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Abstract 

The gut microbiota have long been recognized to play a key role in human health and disease. Currently, several lines 
of evidence from preclinical to clinical research have gradually established that the gut microbiota can modulate 
antitumor immunity and affect the efficacy of cancer immunotherapies, especially immune checkpoint inhibitors 
(ICIs). Deciphering the underlying mechanisms reveals that the gut microbiota reprogram the immunity of the tumor 
microenvironment (TME) by engaging innate and/or adaptive immune cells. Notably, one of the primary modes 
by which the gut microbiota modulate antitumor immunity is by means of metabolites, which are small molecules 
that could spread from their initial location of the gut and impact local and systemic antitumor immune response 
to promote ICI efficiency. Mechanistic exploration provides novel insights for developing rational microbiota-based 
therapeutic strategies by manipulating gut microbiota, such as fecal microbiota transplantation (FMT), probiotics, 
engineered microbiomes, and specific microbial metabolites, to augment the efficacy of ICI and advance the age 
utilization of microbiota precision medicine.
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Background
The microbiota in the gastrointestinal tract, which pro-
duces a myriad of small molecules and metabolites, play 
an essential role in multiple human physiological pro-
cesses, including metabolism, inflammation, immunity, 
and neurology [1–5]. The function of the microbiota and 
its metabolites in modulating local and systemic immune 
responses has led to the emergence of research on the 
effects of the cancer-immune system and immune check-
point inhibitor (ICI) therapeutic response [6–10]. The 
widespread variability in the gut microbiota across adult 

individuals is another reason to consider the gut micro-
biome as a potential source of phenotypic variability in 
cancer progression and ICI treatment outcomes [11].

Mounting evidence supports the role of the gut micro-
biota in the ICI response in preclinical and clinical stud-
ies [12–17]. ICI immunotherapy has improved traditional 
cancer therapeutic medicine and has enabled break-
throughs in the treatment of solid metastatic malignan-
cies [18–21]. ICIs unleash immune brake responses and 
effectively inhibit tumor immune escape by targeting 
programmed cell death 1 (PD-1) and its ligand (PD-L1), 
lymphocyte-activating gene-3 (LAG3), cytotoxic T lym-
phocyte-associated antigen-4 (CTLA-4), and other tar-
gets [18, 22, 23]. However, responses to ICI therapy are 
heterogeneous and not robust, with patient objective 
response rates (ORRs) of only 10–30% [24–27]. Manip-
ulation of the gut microbiota provides novel insight for 
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improving the antitumor immune response and expand-
ing ICI efficacy.

Nonetheless, the potential molecular mechanisms 
of the influence of the gut microbiome and its metabo-
lites on ICI efficacy are still poorly understood in some 
cancer types. In this review, we have summarized stud-
ies of the influence of the gut microbiome on ICI effi-
cacy and discussed the mechanisms of microbiota cross 
talk with innate and adaptive immune cells to ameliorate 
ICI responses. We will specifically highlight the mecha-
nisms of microbiota-derived metabolites and molecule-
mediated antitumor immune responses to ICI. Finally, we 
will review the therapeutic strategies and ongoing trials 
investigating manipulation of gut microbiota to improve 
ICI efficacy.

Gut microbiota and efficacy of immunotherapy: 
from discovery to applications
Early studies have shown that gut microbiota could stim-
ulate antitumor immune responses by modulating CD8+ 
T cells [28], T helper 1 (Th1) [29], and tumor-associated 
myeloid cells [30]. Indeed, the effects of cancer therapy 
were attenuated in antibiotic-treated or germ-free mouse 
models and were affected by special gut microbiota spe-
cies. Importantly, landmark publications in 2015 in 
mouse models first linked the gut microbiota to ICI 
responses [16, 17]. Gut microbiota composition influ-
enced anti-PD-L1 therapy responses, and the difference 
in responses was eliminated upon FMT or cohousing 
[16]. Oral administration of Bifidobacterium restored 
the antitumor efficacy of PD-L1 blockade by enhancing 
dendritic cell (DC) maturation and increasing CD8+ T 
cell priming and accumulation in the tumor microen-
vironment (TME) [16]. Another contemporary parallel 
study on anti-CTLA-4 therapy suggested that antibiotics 
dampen the antitumor effect of ICI, and supplementa-
tion with Bacteroides fragilis in germ-free or antibiotic-
treated melanoma mice could augment anti-CTLA-4 
therapeutic efficacy [17]. The microbiota-dependent anti-
tumor effect is dependent on eliciting Th1-cell activation 
in the tumor draining lymph node and inducing matura-
tion of intratumoral DCs [17].

Human studies published in Science side by side in 
2018 complemented these mouse studies. The three 
studies all demonstrated that gut microbiota com-
position and diversity were predictive of response to 
ICI immunotherapy [31–33]. A similar finding was 
that fecal microbiota transplantation (FMT) from ICI 
responding patients to germ-free or antibiotic-treated 
mice could improve tumor control and ameliorate 
responses to ICI, whereas FMT from non-responders 
failed to do so [31–33]. In non-small cell lung cancer 

(NSCLC) and renal cell carcinoma (RCC), patients 
with a higher diversity of bacteria were more sensitive 
to anti-PD-1 therapy [31]. Oral supplementation with 
Akkermansia muciniphila (A. muciniphila) after FMT 
from ICI non-responders restored anti-PD-1 therapy 
responses [31]. In melanoma patients, the diversity and 
composition of the gut microbiota were positively cor-
related with anti-PD-1 therapy responses [32]. Mostly, 
ICI responding patients with a higher abundance of 
Faecalibacterium and Ruminococcaceae in the gut dis-
played increased numbers of CD4+ T cells and CD8+ 
T cells in the periphery [32]. Another study involving 
patients with metastatic melanoma indicated that Bifi-
dobacterium longum, Collinsella aerofaciens, and Ente-
rococcus faecium were more abundant in the baseline 
feces of responders [33].

Prospective studies confirmed a significant asso-
ciation between gut microbiota and ICI outcomes in 
NSCLC, hepatocellular carcinoma (HCC), melanoma, 
and RCC patients from 2019 to 2020 [34–38]. At the 
same time, retrospective studies have implicated that 
antibiotics were associated with decreased survival and 
attenuated response to ICI in patients with advanced 
solid tumors [39–44], supporting a causal link between 
antibiotic-induced dysbiosis and poor therapeutic effi-
cacy of ICI. Furthermore, two clinical trials unexpect-
edly found that FMT from ICI responders combined 
with anti-PD-1 therapy overcame resistance to PD-1 
blockade in melanoma patients in 2021 [14, 15]. The 
timeline of gut microbiota and ICI efficacy is summa-
rized in Fig. 1.

