irisin may be effective against prostate and breast cancer 
[183, 207–210]. In addition, the myokine secreted protein 
acidic and rich in cysteine (SPARC) produced by exer-
cise training has been identified as an anticancer factor, 
as evidenced by decreased tumorigenesis in trained mice 
bearing colon cancer [211–213]. Notably, myokines are 
divided into distinct classes, with the potential to modu-
late the proliferation and differentiation of cancer cells by 
either directly inducing cell growth or antagonizing cer-
tain ligands [208, 214–216]. Some myokines (like irisin) 
have been demonstrated to be modulators involved in the 
common cancer-related pathways, such as TGF-β or Wnt 
signaling [217–219].

Exercise-induced myokines can also induce the secre-
tion of immune regulatory cytokines, including IL-6, 
IL-7, and IL-15, which indirectly regulate immune cell 
function [220–223]. For humans, IL-6 levels are con-
trolled by exercise in a time and intensity-dependent 
way and are also related to the amount of muscle mass 
engaged in the exercise [224–226]. However, the impor-
tance of IL-6 produced during exercise in immune 
responses remains less well understood. A recent study 
indicated that exercise-mediated IL-6 seemed to improve 
immune cell infiltration. Anti-IL-6 antibody-mediated 
blockage of IL-6 signaling partially reversed the efficacy 
of exercise on inhibition of cancer cell proliferation [185]. 
Notably, direct IL-6 administration could not mimic 
exercise-related anticancer effects, implying that the role 

of IL-6 required a prior exercise-induced activation and 
recruitment of immune cells.

Activity–rest cycles regulate tumor microenvironment
Vascular remodeling attributed to abundant pro-angi-
ogenic cytokines, such as VEGF (vascular endothelial 
growth factor) in the tumor microenvironment, is pos-
sibly the most well-known benefit of exercise on oncol-
ogy indicated from pre-clinical investigations [227–230]. 
Numerous studies have revealed that vessel density 
and perfusion in tumors are involved in exercise-medi-
ated VEGF production [231–233]. Furthermore, dur-
ing exercise, endothelial cell recruitment is mediated by 
platelet derived growth factor receptor-beta (PDGFRβ) 
derived from platelets for tumor angiogenesis, dramati-
cally reducing tumor hypoxia by upregulation of micro-
vessel density and perfusion [232, 234, 235]. Hypoxia 
usually stimulates several stress response pathways to 
induce changes in the tumor microenvironment, espe-
cially immune microenvironment remodeling, therefore 
promoting tumor development [236–238]. For example, 
cytokines IL-4 and IL-10 triggered by hypoxia can induce 
differentiation of tumor-associated macrophages (TAMs) 
into an immunosuppressive M2 phenotype [239, 240]. In 
addition, the hypoxic environment stimulates dendritic 
cells to induce the expression of indoleamine 2,3-dioxy-
genase (IDO), which performs an immunomodulatory 
role in T cell suppression [241–243]. A previous study 
also found reduction of CD8+ tumor-infiltrating lym-
phocytes (TILs) presenting in tumor hypoxic regions 
[244, 245]. A hypoxic microenvironment has also been 
indicated to contribute to both dendritic cells-mediated 
inactivation of TILs and abnormal expression of PD-L1, 
resulting in immunotherapy resistance [246–249]. Inter-
estingly, hyperoxia (60% oxygen) produced more than 
three-fold tumor infiltration CD8+ TILs compared to 
the control mice [244]. This finding provides the poten-
tial clinical implications of oxygen content regulation 
as every 10% increase in CD8 + TILs results in a 19% 
decrease in patient mortality [250]. However, seques-
tering chronic tumor patients in a 60% oxygen environ-
ment is not practical. Exercise, representing an available 
alternative, can reduce hypoxia in tumors, thus sensitiz-
ing cancer cells to immunotherapy by further increas-
ing immune cell infiltration and reducing IDO-mediated 
immunosuppression.

