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Abstract 

Background:  Urothelial carcinoma (UC) is the most common pathological type of bladder cancer, a malignant 
tumor. However, an integrated multi-omics analysis of the Chinese UC patient cohort is lacking.

Methods:  We performed an integrated multi-omics analysis, including whole-exome sequencing, RNA-seq, pro-
teomic, and phosphoproteomic analysis of 116 Chinese UC patients, comprising 45 non-muscle-invasive bladder 
cancer patients (NMIBCs) and 71 muscle-invasive bladder cancer patients (MIBCs).

Result:  Proteogenomic integration analysis indicated that SND1 and CDK5 amplifications on chromosome 7q were 
associated with the activation of STAT3, which was relevant to tumor proliferation. Chromosome 5p gain in NMIBC 
patients was a high-risk factor, through modulating actin cytoskeleton implicating in tumor cells invasion. Phospho-
proteomic analysis of tumors and morphologically normal human urothelium produced UC-associated activated 
kinases, including CDK1 and PRKDC. Proteomic analysis identified three groups, U-I, U-II, and U-III, reflecting distinct 
clinical prognosis and molecular signatures. Immune subtypes of UC tumors revealed a complex immune landscape 
and suggested the amplification of TRAF2 related to the increased expression of PD-L1. Additionally, increased GARS, 
related to subtype U-II, was validated to promote pentose phosphate pathway by inhibiting activities of PGK1 and 
PKM2.

Conclusions:  This study provides a valuable resource for researchers and clinicians to further identify molecular 
pathogenesis and therapeutic opportunities in urothelial carcinoma of the bladder.
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Background
Bladder cancer is a malignant tumor, which is associ-
ated with high morbidity and high mortality rates. Glob-
ally, 573,278 new cases and 212,536 related deaths were 
reported in 2020 [1]. Bladder cancer is more commonly 
diagnosis at advanced age, with patients’ median age at 
73 years [2]. The most common pathological type of blad-
der cancer is urothelial carcinoma (UC), with 75% non-
muscle-invasive bladder cancers (NMIBCs) and 25% 
muscle-invasive bladder cancers (MIBCs) [3]. NMIBCs 
frequently recur and progress to MIBCs [4], which are 
usually associated with lower 5-year survival rates, can-
cer progression, and metastasis [5, 6].

Although NMIBC and MIBC exhibited diverse clini-
cal outcomes, current identified genomic hallmarks 
of UC, including DDR, MAPK/ERK, and ERBB family 
genes, were shared by both NMIBCs and MIBCs [7]. The 
diverse molecular features of MIBCs and NMIBCs have 
not been clarified. An improved understanding of rela-
tionship between NMBICs and MIBCs will be necessary 
as we evolve toward an objective molecular-based clinical 
classification.

Elucidation of molecular mechanisms underlying 
tumor evolution is important for UC biology. On the 
level of chromosomal alterations in the UC, the loss of 
9q appears to occur early in tumor development, whereas 
the loss of 3p, 10q, 13q, 17p, and 18q is observed more 
frequently in high-grade tumors. Gains and amplifi-
cations are more frequent in patients with advanced 
tumors. Frequent mutations include FGFR3, PIK3CA, 
STAG2, and RTK/RAS/RAF pathway genes in NMIBCs 
and ERBB2, RB1, MDM2, P53, CDKN2A, ARID1A, and 
KDM6A in MIBCs [8]. However, the key drivers of UC 
tumorigenesis are poorly understood, and the mecha-
nism by which genetic alterations drive cancer pheno-
types remains unknown.