In addition to modulating ICI immunotherapy, gut 
microbiota can influence adoptive T cell transfer (ACT) 
immunotherapy, CpG-oligodeoxynucleotide (CpG-
ODN) immunotherapy, and cell-based immunother-
apy. Antibiotic exposure decreased the efficacy of ACT 
therapy in mice [28, 45], while bacterial LPS supple-
mentation restored the therapeutic effect via toll-like 
receptor (TLR) 4 signaling [28]. Another study demon-
strated that the gut microbiota maintained ACT thera-
peutic efficacy by increasing the abundance of CD8α+ 
DCs, and upregulation of interleukin (IL)-1 [46]. In 
CpG-ODN immunotherapy, the gut microbiota activate 
TLR4, which directly or indirectly initiates the TLR9-
dependent response of tumor-associated myeloid cells 
to CpG-ODNs [30]. The efficacy of CpG-ODN is abol-
ished in GF and antibiotic-exposed mice by impairing 
the production of tumor necrosis factor (TNF) and 
IL-12 [30]. The gut microbiota also affect cell-based 
immunotherapy. Gut microbiota-mediated metabolism 
of bile acid increased the abundance of CXCR6+ natu-
ral killer T (NKT) cells in the liver and played an antitu-
mor role in hepatocellular carcinomas [47].
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The gut microbiota remodel the TME to improve ICI 
efficacy
Studies have shown that the gut microbiota modulate 
the ICI response, and detailed mechanistic explor-
ing into the specific bacterial species and microbial 

metabolites on ICI is necessary. The gut microbiota 
can modulate innate and adaptive immunity and influ-
ence antitumor immune responses in the TME [2, 48]. 
Complex mechanisms by which specific bacterial spe-
cies reprogram the TME to improve ICI efficacy in the 
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Fig. 1  Timeline of gut microbiota and ICI efficacy: from discovery to application. From 2007 to 2013, mouse studies showed that the gut microbiota 
could stimulate antitumor immune responses. In 2015, two preclinical mouse studies first linked the gut microbiota to ICI responses. In 2018, 
mouse and human studies demonstrated that gut microbiota composition and diversity were predictive of the response to ICI immunotherapy. 
FMT from ICI responding patients to germ-free or antibiotic-treated mice could improve tumor control and ameliorate responses to ICI. From 2019 
to 2020, prospective studies confirmed a significant association between gut microbiota and ICI outcomes in advanced solid tumors. Retrospective 
studies have implicated that antibiotics are associated with decreased survival and attenuated response to ICI. In 2021, two clinical trials found that 
FMT from ICI responders combined with anti-PD-1 therapy overcame resistance to PD-1 blockade in melanoma patients



Page 4 of 20Lu et al. Journal of Hematology & Oncology           (2022) 15:47 

context of immunity will be discussed herein (Table  1 
and Fig. 2).

Gut microbiota modulate innate immunity to ameliorate 
ICI responses
DCs
DCs are a group of special antigen-presenting cells that 
play an essential role in T cell activation and antitumor 
immunity [54–57]. Gut microbiota antigens or metabo-
lites with immunomodulators were used to mobilize and 
activate DCs to reverse immature DC-induced immune 
tolerance [58] (Fig.  2A). For instance, oral administra-
tion of Bifidobacterium increased DC activation, which 

in turn supported improved tumor-specific CD8+ T cell 
responses and restored the therapeutic efficacy of anti-
PD-L1 therapy in mice with an “unfavorable” gut micro-
biota [16]. Eleven strains combined with ICI robustly 
induced interferon (IFN) γ+ CD8+ T cells to inhibit 
tumor growth in a manner dependent on lamina propria 
cDC1 and major histocompatibility complex (MHC) class 
I [50]. Bacteroides fragilis enhanced the antitumor effect 
of CTLA-4 blockade by triggering DC maturation and 
stimulating IL-12-dependent Th1 cell immune responses 
[17]. Furthermore, vancomycin-mediated modulation of 
gut microbiome composition improved the activities of 

Table 1  Studies on gut microbiota target innate and adaptive immune cells to promote ICI efficacy

APC: antigen presenting cell; A2AR: adenosine 2A receptor; CRC: colorectal cancer; CTLA4: cytotoxic T lymphocyte-associated antigen 4; DC: dendritic cell; FMT: 
fecal microbiota transplant; FMT-R: responders to fecal microbiota transplant treatment; FMT-NR: non-responders to fecal microbiota transplant treatment; GZMK: 
granzyme K; ICI: immune checkpoint inhibitor; IFN: interferon; MAIT: mucosal-associated invariant T; MHC: major histocompatibility; NK: naturalkiller; NSCLC: non-
small cell lung cancer; NR-FMT: fecal microbiota transplants from non-responders to immune checkpoint inhibitor; PBMCs: peripheral blood mononuclear cells; 
PD-1: programmed cell death 1; PD-L1: programmed cell death ligand 1; RCC: renal cell carcinoma; R-FMT: fecal microbiota transplants from responders to immune 
checkpoint inhibitor; STING: stimulator of interferon gene; Th1: T helper 1; and TME: tumor microenvironment

Year Cancer types ICI Beneficial gut microbiota Interventions factors and/or 
biological effects

References

2015 Melanoma PD-L1 inhibitor Bifidobacterium DCs and CD8 + T cells [16]

2015 Melanoma CTLA4 inhibitor Bacteroides fragilis Tumor draining lymph nodes: 
Th1; TME: DCs

[17]

2018 NSCLC, RCC, Urothelial carci-
noma

PD-1 inhibitor, CTLA4 inhibitor Akkermansia muciniphila TME: IL-12 and 
CCR9 + CXCR3 + CD4 + T 
lymphocytes

[31]

2018 Melanoma PD-1 inhibitor Faecalibacterium, Ruminococ-
caceae, Clostridiales

Mice receiving R-FMT: 
Increased innate effector cells 
and decreased suppressive 
myeloid cells; Mice receiving 
NR-FMT: Increased RORγT+ T 
helper 17 cells

[32]

2018 Melanoma PD-L1 inhibitor Bifidobacterium longum, Collin-
sella aerofaciens, Enterococcus 
faecium

Mice receiving R-FMT: Aug-
mented T cell responses

[33]

2017 Melanoma CTLA4 inhibitor Faecalibacterium CD4 + T cells and CD25 [49]

2019 Adenocarcinoma, melanoma PD-1 inhibitor Eleven strains IFNγ + CD8 T cell, CD103 + DC, 
and MHC Ia

[50]

2020 CRC, Intestinal cancer, Bladder 
cancer, melanoma

PD-L1 inhibitor, CTLA4 inhibi-
tor

Bifidobacterium pseudolongum, 
Akkermansia muciniphila, Lac-
tobacillus johnsonii, Olsenella 
species

DCs and Th1; Inosine: A2AR 
on Th1

[51]

2020 Colon cancer, T cell lymphoma CD47 inhibitor Bifidobacterium STING signaling and DCs [52]

2021 Melanoma PD-1 inhibitor Enterococcaceae, Enterococcus, 
Streptococcus australis

FMT-R patients: TME: CD8 + T 
cell; Gut: APC

[15]