Hippo signaling is one of the most important path-
ways for tumor initiation and development [251, 252]. 
This pathway involves the growth and differentiation 
of tumor cells, and regulation of several signaling path-
ways related to the formation of the tumor microenvi-
ronment (including extracellular matrix remodeling) 
[253, 254]. Recently, a study has reported that exercise 
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was involved in the regulation of the Hippo signaling 
pathway [255]. Mechanically, exercise-driven epineph-
rine markedly inhibited tumor formation by inducing 
Yap and Taz phosphorylation and subsequent degrada-
tion [255]. In line with this, serum samples from breast 
cancer patients who were scheduled to participate in 
exercise training were able to show a 50% decrease in 
breast cancer metastasis in an experimental tumor 
model, attributed to exercise-induced catecholamine 
release [255].

Additional mechanisms are currently being investi-
gated in exercise-mediated reduction of cancer pro-
gression. Secretion of several systemic factors (such 
as catecholamines, myokines), upregulation of blood 
flow-related shear stress, sympathetic activation, as 
well as increased body temperature, display immediate 
stress on tumor metabolism and homeostasis during 
exercise training [256]. If people are undertaking long-
term training, the effects mentioned above will result 
in steady intratumor changes, such as strong immuno-
genicity, metabolism adaptation, and improved blood 
perfusion, which should help mitigate tumor develop-
ment [257, 258].

Potential application of clock‑associated therapy 
in cancer management
The molecular understanding of circadian rhythms has 
raised new therapeutic frontiers for cancer which could 
put the circadian clock in an indispensable treatment 
role. Therefore, pharmacological modulation of the circa-
dian clock and/or treating cancer in the clock may hold 
potential as new therapeutic options for better cancer 
management (Fig. 5).

Pharmacological targeting core components 
of the circadian clock for cancer therapy
Targeting the components of circadian clock has 
attracted much attention as a novel therapeutic approach 
to treat chronic diseases, such as chronic inflammatory 
diseases, metabolic syndrome, and cancer [259, 260]. 
Theoretically, there exist two drug approaches for tar-
geting the circadian clock: either by directly modulating 
the core circadian genes, or targeting their regulators. 
However, as BMAL1 and CLOCK are transcriptional fac-
tors, it is notoriously challenging to directly target these 
circadian core genes [261, 262]. Hence, pharmacologic 
agents targeting proteins responsible for phosphorylation 
or degradation of clock components which negatively 

Fig. 5  Clock-based therapy in cancer management. a directly pharmacological targeting circadian clock for cancer therapy. Targeting the 
components of circadian clock has attracted much attention as a therapeutic approach to treat cancer. There are several pharmacologic agents 
targeting the components of circadian clock, including REV-ERBα/β, RORα/β/γ, CRY1/2, Casein Kinase family, and FBXL3. b, the effect of modulating 
circadian rhythms on conventional cancer therapy. Modulating the sleep–wake, eating–fasting, and activity–rest cycles can benefit the effect of 
chemotherapy, radiotherapy, and immunotherapy
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regulate BMAL1 and CLOCK have been developed as 
agonists or antagonists to disrupt the circadian network.

REV‑ERBs
REV-ERBα/β are nuclear hormone receptors that can 
directly bind to the promoter of BMAL1 and CLOCK 
and thus negatively regulate their transcription [263–
265]. The aberrant expression of REV-ERBs has been 
found in many cancer types in which they mainly regu-
late plasma glucose level, lipid, and energetic metabo-
lism [266]. GSK4112, a small molecule molecular probe 
also known as SR6452, was the first synthetic agonist of 
REV-ERB obtained from a fluorescence resonance energy 
transfer biochemical screen, with an EC50 of 2.3 μM for 
inhibiting the transcriptional activity of Bmal1 [267, 268]. 
However, the unsatisfactory pharmacokinetic profile and 
specificity of GSK4112 limited its use as a chemical tool 
in vivo, which drove the development of pyrrole deriva-
tives SR9009 and SR9011 [269, 270]. These two differ-
ent agonists of REV-ERBs have been reported to display 
anticancer activity against different tumor types, includ-
ing leukemia, brain, colon, breast, and melanoma, while 
exhibiting no obvious side effect on normal cells or tis-
sues [271–274]. Further studies found that autophagy and 
de novo lipogenesis were identified as the key events in 
evoking the apoptotic response in malignant cells treated 
with SR9009 and SR9011 [274]. In addition, SR9011 and 
SR9009 also reduced glioblastoma stem cell (GSC) prolif-
eration and were lethal to chemoresistant small-cell lung 
cancer (SCLC) cells by repressing the expression of the 
tricarboxylic acid (TCA) cycle enzymes [275] and sup-
pression of autophagy [273], respectively. Other chemical 
agonists for REV-ERBα, including GSK2945, GSK0999, 
GSK5072, and GSK2667 have also been developed but 
their effects on cancer need further investigation [276].