Various intrinsic subtypes of UC have been recognized. 
Researchers from the Lund University (Lund; identi-
fied five subtypes: urobasal A, urobasal B, genomically 
unstable, infiltrated, and SCC-like) [9], the MD Ander-
son Cancer Center (MDA; divided 73 MIBCs into lumi-
nal, p53-like, and basal-like subtypes) [10], the University 
of North Carolina (UNC; categorized 262 MIBCs into 
luminal and basal-like subtypes) [11], and the TCGA 
(clustered 408 MIBCs into five subtypes, luminal-papil-
lary, luminal, luminal-infiltrated, basal–squamous, and 
neuronal) [12] have confirmed the existence of intrin-
sic subtypes of UC. Collectively, the molecular subtypes 

identified independently by different teams exhibited 
some degree of biological concordance and shared simi-
lar clinical characteristics. However, these classifications 
are mainly based on transcriptional data, whereas clas-
sifications based on UC proteome are less studied. With 
proteins being directly linked to phenotypes, protein-
based molecular subtyping holds a promise to provide 
critical information on translating genome signals to cell 
function. A comprehensive proteomics profiling of UC is 
in urgent need.

Therapeutic options for UC include transurethral 
resection of bladder (TURB), radiotherapy, chemother-
apy, targeted therapy, and immunotherapy, or a combi-
nation of these treatments [5, 13]. Pembrolizumab and 
nivolumab were the first two anti-PD-1 monoclonal anti-
bodies to receive FDA approval for bladder cancer [3, 14]. 
Furthermore, currently reported potential therapeutic 
targets of UC include transcription factors (TP53, EP300, 
MDM2), gene integration-related molecules (ERCC2, 
STAG), RTK signaling pathway (FGFR3), the hedgehog 
pathway (GLI1, GLI2), etc. [15]. However, targetable 
mutations remain unknown for a substantial propor-
tion of UCs, and many known drivers have been deemed 
undruggable [16]. An integrative analysis that harbored 
both genomics and proteomics can provide insights to 
nominate potential druggable candidates for therapeutic 
targets [17, 18].

In this study, comprehensive proteogenomic charac-
terization of treatment-naïve tumors and morphologi-
cally normal human urothelium (MNU) tissues from 
116 Chinese UC patients was performed to elucidate 
the association between genomic variation and pheno-
typic perturbations. Proteogenomic integration analysis 
indicated that chromosome 5p gain appears to be a risk 
factor for progression from NMIBCs to MIBCs. Compre-
hensive UC proteogenomic analysis exposes proteomic 
subtypes and immune clusters, which were associated 
with distinct features in prognosis, genomic alterations, 
and potential therapeutics. Collectively, our study can 
serve as an important resource for biological discoveries 
and therapeutic development of UC in the future.

Results
Comprehensive proteogenomic characterization of UC 
samples
We collected formalin-fixed paraffin-embedded (FFPE) 
tumor samples and paired morphologically normal 
human urothelium (MNU) samples from 116 urothelial 
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carcinoma of bladder (UC) patients, comprising 45 non-
muscle-invasive bladder cancers (NMIBCs) and 71 mus-
cle-invasive bladder cancers (MIBCs). The patients were 
recruited from Zhongshan Hospital (Shanghai, China), 
and none had a history of presurgical treatment. The 
samples were re-reviewed by three expert genitourinary 
pathologists, who classified these as pure urothelial and 
histological variants. Clinical data, including the gender, 
age at diagnosis, tumor grade, survival, etc., were summa-
rized in Additional file  13: Table  S1. Additionally, com-
paring to previous published UC dataset, Beijing Cohort 
[19] and TCGA Cohort [12] revealed the similarity of 
patients’ basic features including age, gender, history of 
treatment among the three cohorts, yet some distinctive 
features were also observed (Table 1). To be more specifi-
cal, at demographic level, all the patients in our cohort 
and Beijing cohort were from Asian, whereas only 7% 
patients in TCGA cohort were from Asian. Histologically, 
more early-stage patients (TCGA cohort: Ta-T1, n = 1, 
0.1%; Beijing cohort: Ta-T1, n = 47, 39%; our cohort: 

Ta-T1, n = 45, 38%, chi-square test, p < 2.2E−16) were 
included in our cohort and Beijing cohort (Table  1). A 
schematic of the experimental design is shown in Fig. 1A. 
The samples were characterized using clinical data and 
four molecular profiling platforms (Fig.  1B; Additional 
file 1: Fig. S1A).