2021 Melanoma PD-1 inhibitor Lachnospiraceae, Ruminococ-
caceae families, Bifidobacte-
riaceae, Coriobacteriaceae 
families

FMT-R patients: PBMCs: 
CD8 + T cells and MAIT cells; 
TME: CD8 + T cells, HLA II, 
CD74 and GZMK
FMT-NR patients: Increased 
myeloid cells and CD4 + regu-
latory T cells

[14]

2021 Lymphoma, Colon carcinoma, 
Melanoma, Breast carcinoma

ICI A high-fiber diet, Akkermansia 
muciniphila

Monocytes, Macrophages, 
NK cells, DCs, Type I IFN, and 
STING

[53]
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Fig. 2  The gut microbiota modulate innate immunity, adaptive immunity, and tumor antigens to improve ICI responses. A Innate immunity. 
DCs: Bifidobacterium, eleven strains and their metabolites, and Bacteroides fragilis promote DC maturation or activation and subsequent 
activation of CD8+ T cells and Th1 cells. NK cells: Lactobacillus plantarum increases NK cell activation; a high-salt diet increases intestinal 
permeability and localization of intratumoral Bifidobacterium and enhances NK cell activation to induce antitumor immunity. Monocyte: Feeding 
a high-fiber diet, monocolonization with cdAMP-producing A. muciniphila or transferring fecal microbiota from ICI responders can trigger the 
monocyte-IFN-I-NK-cell-DC cascade; Bifidobacterium facilitates CD47-based immunotherapy in a STING signaling and IFN-I-dependent fashion; 
Bacteroides fragilis induces macrophage phenotype polarization to M1. B Adaptive immunity. CD8+ T cells: Bifidobacterium, Enterococcus, 
Faecalibacterium, Ruminococcus, and Clostridiales promote CD8+ T cell infiltrates in tumor tissues; Phyla Firmicutes and Actinobacteria improve 
the activation of CD56+CD8+ T cells in the peripheral blood of ICI responders; and eleven strains increase the proportion of effector IFNγ+CD8+ 
T cells in the systemic circulation. CD4+ T cells: B. pseudolongum and Bacteroides fragilis stimulate Th1 immune responses; A. muciniphila triggers 
CCR9+CXCR3+CD4+ T lymphocyte recruitment into tumor beds; and Faecalibacterium increases the CD4+ T cell proportion. C Tumor cross-antigen. 
The gut microbiota increase the immunogenicity of tumor cells by providing tumor cross-antigens to ameliorate the efficacy of ICIs, including the 
antigen epitope TMP1 and the antigen epitope SVY
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antitumor-specific effector T cells by increasing cDC1 
and upregulating IL-12 [46].

Monocytes/macrophages
Skews in IFN-I and mononuclear phagocyte levels con-
tribute to immune dysregulation and an immunosup-
pressive TME [59]. Microbiota-induced IFN-I signaling 
mediates the transition from innate immunity to adaptive 
immunity [7, 53, 60] (Fig. 2A). Microbiota-derived stimu-
lator of interferon genes (STING) agonists (such as c-di-
AMP) induce IFN-I signaling by intratumoral monocytes, 
which shift mononuclear phagocytes toward antitumor 
macrophages (Macs) and trigger monocyte-IFN-I-natu-
ral killer (NK) cell-DC cross talk [53]. Notably, feeding a 
high-fiber diet, monocolonization with cdAMP-produc-
ing A. muciniphila or transferring fecal microbiota from 
ICI responders improved the antitumor responses and 
ICI efficacy [53]. Similarly, it has been demonstrated that 
Bifidobacterium preferentially colonizes the tumor site 
and facilitates CD47-based immunotherapy in a STING 
signaling-and IFN-I-dependent fashion [52]. In addi-
tion, Bacteroides fragilis induced macrophage phenotype 
polarization to M1 and upregulated CD80 and CD86 
expression on the cell, promoting innate immunity [61].

NK cells
It has been demonstrated that NK cells can regulate 
DC and CD8+ T cell abundance in the TME and influ-
ence responses to ICIs [54, 62–64]. Recently, an increas-
ing number of studies have found an interplay between 
NK cells and gut microbiota (Fig.  2A). NSCLC patients 
with high microbial diversity had a higher abundance of 
unique memory CD8+ T cells and NK cell subsets in the 
periphery in response to PD-1 blockade [34]. Lactoba-
cillus plantarum effectively increased expression of the 
natural cytotoxic receptor (NCR) protein and promoted 
NK cell activation to trigger innate immunity [65]. Inter-
estingly, the suboptimal dose of PD-1 blockade combined 
with a high-salt diet significantly inhibited tumor growth 
in mice [66]. Mechanistic studies found that a high-salt 
diet increased intestinal permeability and the localization 
of intratumoral Bifidobacterium, which enhanced NK cell 
activation to induce antitumor immunity [66].

Gut microbiota modulate adaptive immunity to improve 
ICI responses
CD8+ T cells
Multiple publications have confirmed that specific gut 
microbiota induce CD8+ T cells in the systemic circu-
lation or the TME (Fig.  2B). For example, melanoma 
patients with a high relative abundance of favorable 
microbiota, including Clostridiales, Ruminococcaceae, 
or Faecalibacterium, increased antigen presentation and 

improved effector CD4+ T cell and CD8+ T cell function 
in the peripheral blood and TME to ameliorate the anti-
tumor efficacy of ICI [32]. Evidence from a clinical trial 
has implicated that the phyla Firmicutes and Actinobac-
teria were enriched in FMT combined with PD-1 block-
ade responders [14]. Combined FMT and PD-1 blockade 
stimulated mucosal-associated invariant T (MAIT) cells 
and CD56+CD8+ T cells in peripheral blood mononu-
clear cells (PBMCs) and upregulated expression of the 
human leucocyte antigen (HLA) class II genes CD74 and 
GZMK on CD8+ T cells at tumor sites [14]. In parallel, 
after using FMT combined with PD-1 blockade promoted 
a high relative abundance of Enterococcus in refractory 
metastatic melanoma and led to increased intratumoral 
CD8+ T cell infiltration and tumor cell necrosis [15]. Fur-
thermore, Bifidobacterium and eleven strains could also 
increase the abundance of CD8+ T cells reliant on DCs to 
improve ICI therapy efficacy [16, 50].

CD4+ T cells
In mouse models, B. pseudolongum promoted Th1 
transcriptional differentiation and antitumor immune 
responses to improve ICI efficacy mainly through the 
gut microbial metabolite inosine [51]. Bacteroides fragilis 
stimulated IL-12-dependent Th1 immune responses by 
facilitating the mobilization of lamina propria DCs, which 
restored the immune responses to ICI [17]. In addition, 
oral supplementation with A. muciniphila in FMT non-
responsive mice recovered anti-PD-1 responses by trig-
gering CCR9+CXCR3+CD4+ T lymphocyte recruitment 
into tumor beds [31]. In human patients, Faecalibacte-
rium increased the CD4+ T cell proportion and serum 
CD25 production and reduced the Treg cell proportion 
in peripheral blood, which induced the long-term clinical 
benefit of ipilimumab [49] (Fig. 2B).