RORs
Unlike REV-ERBs, RORs (including RORα, RORβ, and 
RORγ) can constitutively induce the transcription of 
Bmal1 through the ligand-independent recruitment of 
transcriptional co-activators [266, 277]. There is evidence 
showing that RORγ was upregulated in metastatic cas-
trate-resistant prostate cancer and promoted the expres-
sion of the androgen receptor, thus raising the possibility 
of targeting RORγ for cancer treatment [278–282]. Nota-
bly, the ROR-γ-selective antagonists XY018 and SR2211 
block the growth of prostate cancer cells with androgen 
receptor expression and restore sensitivity to enzaluta-
mide treatment (a commonly used androgen inhibitor 
for prostate cancer), in which induction of apoptosis and 
decreased expression of key proliferation and survival 
proteins were identified as key events [278]. Moreover, 
RORγ was found to show important regulatory functions 

in pancreatic cancer stem cells, and pharmacological 
targeting of RORγ by SR2211 inhibits the tumor growth 
and prolongs survival in several in vivo pancreatic cancer 
models [283, 284]. In contrast, RORγ agonists can modu-
late multiple signaling pathways to enhance the antitu-
mor immunity against leukemia, colon and breast cancer 
[285–288]. For example, LYC-54143 and LYC-53772 are 
two potent RORγ agonists which display cytotoxic activ-
ity by promoting cytokines/chemokines (i.e., IL-17A 
and GM-CSF) production and increasing co-stimula-
tory receptor expression (like CD226 and CD137) [288]. 
Based on this finding, another RORγ agonist, LYC-55716 
(cintirorgon), is currently under Phase I clinical trial 
for treating patients with metastatic cancer alone [289] 
or in combination with pembrolizumab (clinical trial 
NCT03396497). Unlike RORγ, RORα was found to be 
downregulated in several cancer types, including breast, 
ovarian, and prostate cancer [290–293]. Treatment of 
RORα agonist SR1078 results in p53 stabilization and 
triggers apoptosis in human HepG2 cancer cells [294, 
295]. Another study found that pevonedistat (MLN4924), 
a small molecule AMP mimetic, could stabilize RORα by 
inhibiting its ubiquitination and consequent degradation, 
which in turn attenuated cell proliferation of osteosar-
coma, chondrosarcoma, and leukemia by inducing cell 
cycle arrest and apoptosis [296–299]. MLN4924 has been 
evaluated in 40 clinical trials related to cancer [300].

CRY1/2
Distinct from REV-ERBs, CRY1 and CRY2 are impor-
tant for inhibiting clock-controlled gene transcription 
by directly interacting with BMAL1/CLOCK complexes 
[301–304]. KL001 was the first compound found to 
directly bind to and stabilize CRY by preventing FBXL3-
mediated ubiquitin-dependent degradation [305]. A 
recent study has demonstrated that KL001 treatment 
decreased OLIG2 and SOX2 expression and inhibited 
GSC proliferation with reduced toxicity in normal brain 
cells [275, 306]. Interestingly, in vitro observations dem-
onstrate that pharmacological targeting CRY by KS15 
reduces proliferation of human breast cancer MCF-7 
cells and increases the sensitivity of MCF-7 cells to treat-
ment with doxorubicin and tamoxifen, but has no obvi-
ous cytotoxic effects on normal breast epithelial cells 
(MCF-10A) [307]. These contradictory findings indicate 
that the function of CRY in cancer treatment is context-
dependent and that further research is needed to investi-
gate its precise role.