Using whole-exome sequencing data with a mean 
depth of 159X in 113 tumors and 128X in 43 paired 
MNUs (Additional file  1: Fig. S1B), we totally detected 
106,622 mutations including 97,950 single-nucleotide 
variants (SNVs) and 8672 small insertion–deletions 
(indels) (Additional file 13: Table S1) (Methods). Twenty-
four genes showed statistically significant levels of recur-
rent somatic mutation by analysis using MutSig (q < 0.1; 
Methods) (Additional file  13: Table  S1), which included 
six well-known bladder cancer-related genes: TP53 44%, 
KMT2D 25%, PIK3CA 19%, ARID1A 17%, RB1 5%, and 
ELF3 4%. These six SMGs and 20 additional TCGA-
reported potential UC driver mutations are shown 
in Fig.  1C. Correlation analysis was performed using 

Table 1  The baseline characteristics of patients among different cohorts

Characteristic TCGA cohort (N = 412) Beijing cohort (N = 120) Fudan cohort (N = 116) Chi-square p value

Age—no. (%)

  ≥ 70 yr 195 (47) 49 (41) 45 (39) 0.173

  < 70 yr 217 (53) 71 (59) 71 (61)

Gender—no. (%)

 Male 108 (26) 31 (26) 28 (24) 0.903

 Female 304 (74) 89 (74) 88 (76)

Smoking—no. (%)

 Yes 288 (70) 30 (25) 18 (15)  < 2.2E−16

 No 124 (30) 90 (75) 98 (85)

Geographical features—no. (%)

 Asian 31 (7) 120 (100) 116 (100)  < 2.2E−16

 Others 381 (93) 0 0

Histologic grade—no. (%)

 High 388 (94) 109 (91) 110 (95) 0.332

 Low 21 (5) 11 (9) 6 (5)

 ND 3 (1) 0 0

T stage—no. (%)

 Ta 0 7 (6) 11 (9)  < 2.2E−16

 Tis 0 4 (3) 0

 T1 1 (< 1) 36 (30) 34 (29)

 T2 123 (30) 34 (28) 46 (40)

 T3 196 (48) 36 (30) 22 (19)

 T4 59 (14) 3 (3) 3 (3)

 TX 1 (< 1) 0 0

 ND 32 (8) 0 0

History of treatment—no. (%)

 Yes 10 (2) 0 0 0.055

 No 402 (98) 120 (100) 116 (100)
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mutational frequencies from other cohorts including 
Beijing cohort [19] and TCGA cohort [12]. As a result, 
the mutation frequencies of the hotspot genes detected 
in our cohort were more closely correlated with Beijing 
cohort than TCGA cohort (Fig. 1E). Moreover, there was 
no marked difference between the TMBs in our cohort 
and the Beijing cohort (Fig. 1F) [19]. This might be due 
to that both Beijing cohort and our cohort include only 
Asian patients. Additionally, among the hotspot muta-
tions, the mutational frequency of RB1 was significantly 
higher in TCGA cohort than that of in Beijing cohort 
and our cohort (Fig. 1D; Fisher’s exact test, p < 0.05). This 
finding was in consistent with previous papers that RB1 
displayed higher mutational rates in MIBC [12], since 
99% patients in TCGA patients were MIBC, whereas 38% 
patients in our cohort were NMIBC, respectively.

We identified four mutational signatures by Sigminer 
(Fig.  1G; Additional file  13: Table  S1; Methods). Signa-
tures 1–4 corresponded to the known COSMIC (Catalog 
of Somatic Mutations in Cancer) signatures: SBS5, SBS1, 
SBS30, and SBS13. We compared tumor mutation bur-
den (TMBs) of the four mutational signatures; the results 
showed that SBS30, which represents DNA-based exci-
sion repair, had the highest level of TMB (Fig.  1H). In 
addition, SBS13, representing the activity of APOBEC, 
was associated with the worst prognosis (Fig.  1I). For 
comparison, the same enrichment analysis was per-
formed in the TCGA cohort [12], in which four muta-
tional profiles (SBS5, SBS2, SBS13, and SBS10b) were 
identified (Additional file  1: Fig. S1C). The mutational 
signatures best matching to those in TCGA cohort were 
(1) SBS5; unknown (clocklike signature), and (2) SBS13; 
APOBEC cytidine deaminase (Additional file  1: Fig. 
S1D). In addition, SBS5 and SBS13 were also identified in 
Beijing cohort [19].