Gut microbiota modulate the immunogenicity of tumor 
cells to improve ICI responses
The decrease in tumor immunogenicity is an essen-
tial mechanism by which tumor cells resist T cell kill-
ing. On the one hand, the gut microbiota can directly 
enhance the innate immunogenicity of tumor cells by 
acting on UBA6 on the tumor cell surface to augment 
ICI responses [67]. On the other hand, the gut microbi-
ota can indirectly increase the immunogenicity of tumor 
cells by providing tumor cross-antigens to promote the 
efficacy of ICI [50, 68, 69]. Some cross-reactivity between 
antigens expressed in gut microbes and tumor cells has 
been identified (Fig. 2C). The antigenic epitope tail length 
tape measure protein 1 (TMP1) in the genome of bacte-
riophage Enterococcus hirae had high similarity with the 
proteasome subunit beta type-4 (PSMB4) tumor anti-
gen [70]. They activated CD8+ T cells simultaneously 
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and improved the efficacy of PD-1 blockade therapy 
[70]. It has been demonstrated that the antigen epitope 
SVYRYYGL (SVY) expressed in the commensal bacte-
rium Bifidobacterium breve was similar to the tumor-
expressed antigen epitope SIYRYYGL (SIY), resulting 
in SVY-specific T cells recognizing SIY and inhibiting 
tumor growth [71].

Gut microbial metabolite‑mediated antitumor 
immune responses to ICI
Notably, one of the primary modes by which the gut 
microbiota modulate antitumor immunity is by means 
of metabolites. The gut microbiota synthesize or trans-
form a myriad of metabolites, which are small molecules 
that can spread from their original location in the gut 
and impact the local and systemic antitumor immune 

response to promote ICI efficacy [14, 72]. Accordingly, 
we further explored the mechanisms of the different gut 
microbial metabolites and other features of gut microbial 
signatures mediating antitumor immune responses.

Inosine
Inosine, the purine metabolite of Akkermansia mucin-
iphila and Bifidobacterium pseudolongum (B. pseudo-
longum), plays a vital role in improving the efficacy of 
ICI [51]. Inosine is a normal metabolite of the human 
body and participates in nucleic acid metabolism, 
energy metabolism, and protein synthesis in a physio-
logical state. It can activate immune cells and stimulate 
metabolism. In the past, it has been shown that ino-
sine has immunosuppressive effects [73, 74]. However, 
in recent years, more studies have found that inosine 
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could reprogram the TME and improve the response to 
ICI therapy [51, 75, 76]. Current studies indicate that 
inosine affects the efficacy of ICI mainly through the 
following mechanisms (Fig. 3).

Inosine increases the immunogenicity of tumor cells. 
A research group found that inosine could significantly 
enhance the ability of tumor cells to present tumor anti-
gens, so cytotoxic immune cells could easily recognize 
and kill tumor cells, achieving an antitumor effect [77]. 
Further mechanistic studies showed that activation of 
the IFNγ and TNFα signaling pathways was significantly 
increased in tumor cells treated with inosine. IFNγ can 
activate the cytotoxicity of tumor-specific T cells and 
NK cells through promoting their release of perforin and 
granzyme, and IFNγ can heighten antigen presentation 
to promote inosine-mediated antitumor effects [78]. Our 
recent work demonstrated that inosine sensitized tumor 
cells to T cell-mediated cytotoxicity by directly binding 
and inhibiting the ubiquitin-activating enzyme UBA6 to 
amplify tumor-intrinsic immunogenicity and enhance 
ICI efficacy [67] (Fig. 3A).

Inosine promotes immune cell activation. The gut 
microbial metabolite inosine could improve the effi-
cacy of ICI by acting on adenosine 2A receptor (A2AR) 
on T lymphocytes in intestinal cancer, bladder cancer, 
and melanoma mouse models [51]. The inosine-A2AR-
cAMP-PKA signaling cascade led to the phosphorylation 
of cAMP response element-binding protein (pCREB), 
which upregulated IL12Rβ2 and IFNγ transcription and 
promoted Th1-cell differentiation and accumulation in 
the TME [51]. Interestingly, the in vivo antitumor effects 
of ICI combined with inosine required a costimulus, such 
as CpG and IL-12 [51] (Fig. 3B). Inosine can also enhance 
immune responses mediated by phytohemagglutinin 
(PHA), increase tumor antigen levels, and strengthen T 
lymphocyte differentiation and proliferation [75, 79]. Fur-
thermore, inosine stimulated B lymphocyte differentia-
tion and antibody production by activating macrophages, 
exerting antiviral and antitumor actions [75, 79].

Inosine provides an alternative carbon source for CD8+ 
T cells. Oncogenic signaling pathway activation repro-
grams the metabolism of cancer cells [80]. The high met-
abolic demand of cancer cells can limit the capacity of 
effector T cells by reducing the levels of available nutri-
ents and producing immunosuppressive metabolites [81, 
82]. Inosine could be employed as an alternative carbon 
source for CD8+ T cells under energy metabolism lim-
its to support the growth and capacity of CD8+ T cells 
[75] (Fig.  3C). T cells metabolize inosine into hypoxan-
thine and phosphorylated ribose by purine nucleoside 
phosphorylase (PNP) [75] (Fig.  3C). Importantly, the 
ribosomal subunit of inosine enters the central metabolic 
pathway, providing ATP and biosynthetic precursors for 

the glycolytic pathway and the pentose phosphate path-
way (PPP) [75].

Short‑chain fatty acids (SCFAs)
Colonic anaerobes produce SCFA from undigested and 
absorbed carbohydrates or glycoproteins secreted by 
gut epithelial cells. Recently, the association between gut 
microbiota-derived SCFAs and nivolumab or pembroli-
zumab treatment in solid tumors has been confirmed 
[83]. SCFAs were found to be significant physical and 
chemical barriers that stimulate Paneth cells and goblet 
cells to produce AMPs and mucus to support the integ-
rity of the intestinal mucosal barrier [84, 85]. SCFAs play 
a key role in complex gut microbial immune and meta-
bolic networks, affecting the activity of immune cells and 
tumor cells (Fig. 4).

SCFAs inhibit the proliferation and induce the apop-
tosis of tumor cells. The mechanism of the synergy of 
SCFAs and ICI is a research hotspot. Butyric acid, the 
metabolite of Faecalibaculum rodentium PB1 (F. PB1) 
and H. biformis, acts as a histone deacetylase (HDAC) 
inhibitor [86]. It increased acetylation and inhibited 
calcineurin-mediated nuclear factor of activated T cells 
C3 (NFATc3) activation, which blocked tumor cell pro-
liferation [86] (Fig.  4A). In addition, the SCFA propi-
onic acid produced by A. muciniphila activated the cell 
cycle inhibitor p21 through G protein-coupled receptor 
43 (GPR43) and downregulated inhibitor of apoptosis 
protein (IAP), which restrained cancer cell proliferation, 
induced apoptosis, and improved the antitumor effect of 
ICI [87] (Fig. 4A).