Casein kinase (CK) family
The casein kinase 1 enzymes (CK1) are a family of ser-
ine/threonine kinases in which CK1δ and CK1ε phos-
phorylate PERs and CRYs and prime them for FBXL21 
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and β-TRCP mediated degradation [308–311]. The 
upregulation of CK1δ and CK1ε was observed in sev-
eral cancer types, including melanoma, leukemia, pan-
creas, breast, and ovarian cancer, which highlights 
their potential as drug targets for anticancer therapy 
[312–315]. Indeed, breast cancer cells overexpressing 
CK1δ are sensitive to CK1δ/CK1ε inhibition caused 
by SR-3029 both in  vitro and in  vivo, while normal 
breast epithelial cells (MCF-10A) with low amounts 
of CK1δ are less sensitive to SR-3029 treatment [314, 
316]. Another inhibitor, BTX-A51, was found to induce 
apoptosis in AML progenitor cells in  vitro and sup-
press growth in vivo in both genetical-engineered AML 
mouse models and in patient-derived xenograft mouse 
models [317]. BTX-A51 is currently in Phase I clini-
cal trials for the treatment of patients with relapsed or 
refractory AML (clinical trial NCT04243785). Simi-
larly, CK2 (casein kinase II) has also been found to 
regulate cell growth and proliferation of several cancers 
[318]. For example, CK2α was upregulated in CRC cells 
and conferred resistance to 5-FU treatment by inhibit-
ing ER stress-induced apoptosis, and treatment with a 
CK2α inhibitor may exert a synergistic effect with 5-FU 
against drug-resistant cancer cells [319]. Targeting CK2 
with a pan-CK2 inhibitor, BMS-699, resulted in dis-
ruption of myeloid cell differentiation and increased 
efficacy of immunotherapy in mice with lung, colon 
and breast carcinoma and lymphoma [320]. Moreover, 
some potent CK2 inhibitors, such as CX-4945 (silmita-
sertib) and GO289, have been developed which inhibit 
the proliferation of several human tumors [321–323]. 
CX-4945 was the first CK2 inhibitor that entered into 

clinical trials for the treatment of human tumors [324, 
325].

To sum up, several agonists or antagonists target-
ing the core components of circadian rhythm have been 
developed and show promising anticancer effect in vari-
ous cancer types. However, few compounds are entering 
clinic trials to enable the evaluation of the true efficacy in 
patients, and the dependence of these anticancer effects 
on clock modulation still needs further investigation 
(Table 1).

Administrating drugs in clock: chronotherapy in cancer 
treatment
Chronotherapy has been defined as a strategy that uti-
lizes the natural rhythms and cycles of physiological and 
biochemical processes to treat a disorder [326–328]. This 
type of therapy for cancer patients, aiming to reduce side 
effects and improve efficacy during cancer treatment, 
has been applied in the clinic even before more detailed 
mechanisms of the core circadian clock were known 
[329–332]. Subsequently, once the biological functions 
of circadian rhythms were revealed showing that drug 
PK, PD, and safety are highly depend on 24-h rhythm, 
the rationale for chronotherapy was supported [333–
335]. Indeed, a suitable dosing time during the cycle can 
not only contribute to beneficial effects but also avoid 
adverse ones, especially for anticancer agents whose use 
may be limited due to their side effects on healthy host 
tissues [336–338]. For example, in cancer patients treated 
with constant-rate i.v. infusion of 5-fluorouracil (5-FU) 
for 5 days, the maximum plasma concentration (Cmax), 
and the best-tolerated time were found to be at 4:00 a.m 

Table 1  Summary of cancer types and their associations with disrupted rhythms

Cancer types Disrupted rhythms Promotion/inhibition References

Breast cancer/prostate cancer Shiftwork-induced disruption of sleep–wake cycles Promotion [49–52]

Excessive calories-induced disruption of eating–fasting cycles Promotion [53, 54]

Fasting-induced disruption of eating–fasting cycles Inhibition [140] [151]

Exercise-induced disruption of activity–rest cycles Inhibition [183, 207–210]

Colorectal cancer Short-term fasting-induced disruption of eating–fasting cycles Inhibition [149–151]

Maintenance of activity–rest cycles Inhibition [55, 56]

Per2 mutation-induced disruption of circadian clock Promotion [57]

Lung cancer Per2 mutation-induced disruption of circadian clock Promotion [23]

Fasting-induced disruption of eating–fasting cycles Inhibition [383]

Exercise-induced disruption of activity–rest cycles Inhibition [412]

Liver cancer Per1/2 mutation or Bmal1 deletion-induced disruption of circadian clock Promotion [60]

Acute lymphoblastic leukemia Fasting-induced disruption of eating–fasting cycles Inhibition [167]