Label-free quantification measurement of all patient 
samples (157 tumors and paired 76 MNUs) resulted in a 
total of 16,440 protein groups with a 1% false discovery 
rate (FDR) at the protein and peptide levels (Additional 
file  1: Fig. S1E–G; Additional file  13: Table  S1; Meth-
ods) [20, 21], and an average of 6990 protein groups per 

tumor sample and 5945 protein groups per MNU sam-
ple (Additional file 1: Fig. S1H). The tumor proteome and 
the MNU proteome exhibited a unimodal distribution, 
and the correlations among 157 tumor samples ranged 
between 0.52 and 0.87 (Additional file  1: Fig. S1I, J). 
Phosphoproteomic analysis was conducted on 111 tumor 
samples and 46 MNU samples which revealed 5789 
phosphoproteins and 33,233 phosphosites in tumors, as 
opposed to 3246 phosphoproteins and 11,668 phospho-
sites identified and quantified in MNUs (Additional file 1: 
Fig. S1K; Additional file 13: Table S1; Methods). The aver-
age Spearman’s correlation coefficient, calculated for all 
quality control runs of HEK293T cell samples, was 0.9, 
showing that the MS data were of high quality (Addi-
tional file 1: Fig. S1L).

Transcriptional sequencing was carried out on forty-
three tumors and paired 22 MNU samples; we identi-
fied 17,091 genes per tumor sample and 14,738 genes per 
MNU sample, with fragments per kilobase of transcript 
per million mapped reads (FPKM) of more than 1 (Addi-
tional file  1: Fig. S1M). The number of genes identified 
as corresponding to the proteome (unique peptide ≥ 2), 
phosphoproteome, and transcriptome was 2221 for 
MNC samples and 4344 for tumor samples (Additional 
file  1: Fig. S1N). In addition, we calculated the correla-
tion between 5001 mRNA–protein pairs for UC tumors 
and 3983 mRNA–protein pairs for MNU samples (Fig. 1J; 
Additional file  13: Table  S1). The median correlation 
value of MNU was 0.15, whereas tumors had a higher 
median value of 0.26. This result is similar to that of 
previous studies investigating ccRCC and higher-grade 
serous ovarian cancers [22, 23]. In MNU samples, 74.6% 
of mRNA–protein pairs showed positive Spearman cor-
relation coefficients associated with pathways, such as the 
cellular amide metabolic pathway and organonitrogen 
compound biosynthetic pathway, whereas genes showing 
negative correlations were enriched in RNA localization. 
In tumor samples, 86.7% of mRNA–protein pairs showed 
positive Spearman correlations with pathways includ-
ing the cell adhesion molecules cams and valine, leucine 
and isoleucine degradation, whereas genes with negative 

Fig. 1  Multi-omics landscape of UC samples. A The workflow of the experiment. B The number of samples for proteomics, phosphoproteomics, 
WES, and RNA-seq analysis. C The genomic profiles. Top to bottom: synonymous and non-synonymous somatic mutation rates; somatic mutations 
for significantly mutated genes (SMGs); and potential SMG. Mutation types and their frequencies are depicted by a bar plot in the right panel. D 
Gene mutation frequency in our cohort compared with other cohorts. E Correlation plot of the mutation frequencies observed in Fudan cohort 
compared to TCGA cohort and Beijing cohort. F Comparison of TMB in the tumors of our cohort and the Beijing cohort. G Mutational spectrum of 
the four mutational signatures extracted by Sigminer analysis. Corresponding COSMIC signatures are labeled in parentheses. H Comparison of TMB 
in the tumors with different mutational signatures. I Kaplan–Meier curves (Gehan–Breslow–Wilcoxon test) for overall survival based on different 
mutational signatures. J Left panel: mRNA–protein correlation in MNUs. Blue: pathways in which positively correlated genes were involved; green: 
pathways in which negatively correlated genes were involved. Right panel: mRNA–protein correlation in tumors. Red: pathways in which positively 
correlated genes were involved; orange: pathways in which negatively correlated genes were involved

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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correlations were enriched in the spliceosome. The dis-
cordance between transcriptomics and proteomics sug-
gests that proteomics data possessed unique oncogenic 
features that cannot be obtained from genomic and tran-
scriptomic data.