SCFAs improve antitumor immune responses. SCFAs 
can directly promote the antitumor cytotoxicity of CD8 
T cells in vivo and in vitro [6, 88] (Fig. 4B). Butyrate pro-
duced by gut microbiota metabolism could directly boost 
the antitumor cytotoxicity of CD8+ T cells by inhibit-
ing DNA binding 2 (ID2)-dependent IL-12 signaling [6]. 
Another study confirmed that valeric acid and butyric 
acid enhanced the function of mTOR as central cellular 
metabolic sensors and inhibited the activity of class I 
HDACs through metabolic and epigenetic reprogram-
ming [88]. Moreover, this led to an increase in effector 
molecules such as CD25, IFNγ, and TNFα, which signifi-
cantly promoted the antitumor effects of antigen-specific 
cytotoxic T lymphocytes (CTLs) and chimeric antigen 
receptor (CAR) T cells in melanoma and pancreatic can-
cer mouse models [88]. Both studies identified valeric 
acid and butyric acid as two SCFAs with therapeutic 
effects in cancer immunotherapy.

SCFAs provide energy for immune cells. SCFAs derived 
from the gut microbiota can regulate glycolysis, the tri-
carboxylic acid (TCA) cycle, the PPP, and fatty acid 
oxidation (FAO) of antitumor effector cells to increase 
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the efficiency of ICI (Fig.  4C). First, butyrate, an SCFA, 
is converted to butyryl-CoA, undergoes β-oxidation 
(β-OX), and participates in the TCA cycle and oxidative 
phosphorylation (OXPHOS). These processes provide 
intestinal mucosal epithelial cell energy, improve intes-
tinal villus structure, inhibit autophagy, and preserve 
intestinal homeostasis [89, 90]. Second, in memory T 
cells, butyric acid activated intracellular β-OX, promot-
ing the TCA cycle and OXPHOS [91]. At the same time, 
acetyl-CoA produced by acetic acid promoted glycolysis 
by acetylating glyceraldehyde-phosphate dehydrogenase 
(GAPDH) [92]. Importantly, in effector T cells, SCFAs 

increase the number of mitochondria in cells and stimu-
late glycolysis and OXPHOS [93, 94]. Finally, SCFAs pro-
vide energy for B-cell differentiation into plasma cells, 
antibody production, and overall changes in cell metabo-
lism [95].

Anacardic acid
In addition to inosine and SCFAs (Fig.  5A, B), anac-
ardic acid also modulates antitumor immune responses 
(Fig. 5C). In the prospective study, metabolomics analy-
sis of fecal bacteria from melanoma patients treated with 
ICI showed that Bacteroides caccae was significantly 
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Fig. 4  Potential mechanisms by which the gut microbial metabolite SCFAs augment the efficacy of ICI. A SCFAs inhibit the proliferation and induce 
the apoptosis of cancer cells. The butyric acid of SCFAs, a metabolite of Faecalibaculum rodentium PB1 and H. biformis, inhibits the activity of HDAC 
and the calcineurin-mediated activation of NFATc3 transcription factor, thereby blocking the proliferation of tumor cells. Propionic acid produced 
by A. muciniphila activates the cell cycle inhibitor p21 through GPR43 and downregulates the IAP inhibitor, which inhibits cancer cell proliferation, 
induces apoptosis, and improves the antitumor effect of ICI. B SCFAs improve the antitumor immune response. Butyrate can directly enhance CD8+ 
T cell antitumor cytotoxicity by inducing ID2 expression in CD8+ T cells through IL-12 signaling. Valeric acid and butyric acid of SCFAs promote 
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enriched, and levels of anacardic acid were greatly 
increased in the ICI response group (62-fold, P < 0.01) 
[96] (Fig.  5C). Anacardic acid triggers the classic acti-
vation pathway in macrophages by phosphorylating 
mitogen-activated protein kinases (MAPKs), thereby 
activating innate immunity [97]. Anacardic acid can 
also induce production of a neutrophil extracellular trap 
(NET), which promotes creation of tumor-infiltrating 
immune cells with macrophages, NK cells, and T lym-
phocytes to modulate adaptive immunity and antitu-
mor immunity [98, 99]. Indeed, anacardic acid has been 
confirmed to have antitumor effects in some preclini-
cal models [100]. For example, in breast cancer models, 
anacardic acid increased levels of tumor-infiltrated NK 
cells and CTLs and induced apoptosis of tumor cells 
[101] (Fig. 5C).

Bile acid and tryptophan
Gut microbiota-derived metabolites, such as secondary 
bile acid or tryptophan, have shown immunosuppres-
sive effects in some studies (Fig. 5D, E). Gut microbiota 

that produce bile acid metabolite 3-oxolithocholic acid 
as well as an abundant gut metabolite isolithocholic acid 
inhibit Th17 cell differentiation [102]. Furthermore, the 
secondary bile acid 3β-hydroxydeoxycholic acid exhibits 
weakened immunostimulatory properties when acting 
on DCs, thus inducing the expression of Foxp3, upregu-
lating the number of Tregs, and promoting immune 
escape [103]. Feeding secondary bile acids or bile acid-
metabolizing bacteria Clostridium scindens attenuated 
NKT cell-mediated liver-selective tumor inhibition [47]. 
In addition, IL-2 induced CD8+ T cell exhaustion and 
strong expression of tryptophan hydroxylase 1 by acti-
vating the STAT5-5-hydroxytryptophan (5-HTP)-AhR 
axis [104]. Tryptophan metabolites effectively facilitated 
the motility and migration of tumor cells in breast can-
cer [105, 106]. The increase in the serum kynurenine/
tryptophan ratio was associated with worse overall sur-
vival in melanoma and RCC patients receiving nivolumab 
therapy [107]. Low plasma tryptophan metabolite-3-hy-
droxyphthalate levels were significantly associated with 

Fig. 5  Microbiota-derived metabolites and other gut microbial signature modulation of antitumor immune responses to improve ICI efficacy. 
A–E Microbiota-derived metabolites target immune cells and tumor cells to modulate antitumor immunity. Inosine, SCFA, and anacardic acid 
promote antitumor immunity and ICI efficacy; bile acid and tryptophan attenuate antitumor immune responses. F–H Other gut microbial signature 
modulation of antitumor immune responses. PG, PSA, and OMV promote anti-tumor immune responses by regulating immune cells, tumor cells, 
and cytokines
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prolonged median progression-free survival (PFS) in 
patients with NSCLC [108].