T cell lymphomas Cry1/2 or Rorc deletion-induced disruption of circadian clock Promotion [60, 61]

Glioma Fasting-induced disruption of eating–fasting cycles Inhibition [141]

Pancreatic cancer Fasting-induced disruption of eating–fasting cycles Inhibition [166]

Exercise-induced disruption of activity–rest cycles Inhibition [426]
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[339, 340]. Recent reports have indicated circadian char-
acteristics of inhibitors targeting the estrogen receptor 
and tyrosine kinases in both treated mice and patients, as 
evidenced by observed daily pharmacokinetic variations 
[341–344]. In addition, several Phase I to Phase III clini-
cal trials have confirmed the efficacy of chrono-modu-
lated treatment in various tumors [345, 346].

Importantly, chronotherapy potentially improves the 
survival rate and life quality of cancer patients by mini-
mizing anticancer agents-driven cytotoxicity [347–349]. 
Mechanically, numerous anticancer drugs have consist-
ently been demonstrated to display increased cytotoxic-
ity to cells at specific phases of cell division, suggesting 
that optimization of dosing time for treatment by pre-
dicting circadian rhythms-related medicinal properties 
may translate into desired clinical outcomes [333, 338]. 
In a randomized trial, cancer patients with a sinusoi-
dal chronotherapy schedule showed better tolerability 
and efficacy to drugs than with a constant-rate infusion 
[350]. Another study on 186 metastatic colorectal cancer 
patients in a randomized multicenter phase III trial also 
reported that oxaliplatin, 5-FU, and chronoFLO deliv-
ered by chrono-modulated infusion reduced ~ fivefold 
the rate of severe mucosal toxicity and ~ 50% functional 
impairment from peripheral sensitive neuropathy com-
pared with constant drug delivery (14% vs. 76% and 16% 
vs. 31%, respectively) [329]. Furthermore, timed adminis-
tration of irinotecan was performed in 31 cancer patients 
and demonstrated that chrono-mediated infusion of iri-
notecan from 2:00 a.m. to 8:00 a.m. induced less severe 
diarrhea and interpatient variability compared with the 
conventional 30-min infusion in the morning [351]. A 
very recent clinical study evaluated the effect of immu-
notherapy time-of-day infusion on the overall survival 
of patients with advanced melanoma. These results sug-
gested that adaptive immune responses are less robust 
when infused in the evening than in the daytime [352, 
353].

The application of a chronotherapeutic strategy for 
cancer treatment has stimulated developments in bio-
engineering, such as non-implantable multichannel 
time-programmable pumps for chrono-modulated drug 
delivery [354–356]. For example, in North America and 
the European Union, the IntelliJect™ device with four 
30-mL reservoirs has been approved for treating can-
cer patients resulting in increased safety and efficacy of 
anticancer agents, based on chrono-mediated combina-
tion drug delivery of 5-FU, oxaliplatin, and leucovorin 
[328, 336, 357, 358]. The liver is a well-known rhythmic 
organ. However, liver having tumor metastases shows 
no marked circadian regulation. When anticancer drugs 
were infused in a chrono-modulated way directly into the 
hepatic artery of patients with liver metastases beneficial 

effects were observed [359, 360]. Indeed, this strategy 
has been confirmed as a safe and effective therapy by an 
international trial [361]. This study demonstrated that 
an automatic multichannel programmable pump, Mélo-
die®, could be used for treating colorectal cancer liver 
metastases by directly delivering anticancer agents (5-FU, 
oxaliplatin, irinotecan, and systemic cetuximab) into the 
hepatic artery, contributing to improvements in both 
toxic tolerability and drug effects [359, 361].