Effects of copy number alterations
We profiled 113 tumors for somatic copy number altera-
tion (CNA) using whole-genome sequencing and exam-
ined the regulatory effects of 25,961 CNAs on mRNA, 
protein, and phosphoprotein expression. CNAs affect 
mRNA, protein, and phosphoprotein abundance in either 
“cis” or “trans” modes, corresponding to the diagonal 
and vertical patterns (Fig. 2A; Additional file 2: Fig. S2A). 
Interestingly, cis-regulatory effects of CNA (Fig.  2A; 
diagonal lines) on mRNAs and proteins were more prom-
inent than those of phosphoproteins (Additional file  2: 
Fig. S2A). A total of 5186, 2841, and 494 significant cor-
relations (cis-effects) were observed for mRNA, proteins, 
and phosphoproteins, respectively, with only 139 signifi-
cant cis-effects overlapping among all three omics levels 
(Fig. 2B). These 139 overlapping genes were significantly 
enriched in positive regulation of GTPase activity, regu-
lation of cell cycle, focal adhesion, and the ErbB signal-
ing pathway (Fig.  2C), suggesting that core pathways 
were affected by genomic aberrations. Apart from the 
overlapped cis genes, the cis-effects on mRNA, protein, 
and phosphoprotein were enriched in different pathways. 
Specifically, mRNA-specific cis-effects (n = 3682) were 
enriched in RNA processing, whereas protein-specific 
cis-effects (n = 1315) were enriched in metabolic path-
ways, and phosphoprotein-specific cis-effects (n = 161) 

were enriched in certain signaling pathways (Additional 
file 2: Fig. S2B). To further nominate functionally impor-
tant genes within CNA regions, we focus on the 593 
cancer-associated genes (CAGs), in which 555 were iden-
tified in our cohort (Fig. 2D; Additional file 14: Table S2). 
A total of 10 significant positive correlations (RBL1, TPR, 
MTOR, IRF6, TBX3, RB1, PRKCD, MTUS1, CDK12, and 
ERBB2) were observed on mRNA, proteins, and phos-
phoprotein levels. Moreover, besides cis-effects, these ten 
genes also impacted the expression of proteins enriched 
in RNA splicing, cell proliferation through trans-effects 
(Fig.  2E). We further investigated the cis- and trans-
effects of these ten CAGs in TCGA cohort [12]. As a 
result, in consistent with our findings, besides elevating 
their cognate proteins, these ten CAGs also impacted the 
expression of proteins participated in cell proliferation, 
RNA splicing, and transcription pathways through trans-
effects (Fig. S2C).

CNA analysis showed the most frequent gains in chro-
mosomes 1p, 1q, 3q, 5p, 7p, 7q, 8q, 17q, 19p, 19q, 20p, 
and 20q and losses in chromosomes 4q, 5q, 8p, 9p, 9q, 
10q, 11p 11q, 18p, and 22q (Fig.  2F; Additional file  14: 
Table  S2), and this result was consistent with those of 
previous studies [24–26]. To be more specific, ten out of 
twelve most frequent gains detected in our cohort (chro-
mosome 3p, 5p, 8q, and 17q amplifications, etc.) were 
also identified in TCGA [12] and Beijing cohort [19] 
(Additional file 2: Fig. S2D, E). Meanwhile, seven out of 
ten most frequent loss (chromosome 8p and 9p deletions, 
etc.) detected in our cohort were also identified in TCGA 
and Beijing cohort (Additional file 2: Fig. S2D, E). In addi-
tion, we identified amplifications in driver oncogenes, 