Other gut microbial signatures guide antitumor 
immune responses
Peptidoglycan (PG) and polysaccharide (PSA)
Enterococcus expressed and secreted orthologs NlpC/
p60 PG hydrolase SagA and could promote expression of 
the innate immune sensor protein nucleotide-binding oli-
gomerization domain containing 2 (NOD2) and augment 
ICI antitumor efficacy [109] (Fig.  5F). Recognition of 
microbiota-derived PG in a nucleotide-binding oligomer-
ization domain containing 1 (NOD1)-dependent manner 
could facilitate systemic innate immunity [110]. Further-
more, PSA produced by Leuconostoc mesenteroides strain 
NTM048 or Bacteroides fragilis acts as an immunostim-
ulant to enhance the mucosal barrier and influence sys-
temic immune responses [111, 112] (Fig.  5G). PSA can 
be recognized by DCs in the small intestine and activated 
CD4+ T cells to secrete cytokines, thereby promoting T 
cell proliferation, improving Th1/Th2 cell imbalance, and 
promoting lymphoid tissue formation [113] (Fig.  5G). 
TLRs, such as TLR9 and its agonist CpG-ODN, play an 
essential role in pathogen recognition and initiation of 
immune responses [114–118]. Clostridium difficile toxin 
A-bound DNA activated TLR9 signaling and the innate 
immune response [119].

Outer membrane vesicle (OMV)
Microbiota-derived OMVs naturally secreted by bac-
teria can reprogram the TME and have been developed 
into tumor immunotherapeutic reagents, bacterial vac-
cines, adjuvants, and drug delivery carriers [120, 121]. 
OMVs express tumor antigens, inducing innate immune 
responses and antigen-specific T cell-mediated antitu-
mor immunity; bioengineered bacterial OMVs express-
ing multiple tumor antigens can trigger a synergistic 
antitumor immune response [122] (Fig. 5H). OMVs with 
calcium phosphate (CaP) shells promoted cytotoxic T 
cell infiltration and M2 to M1 macrophage polarization, 
effectively improving the immunosuppressive TME [123] 
(Fig.  5H). Additionally, systematically administered bac-
terial OMVs specifically targeted and accumulated in the 
tumor bed and subsequently induced the production of 
the antitumor cytokines CXCL10 and IFN-γ to effectively 
augment antitumor immune responses [124] (Fig. 5H).

Gut microbiota and ICI therapy toxicity
ICI therapy disrupts the host immune balance while kill-
ing tumor cells, which may result in immune-related 
colitis, immune-related pneumonia, and even life-
threatening immune-related myocarditis. Several lines 
of evidence suggest that the role of the gut microbiota in 

immune-related adverse events (irAEs) is a double-edged 
sword. Certain gut bacteria may be protective against 
immunotherapy-induced toxicity. Mouse models have 
verified that Bifidobacteria, Bacteroides fragilis, and Bur-
kholderia cepacia can ameliorate intestinal immunopa-
thology in the context of anti-CTLA-4 therapy [17, 125, 
126]. A prospective study demonstrated that increased 
representation of the Bacteroidetes phylum and microbial 
genetic pathways involved in polyamine transport and 
vitamin B biosynthesis was associated with developed 
resistance to ICI-induced colitis in metastatic melanoma 
patients treated with ipilimumab [127]. In contrast, some 
gut microbiota are associated with a high risk of ICI-
induced toxicity. The enrichment of two microbes, Lach-
nospiraceae spp. and Streptococcus spp., was associated 
with an increase in irAEs in melanoma patients treated 
with anti-PD-1 [128]. Interestingly, a distinct baseline 
of gut microbiota may also be associated with favora-
ble anticancer response as well as ICI-induced toxicity. 
Among 26 patients with metastatic melanoma treated 
with ipilimumab, patients with Faecalibacterium and 
Firmicutes enrichment at baseline were prone to develop 
immunotherapy-induced colitis and enhanced ICI sen-
sitivity simultaneously [49]. This is known as the effi-
cacy–toxicity coupling effect in the context of ICI [126, 
129, 130]. Gut microbes, such as Bacteroides, could also 
be a biomarker for predicting ICI therapeutic toxicity 
in advanced melanoma patients treated with combined 
CTLA-4 and PD-1 blockade [131]. The beneficial effect 
of FMT as a therapeutic modality for immunotherapy-
induced toxicity in two patients has been demonstrated 
by reconstructing the gut microbiome and increasing the 
proportion of Tregs in the colonic mucosa [132]. These 
studies indicate that the gut microbiome has complex 
positive and negative effects on ICI-induced toxicity. 
More evidence is required before adequately filtering 
and manipulating the gut microbiota to augment the ICI 
response and attenuate irAEs.

Therapeutic strategies utilizing the gut 
microbiome combined with ICI
Understanding the biological mechanisms of the gut 
microbiome and its metabolites on antitumor immunity 
and immunotherapy responses is essential for rationally 
manipulating microbial activities to improve ICI efficacy 
[133, 134]. The therapeutic strategies utilizing the gut 
microbiome combined with ICI are delineated in Fig. 6.

Fecal microbiota transplantation
FMT treatment refers to the whole transplantation of an 
individual’s gut microbiome, usually from ICI respond-
ers. FMT preparations can be administered directly by 
oral lyophilized pills or by colonoscopy or gastroscopy. 
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FMT was initially used to treat Clostridium difficile 
infection resistant to traditional therapy [135]. Recently, 
several studies have indicated that FMT could aug-
ment the antitumor effect of ICI and overcome resist-
ance to immunotherapy [31–33]. In a phase I clinical 
trial (NCT03353402), researchers performed FMT 
and reinduction anti-PD-1 therapy for ten melanoma 
patients who were unresponsive to PD-1 blockade [15]. 
The results showed that three of the ten patients showed 
tumor volume decline, including two partial responses 
(PR) and one complete response (CR) [15]. In the same 
period, another clinical trial focused on 15 melanoma 
patients resistant to anti-PD-1 therapy (NCT03341143), 
and the results showed that three patients showed PR 
after using FMT combined with pembrolizumab, and 
three patients had stable disease (SD) for more than 
12  months [14]. The application of FMT is a novel 

approach for reversing ICI immunotherapy resistance 
and decreasing irAEs. Some clinical trials to evaluate the 
safety and efficacy of the combination of FMT with ICI 
treatment are underway (Table 2).

Despite the promising results of FMT therapy in 
patients treated with ICI, there are still concerns about 
its long-term safety. In 2019, it was reported that in two 
independent clinical trials, two patients developed bac-
teremia with extended-spectrum β-lactamase (ESBL)-
producing Escherichia coli after receiving FMT from the 
same donor, and one patient died [136]. This study led the 
US Food and Drug Administration to issue a safety bulle-
tin warning of the infection risk with FMT therapy. Fur-
thermore, a recent retrospective cohort study of collected 
donor feces tested for multidrug-resistant organisms 
showed that 6 of 66 tested individuals (9%) were positive 
for multidrug-resistant organisms at any timepoint [137]. 