The emerging field of nanocarrier-mediated drug deliv-
ery on chronotherapy is now attracting increasing atten-
tion as it has been shown to increase cancer curability 
without added side effects and risks for the patients, 
as well as having potential cost savings [362–364]. An 
increasing body of data is showing that chronotherapy 
combined with nanotechnology offers important advan-
tages for effective drug delivery, contributing to more effi-
cient and safer cancer therapy [356, 365–367]. Recently, 
the synergistic anticancer effects of chrono-modulated 
delivery of paclitaxel (PTX)-loaded polymeric nano-
particles (PTX-NPs) were investigated on a human lung 
cancer-derived mouse xenograft model to identify the 
best time for drug delivery [368–370]. PTX in nanocarri-
ers was initially rapidly released but subsequently turned 
into sustained release, showing a better anticancer effect 
than PTX single treatment [368]. Furthermore, the effi-
cacy of PTX-NPs displayed a time-dependent effect and 
peaked at 15 h after light onset. Mechanically, PTX-NPs 
combined chronotherapy was verified to be associated 
with decreased Ki-67-mediated proliferation and CD31-
mediated micro-vessel density, thereby resulting in inhi-
bition of lung cancer by inducing cell apoptosis [368]. 
In addition to the above findings, a growing number of 
novel chrono-pharmaceutical delivery technologies are 
underway development and study. These strategies, by 
utilizing bedside or ambulatory pumps, facilitate more 
proficient cancer treatment by precisely delivering anti-
tumor drugs in a circadian time-dependent manner.

In summary, chronotherapy is showing benefits not 
only for improving therapeutic efficiency but also for 
minimalizing the side effects of cancer treatment. How-
ever, the real application of chronotherapy in cancer 
treatment is still in its infancy, and more clinical trails are 
required to expand the clinical applications of chrono-
therapy in cancer treatment.

Fasting in cancer prevention and treatment
The fasting-feeding pattern is an important time cue 
that can also determine the robustness of daily circa-
dian rhythms [371–374]. Although maintaining a robust 
fasting-feeding pattern is correlated with prevention 
of tumorigenesis, disruption of this circadian rhythm, 
either by time/calorie-restricted feeding or intermittent/
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periodic fasting, may benefit the outcome of cancer treat-
ment [375, 376]. For example, chronic calorie restriction 
(CR) and periodic fasting is attracting increasing atten-
tion for potential application to clinical cancer preven-
tion and therapy based on long-lasting epidemiological 
studies and preclinical reports [159, 377–381]. A diet that 
mimics the effects of fasting (FMD) has been developed 
and used in a pilot clinical study, aiming to maintain the 
cancer-preventive effects from CR or fasting while reduc-
ing adverse effects [162, 382].

To date, four feasibility studies regarding cancer 
patients undergoing chemotherapy treated with fasting 
have been published [383–386]. In one of these studies, 
10 patients with various cancers, such as lung, breast, 
esophageal, prostate, uterus, and ovarian cancer, vol-
unteered to fast for 140  h before chemotherapy or for 
56 h following chemotherapy. The results indicated that 
fasting induced no obvious adverse effects except for 
hunger and lightheadedness. Notably, 6 fasting patients 
showed a marked decrease in gastrointestinal, fatigue, 
and weakness events following chemotherapy. Further-
more, fasting did not compromise the anticancer effects 
from chemotherapy in those patients, as evidenced by no 
distinct difference of tumor volume or malignant mark-
ers compared to patients without fasting [383]. In line 
with this, 13 HER2-negative breast cancer patients were 
scheduled for treatment with fasting (only water supply) 
for 24 h or with standard nutrition regimens before and 
after the treatment with neo-adjuvant taxotere, adria-
mycin, and cyclophosphamide chemotherapy. Good tol-
erance was displayed to the short-term fasting, while a 
significant reduction of the erythrocyte and thrombocyte 
counts was shown at 7  days after chemotherapy [384]. 
Interestingly, non-fasted patients showed the upregu-
lated expression of γ-H2AX (which indicates the levels of 
DNA damage) in leukocytes in 30 min after chemother-
apy rather than the fasted patients [384]. Another inter-
esting study evaluated the influence of fasting time with 
cancer patients. In this study, 20 patients primarily diag-
nosed with breast or ovarian cancer were randomized 
to treatment with 24- or 48-h fasting before platinum-
derived chemotherapy or another 24-h fasting after plat-
inum-derived chemotherapy (total 72-h fasting) [385]. 
During the fasting, three or more out of six patients in 
each cohort needed to consume less than 200  kcal per 
day. Fasting-related toxicities were only relatively minor, 
including dizziness, fatigue, and headache with some evi-
dence of neutropenia in the 48- and 72-h cohorts [385]. 
Recently, a randomized clinical trial on 34 patients with 
ovarian or breast cancer was conducted to assess the 
effects of an FMD on life quality and side effects of chem-
otherapy [386]. In this study, a 36 ~ 48-h limited intake 
of 400 kcal per day was required before the treatment of 

chemotherapy. Subsequently, the same calorie limitation 
was performed for a further 24 h following chemotherapy 
[386]. From these data we can conclude that FMD does 
not lead to serious side effects per se, while improving 
chemotherapy-induced adverse reaction, like fatigue.