(See figure on next page.)
Fig. 2  Effects of copy number alterations on mRNA and protein abundance. A Functional effects of CNAs on mRNA and proteins. Top panels: 
correlation of CNA to mRNA and protein abundance. Positive and negative correlations are indicated in red and blue, respectively. Genes were 
ordered by chromosomal location on the x and y axes. Diagonal lines indicate cis-effects of CNA on mRNA or proteins. Bottom panels: number of 
mRNAs or proteins that were significantly associated with a specific CNA. Gray bars indicate correlations specific to mRNA or proteins, and black 
bars indicate correlations with both mRNA and proteins. B Venn diagrams depicting the cascading effects of CNAs. It shows the overlap between 
significant cis events across the transcriptome, proteome, and phosphoproteome. C Pathways enriched for 139 significant cis-effect genes. D 
Venn diagram shows the significant cis events restricted to cancer-associated genes (CAGs) across multiple data types. E Cis- and trans-effects 
of 10 significant cis-effect CAGs. Affected proteins are grouped by pathway. F Arm-level CNAs. Red denotes amplification and blue denotes 
deletion. G Chromosomal alterations associated with prognosis (overall survival). Volcano plot showing log2-based hazard ratio for each alterative 
chromosome. H Overall survival analysis of patients with 5p or 7q gain versus WT (p value from log-rank test). I Volcano plot showing log2-based 
hazard ratio (overall survival) for significant positive cis-effect genes on chromosomes 5p and 7q, respectively. The dots represent proteins, and 
the triangles represent mRNA. J Overall survival analyses of BLCA TCGA patients with high or low levels of SND1 mRNA abundance (p value from 
log-rank test). K Volcano plot showing the correlation between enriched KEGG pathways scores (sample-specific gene set enrichment analysis 
(ssGSEA)) and SND1 protein abundance. L Volcano plot showing the correlation of transcription factors (TFs) with SND1 based on protein level. 
TF, highlighted in red, reportedly interacts with SND1. M Heatmap of SND1 protein abundance and trans-effect cell-cycle-related proteins. N 
Correlation of STAT3 activity with the cell cycle enrichment score by ssGSEA. O Correlation of STAT3 with the cell cycle enrichment score by ssGSEA 
in TCGA cohort. P Heatmap of STAT3 activity change and the target genes of STAT3 that participated in cell cycle. Confidence intervals (95%) of 
hazard ratio coefficients (overall survival) for each gene mRNA expression level were based on multivariate Cox regression models (tumor samples, 
n = 42). Q Volcano plot showing the correlation of kinase with STAT3 based on protein level. The kinase highlighted in red has been reported to 
be a STAT3 kinase. R Correlation and heatmap of CDK5 protein abundance with STAT3 phosphorylation change. S A model depicting the gain of 
chromosome 7q. The p values in K–R were calculated by Spearman’s correlation test
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Fig. 2  (See legend on previous page.)
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including MYCL (1p34.3, 9 cases), PPARG​ (3p35.3, 13 
cases), ERBB2 (17q12, 10 cases), and CCNE1 (19q12, 
11 cases) (Additional file  2: Fig. S2F; Additional file  14: 
Table S2), and deletions in key tumor suppressors, such 
as CDKN2A (9p21.3, 26 cases), RB1 (13q14.2, 13 cases), 
and NCOR1 (17p12, 14 cases) (Additional file 2: Fig. S2F; 
Additional file 14: Table S2). We found that 5p gain and 
7q gain were associated with both poor overall survival 
(OS) and inferior progressive-free survival (PFS) (Fig. 2G, 
H; Additional file  3: Fig. S3A). On chromosome 5p, 27 
and 30 significant positive cis-effects were observed on 
mRNA and protein levels, respectively (Additional file 3: 
Fig. S3B; Additional file  14: Table  S2). RICTOR, a cis-
effect gene assigned to 5p at the protein level, is a criti-
cal regulator of cell migration and invasion in bladder 
cancer cell lines [27]. In chromosome 7q, which is asso-
ciated with chromosomal instability and many types of 
neoplasia [28], 19 and 58 significant positive cis-effects 
were observed at mRNA and protein levels, respectively 
(Additional file 3: Fig. S3C; Additional file 14: Table S2). 
Proteins overrepresented due to 7q gain were signifi-
cantly enriched in DNA replication and G1/S transition 
of the cell cycle (Wilcoxon rank-sum test, p < 0.05, 7q 
gain/WT ratio > 2).