Fig. 6  Therapeutic strategies utilizing the gut microbiome combined with ICI. Therapeutic strategies for manipulating gut microbiota include FMT, 
probiotics, engineered microbiome, and other strategies to increase ICI responses
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Therefore, periodic screening of donor feces should be 
performed to strictly limit the spread of organisms that 
may lead to adverse infection events, which is especially 
relevant for immunodeficient patients. Further clini-
cal investigations enabling a better understanding of the 
source, transplantation procedure, and recipient pheno-
type of donor FMT are critical for successful ICI-FMT 
combination therapy.

Probiotics
Probiotics are “live microorganisms which when admin-
istered in adequate amounts confer a health benefit on 
the host” [138]. Early clinical trials in patients with can-
cer mainly evaluated how probiotics modified micro-
biota composition or modulated antitumor immunity. 
A clinical trial in patients with breast cancer assessed 
the effects of the administration of probiotics (13 strains 
of beneficial bacteria) on CD8+ T cell infiltration in 
the TME (NCT03358511). Patients with CRC admin-
istered probiotics (Bifidobacterium lactis and Lacto-
bacillus acidophilus) had an increased abundance of 
butyrate-producing bacteria in the tumor, mucosa, and 
feces (NCT03072641) [139]. Another trial demonstrated 
that patients treated with probiotics have lower IL-1b, 
IL-10, and IL-23A mRNA levels in the colonic mucosa 

(NCT01895530) [140]. Moreover, specific gut microbes, 
such as Bifidobacterium [16, 33, 51, 141], Akkermansia 
[31, 38], Enterococcus [15, 33, 141], Faecalibacterium [49, 
142], and Ruminococcaceae [32], play the role of immune 
adjuvants in ICI immunotherapy. Several clinical trials 
to assess the safety and efficacy of probiotics combined 
with ICIs are underway (Table 3). For example, MRx0518 
(Enterococcus gallinarum capsule) mainly relies on free 
flagellin to activate the TLR5 and NF‐κB signaling path-
ways and exert antitumor effects [143]. The phase I/II 
open-label clinical trial (NCT03637803) explored the 
synergistic effects of the oral probiotic MRx0518 in com-
bination with pembrolizumab in NSCLC, RCC, bladder 
cancer, or melanoma, and the results have not yet been 
published. EDP1503 is a novel adjuvant for the immuno-
therapy of cancer-based Bifidobacterium. Clinical trials 
(NCT03775850) showed that EDP1503 in combination 
with pembrolizumab was safe and well tolerated, and bio-
marker studies found that EDP1503 works by upregulat-
ing the ratio of CD8+ T cells/Treg cells [144].

Engineered microbiomes
With the development of bacterial genetic engineering 
technology, it is possible to improve antitumor responses 
to ICI by modifying gut microbiota or metabolites. 

Table 2  Clinical trials of FMT modulate the efficacy and AEs of ICI www.​clini​caltr​ials.​gov

AEs: adverse events; CRC: colorectal cancer; dMMR: mismatch-repair deficiency; FMT: fecal microbiota transplant; ICI: immune checkpoint inhibitor; n: number of 
patients; NA: not applicable; NSCLC: non-small cell lung cancer; ORR: objective responses rate; PFS: progression-free survival; and RCC: renal cell carcinoma

NCT number Cancer types n Intervention Outcome(s) Stage References

Modulation of the gut microbiome to improve ICI efficacy
NCT04056026 Mesothelioma 1 FMT + Pembrolizumab PFS Phase 1 –

NCT04521075 Melanoma, NSCLC 50 FMT + Nivolumab FMT-related AEs, ORR Phase 1–2 –

NCT04130763 Gastrointestinal 10 FMT + Anti-PD-1 FMT-related AEs, ORR Phase 1 –

NCT04116775 Prostate 32 FMT + Enzalutamide + Pembrolizumab Anticancer effect Phase 2 –

NCT04729322 dMMR CRC​ 15 FMT + Pembrolizumab–Nivolumab ORR Phase 1 –

NCT04577729 Melanoma 60 Allogenic FMT + ICI versus Autologous 
FMT + ICI

PFS NA –

NCT04758507 RCC​ 50 Donor FMT + ICI versus Placebo 
FMT + ICI

PFS Phase 1–2 –

NCT04924374 NSCLC 20 Anti-PD-1 + FMT versus Anti-PD-1 Treatment safety and responses NA –

NCT04988841 Melanoma 60 MaaT013 + Ipilimumab + Nivolumab 
versus placebo + Ipili-
mumab + Nivolumab

AE, ORR Phase 2 –

NCT03772899 Melanoma 20 FMT + Pembrolizumab/Nivolumab Safety, ORR Phase 1 –

NCT03341143 Melanoma 20 FMT + Pembrolizumab ORR Phase 2 [14]

NCT03353402 Melanoma 40 FMT + ICI FMT-related AEs, Phase 1 [15]

Modulation of the gut microbiome to prevent ICI-related AEs
NCT04038619 RCC​ 40 Loperamide + FMT + ICI FMT-related AEs, ICI-related diarrhea/

colitis
Phase 1 –

NCT04163289 Renal cancer 20 FMT + Nivolumab/Ipilimumab Immune-related colitis Phase 1 –

NCT03819296 Solid tumors 800 FMT + Infliximab/Vedolizumab FMT-related AEs, ICI-related colitis Phase 1–2 –

NCT04883762 Solid tumors 10 FMT + ICI FMT-related AEs, ICI-related diarrhea Phase 1 –

http://www.clinicaltrials.gov
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Genetically engineered drugs have specificity that FMT 
cannot achieve. To date, genetically attenuated, nutrient 
deficient, and inducible Escherichia coli [146], Bifido-
bacteria [147], Listeria [148], and Salmonella [148] have 
been transformed and have shown antitumor effects 
in preclinical models of intravenous, intratumoral, and 
oral administration routes [149]. Guo et  al. [150] made 
use of the abilities of several strains, including Salmo-
nella and Clostridium, to elicit specific targeting in solid 
tumors, making them ideal carriers for the delivery and 
induction of immune stimulants to delay tumor growth 
and metastasis. In addition, SYNB1891 is a dual innate 
immune agonist designed based on the biology of E. 
coli. SYNB1891 has been modified to express the STING 
agonist cyclic adenosine diphosphate ribose (CADPR), 
which can stimulate expression of IFNs and achieve anti-
tumor effects [151]. Clinical trials exploring the safety 
and efficacy of SYNB1891 in combination with atezoli-
zumab in advanced solid tumors are ongoing (Table  3). 
Furthermore, L-arginine enhances T cell survival and 
antitumor activity by modulating T cell metabolism 
[152, 153]. The engineered probiotic Escherichia coli 
Nissle 1917 strain colonizes tumor sites and continu-
ously converts the metabolite ammonia to L-arginine in 
the tumor bed [154]. Intertumoral injection of this strain 
in mice increased the intracellular L-arginine concentra-
tion, triggered intratumoral CD4+ T cell and CD8+ T 

cell infiltration, and exerted synergistic antitumor effects 
when combined with anti-PD-L1 [154]. These results 
show that engineered microbial therapies enable meta-
bolic modulation of the TME to enhance the efficacy of 
immunotherapies.