Therefore, fasting, either periodic or short-term, is 
attracting increasing attention for clinical cancer pre-
vention and therapy and indeed displays visible effect 
on cancer treatment in some clinic trails, suggesting a 
potential adjuvant therapy for cancer in the future.

Exercise benefits cancer therapy
Timing exercise has long been utilized as a Zeitgeber for 
regulating circadian clock of some major body systems, 
such as skeletal muscle and the blood vessels [387–391]. 
Maintaining this clock might be an efficacious strategy 
for preventing and combating metabolic disease, includ-
ing obesity, diabetes, cardiovascular disease, and cancer 
[392–394].

Accumulating literature has shown that exercise train-
ing can not only relieve treatment side effects but may 
also hold the potential to increase the potency and effi-
cacy of cancer therapies [256, 395–397]. Emerging evi-
dence from pre-clinical studies has indicated that exercise 
regulates intratumoral vascular perfusion, systemic 
inflammation, sex hormone levels, and immune cell func-
tion during cancer treatment, implying that exercise may 
be not only healthy but also therapeutic [398–400].

The first line of treatment for most solid tumors is sur-
gery, and radical tumor resection is usually considered 
as the most efficient therapeutic strategy, especially if 
the tumor is detected before it has metastasized [401]. 
Exercise training has been proved to be beneficial for the 
management of operable tumors at several distinct time 
points along the surgical treatment period, including the 
preoperative period, short-term immediately after sur-
gery, and longer-term follow up [402–405] and is becom-
ing increasingly popular. For example, in patients with 
early-stage lung cancer, preoperative exercise was found 
to improve walking endurance, peak exercise capacity, 
dyspnea and postoperative pulmonary complications, 
which are associated with the time of intensive care 
admissions, hospital stays, and hospital readmissions, 
as well as mortality in these patients [406]. Indeed, data 
from systematic review and meta-analysis have demon-
strated that lung cancer patients undergoing an exer-
cise regime had a lower risk of postoperative pulmonary 
complication, fewer days of intercostal catheter use, and 
a shorter length of hospitalization when compared with 
non-exercise patients [407–409]. In addition, exercise 
training immediately after cancer surgery is also benefi-
cial to the outcome of cancer patients. Studies have been 
conducted to evaluate the effectiveness of an early onset 
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exercise program on shoulder mobility, physical perfor-
mance, and postoperative complications of breast cancer 
patients and found that shoulder-arm mobility of surgical 
breast cancer patients demonstrated significant improve-
ment compared with the control group [410, 411]. More-
over, longer-term exercise following surgery has been 
established as a feasible, safe, and effective method of 
decreasing postoperative side effects and improving life 
quality in lung cancer patients [412]. Nevertheless, the 
mechanisms behind the effects of exercise on surgical 
outcomes are still poorly understood, and further studies 
are needed to clarify the potential of exercise training for 
better cancer management in the perioperative period.

Radiotherapy is a cornerstone for cancer manage-
ment, the effectiveness of which is dependent on suf-
ficient delivery of oxygen to the tumor sites to generate 
enough ROS for eliminating cancer cells [413, 414]. Exer-
cise training is a promising adjunct therapy for cancer 
patients receiving radiotherapy, mainly by affecting blood 
circulation and oxygen delivery to the tumor location 
[415]. Several randomized controlled trials have reported 
that exercise training could mitigate fatigue in cancer 
patients receiving radiotherapy and generate longer-term 
improvements and additional benefits for quality of life 
[416, 417], as well as reducing the severity of rectal toxic-
ity during radiotherapy of prostate cancer [418]. Moreo-
ver, evidence from a preclinical mouse model of prostate 
cancer also demonstrated that exercise can improve 
radiotherapy efficiency by increasing natural killer cell 
infiltration and activity, resulting in increased tumor cell 
apoptosis [419]. However, very few clinical studies have 
been conducted to investigate the effect of either acute 
or prolonged exercise training on radiotherapy treatment 
response, thus delaying the application of exercise train-
ing in clinical cancer treatment.

Likewise, the efficacies of chemotherapy and immuno-
therapy are partially dependent on adequate intratumoral 
blood perfusion which can be enhanced by appropriate 
exercise training to assist in delivery of drugs or immune 
cells to the tumor sites [420]. Several preclinical studies 
using mouse models have found that soft aerobic exer-
cise promotes tumor vascular function to enhance drug 
delivery to breast, prostate, and pancreatic tumors, thus 
increasing chemotherapy efficacy [421–425]. Moreover, 
exercise has been demonstrated to remodel the tumor 
vasculature in a PDX mouse model, which improves 
tumor regression and inhibits the recurrence of pan-
creatic ductal adenocarcinoma (PDAC) under gemcit-
abine treatment [426]. A previous study found that NK 
cell infiltration was significantly increased in tumors in 
wheel-running treated mice. Mechanistic analyses dem-
onstrated that the growth suppression of tumors was 
attributed to an epinephrine-IL6-dependent mobilization 

and activation of NK cells [185]. Another recent study 
found that the combination of anti-PD-1 and exercise 
increased the percentage of CD8+ T cells and enhanced 
antitumor immune responses in mice with EO771 breast 
tumors [249]. However, much remains to be understood 
about the efficiency of exercise on immunotherapy in 
clinical cancer management.

Overall, the above findings indicate the potential thera-
peutic role of exercise training in cancer treatment. Nev-
ertheless, current insights into the mechanistic effects of 
exercise on cancer therapy mainly stem from pre-clinical 
studies. Additional studies, especially a further under-
standing of the mechanisms involved and how they are 
controlled together with targeted clinical trials, are 
essential for a deeper understanding of the synergistic 
effects of exercise and conventional anticancer therapies.

Conclusions and perspectives
As discussed above, circadian control of biological pro-
cesses is involved in almost all aspects of daily life, and 
tightly regulates multiple human behaviors, includ-
ing sleep–wake, eating–fasting and activity–rest cycles. 
Chronic disruption of these biorhythms induced by 
external environmental or physiological changes may 
contribute to a wide range of human diseases, including 
sleep disorders, psychiatric and neurodegenerative dis-
eases, cardiovascular disease, and especially cancers [11, 
326, 427–430]. Indeed, several epidemiologic and ani-
mal studies have demonstrated the important role of the 
circadian clock in tumorigenesis and progression [427]. 
Although gene expression, cell division, and DNA repair 
are modulated by the clock, the concept that clock genes 
are general tumor suppressors remains unproven [326]. 
Moreover, tumor development will clearly cause clock 
disruptions, such as sleep deprivation and insufficient 
food intake, affecting bodily functions. This Janus effect 
is therefore attracting considerable interest worldwide for 
developing novel therapeutic strategies by modulating 
circadian rhythms. Table 2 summarizes the clinical stud-
ies related to clock-associated cancer therapy.

There are, however, some concerns that need to be 
addressed before the successful application of combining 
conventional treatment with targeting of the circadian 
clock for clinical cancer management. Firstly, targeting 
one of the clock components may prove no more effec-
tive than combinational therapeutic strategies using two 
or more targeted drugs. Secondly, the circadian clock can 
coordinate disparate cellular pathways. This may result in 
unwanted side effects or even opposite outcomes during 
treatment. Therefore, determining the appropriate dos-
age to successfully target circadian rhythm to obtain tran-
sient repression rather than chronic treatment may be 
required to avoid detrimental effects. Most importantly, 
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the preclinical efficacy of manipulating circadian rhythms 
needs to be extended to larger study cohorts [327, 431], 
as results from a previous study with a small sample size 
claiming a substantial effect of chronotherapy on ovarian 
cancer were not reproduced in subsequent larger studies 
[432–434].

In summary, circadian rhythms participate in diverse 
biological pathways. Their manipulation holds the prom-
ise for beneficial treatment of not only cancer, but also 
other serious diseases. Based on significant advances in 
this area, which was honored by the 2017 Nobel Prize for 
Physiology or Medicine awarded jointly to Jeffrey C. Hall, 
Michael Rosbash and Michael W. Young, we believe that 
it will have excellent clinical potential in the near future.
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