Other strategies
Therapeutic strategies involving the manipulation of gut 
microbiota to enhance ICI efficacy also include adjusting 
diet and lifestyle, taking prebiotics, and avoiding antibiot-
ics [155–158]. Additionally, the discovery of tumor cross-
antigens and gut microbiota-derived immune activators 
provides insights into the development of tumor-thera-
peutic vaccines such as Ty21a [159, 160], JNJ-64041809 
[161], and VXM01 [162]. EO2401 is a microbial-derived 
polypeptide drug with a structure homologous to that of 
tumor-associated antigens. The clinical trial of EO2401 
combined with nivolumab is ongoing in glioblastoma 
multiforme (GBM) and adrenocortical carcinoma 
patients (Table 3). It is noteworthy that oral administra-
tion of microbiome-derived compounds, such as bac-
teriophages and microbial metabolites, may be more 
practical and precise than administration of full or unique 
live bacteria transplants [70, 163]. Indeed, bacteriophages 
as therapeutic strategies could modulate the gut micro-
biota, immunity, and TME [70, 164–166]. Importantly, 
the SCFA valproic acid (VPA, 2-propylpetanoic acid) is 

Table 3  Clinical trials of probiotics and engineered microbiomes in combination with ICIs in cancer treatment www.​clini​caltr​ials.​gov

ICI: immune checkpoint inhibitor; n: number of patients

NCT number Cancer types n Microbiome-based therapy Intervention Stage References

NCT03775850 Solid tumors 120 EDP1503 (Bifidobacterium strain) EDP1503 (capsules) + Pembroli-
zumab

Phase 1–2 [144]

NCT03637803 Solid tumors 132 MRx0518 (E. gallinarum strain) MRx0518 (capsules) + Pembroli-
zumab

Phase 1–2 –

NCT05107427 Urothelial carcinoma 30 MRx0518 (E. gallinarum strain) MRx0518 (capsules) + Avelumab Phase 2 –

NCT03686202 Solid tumors 65 MET-4 (Mixture of pure live cultures 
of intestinal bacteria)

MET (capsules) + ICI Phase 1 –

NCT04601402 Solid tumors 93 GEN-001 (Lactococcus lactis strain) GEN-001 (capsules) + Avelumab Phase 1 –

NCT04187404 Adrenal tumors 60 EO2401 (Vaccines of microbial-
derived peptide homologous to 
tumor-associated antigens)

EO2401 + Nivolumab Phase 1–2 –

NCT04116658 Glioblastoma 52 EO2401 (Vaccines of microbial-
derived peptide homologous to 
tumor-associated antigens)

EO2401 + Nivolumab Phase 1–2 –

NCT03829111 Renal cell carcinoma 30 CBM588 (Clostridium butyricum 
probiotic)

Nivolumab + Ipilimumab 
versus CBM588 (cap-
sules) + Nivolumab + Ipilimumab

Phase 1 [145]

NCT04167137 Solid neoplasm, lymphoma 70 SYNB1891 (Engineered E. coli) SYNB1891 (intratumoral injec-
tion) + Atezolizumab

Phase 1 –

NCT04208958 Solid tumors 54 VE800 (11 commensal bacterial 
strains)

VE800 + Nivolumab Phase 1–2 –

NCT03817125 Melanoma 14 SER-401 (Defined bacterial con-
sortia)

SER-401 (capsules) + Nivolumab 
versus Placebo + Nivolumab

Phase 1 –

http://www.clinicaltrials.gov
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a type of microbiota-derived metabolite. Clinical trials to 
assess the safety and efficacy of VPA in combination with 
ICI in patients with solid tumors are already underway 
(NCT02446431, NCT01106872, NCT02624128).

Further directions
We have gained insights into the potential mechanisms 
of gut microbiome influences on the antitumor immune 
response and ICI efficacy and into their use in therapeu-
tic strategies from preclinical and clinical research. In 
the future, we still need to consider the following fac-
tors. First, the accuracy of the findings of the microbiome 
influence on ICI efficacy should be demonstrated. The 
effects of gut microbiota on tumor ICI therapy are multi-
faceted and even bidirectional. We should accurately clas-
sify favorable and unfavorable microbiome features that 
target immune cells or pathways and fully understand 
their effects in different TMEs. Second, this approach 
facilitates the improved precision of therapeutic strate-
gies. Understanding the microbiota-metabolite-immune 
axis helps us directly manipulate specific immune-stim-
ulating metabolites or compounds derived from gut 
microbiota, rather than whole or unique live bacteria 
transplants, to improve the ICI response. In addition, 
the effects of other microbiota-derived molecules that 
promote the antitumor immune response may become a 
future direction of preclinical or clinical research on ICIs. 
Third, gut microbiota may act as a predictive biomarker 
for ICI efficacy or safety. A patient’s microbiota data 
could be combined with those of other known related 
predictive markers, such as PD-L1 expression and tumor 
mutation load, to predict immunotherapy’s potential effi-
cacy or adverse events. Finally, the effectiveness of clini-
cal trials should be improved. In human clinical trials, 
it is necessary to comprehensively monitor the factors 
influencing the gut microbiome, such as diet, probiot-
ics, antibiotics, drugs, mental health, host immune sys-
tem, host genetics, geographical factors, tumor type, and 
stage. Notably, multilevel and multidimensional research 
designs integrating microbiology, genetics, immunology, 
metabolomics, molecular pathology, and epidemiology 
will become a part of personalized cancer therapy in the 
future.

Conclusion
In conclusion, the gut microbiome cross talk with innate 
and adaptive immune cells occurs, augmenting the 
intermediate effects of innate immune cells, enhanc-
ing the antitumor effect of adaptive immune cells, and 
increasing the immunogenicity of tumor cells, which 
reprograms the immunity of the TME and ameliorate 
ICI responses. Notably, microbiota-derived circulating 
metabolites modulate multiple human physiologies and 

spread from their original location in the gut to medi-
ate local and systemic antitumor immune responses to 
promote ICI efficiency. Therapeutic strategies utilizing 
gut microbiota combined with ICI, such as appropriate 
antibiotic selection, probiotic intake, FMT, and bacterial 
genetic engineering, may provide novel possibilities for 
gut microbiota and their metabolites to become excel-
lent adjuvants for ICI. Further understanding the mech-
anisms of synergy between ICI and the gut microbiome 
and accurate identification of immunostimulant and 
immunosuppressive strains or pathways is expected to 
enable the development of more effective combination 
therapy strategies for ICI and the advancement of preci-
sion medicine strategies.
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