The levels of proteins encoded by the genes linked to 
significantly positive cis-effects on chromosome 5p (C9) 
and 7q (SND1 and ELN), associated with poor prognoses, 
but the mRNA expression levels were not (Fig. 2I). SND1, 
a transcriptional co-activator overexpressed in tumors 
(Additional file  3: Fig. S3D; Wilcoxon rank-sum test, 
FDR < 0.01), is also associated with poor patient prog-
noses in the TCGA BLCA cohort (Fig. 2J). Overexpres-
sion of SND1 has been detected in various cancer types 
in TCGA (Additional file  3: Fig. S3E). Notably, SND1 
expression significantly increased with pathological stage 
in both TCGA BLCA and our cohort (Additional file  3: 
Fig. S3F, G). SND1 is reported to interact with tran-
scription factors, such as STATs and E2F1, modulat-
ing the expression of genes that promote carcinogenesis 
[29–31]. We found that the abundance of SND1 protein 
in urothelial bladder tumors positively correlated with 
the cell cycle KEGG (Kyoto Encyclopedia of Genes and 
Genomes) gene set (Fig.  2K; Additional file  3: Fig. S3H; 
Spearman’s r = 0.27, p = 3.5 × 10E−3) and the protein 
abundance of MCM2, a cell proliferation marker (Addi-
tional file 3: Fig. S3I; Spearman’s r = 0.3, p = 1 × 10E−3). 
STAT3, a transcription factor that interacts with SND1 
[32], showed the highest correlation with the abun-
dance of SND1 protein in tumors (Fig. 2L, M; Spearman’s 
r = 0.32, p = 7.3 × 10E−4). A significantly positive cor-
relation between SND1 and STAT3 was also confirmed 
in the TCGA BLCA cohort (Additional file  3: Fig. S3J; 
Spearman’s r = 0.16, p = 1.0 × 10E−3). Furthermore, the 

predicted STAT3 activity, inferred via mRNA expression 
of its target genes (Methods), positively correlated with 
the protein abundance of SND1 (Additional file  3: Fig. 
S3K; Spearman’s r = 0.29, p = 6.7 × 10E−3), and patients 
showing higher expression of STAT3 protein in tumors 
appeared to have worse prognostic outcomes (Additional 
file 3: Fig. S3L; log-rank test, p = 8.9 × 10−3). Expression 
of many genes participating in the cell cycle, which are 
STAT3 targets, were upregulated along with increas-
ing STAT3 activity (Fig.  2N, P; Spearman’s r = 0.50, 
p = 9.4 × 10E−4). We also confirmed the significantly 
positive correlation between STAT3 and the cell cycle 
KEGG gene set in the TCGA BLCA cohort (Fig.  2O; 
Spearman’s r = 0.28, p = 8.9 × 10E−9). In addition, phos-
phorylation of STAT3 also significantly correlated with 
the protein abundance of SND1 (Additional file  3: Fig. 
S3M; Spearman’s r = 0.26, p = 8.2 × 10E−3). STAT3 is 
reported to be phosphorylated by CDK5 [33]. Surpris-
ingly, we found that CDK5 also exerted a cis-effect on 
chromosome 7 at the protein level (Fig.  2R; Spearman’s 
r = 0.24, p = 1.1 × 10E−2). Further analysis indicated that 
phospho-STAT3 was positively correlated with the pro-
tein abundance of CDK5 in tumors (Fig.  2Q, R; Spear-
man’s r = 0.24, p = 1.8 × 10E−2). Supporting our findings, 
STAT3 was also reported to promote cell proliferation 
in bladder cancer cell lines, WH, UMUC-3, and 253  J 
[34]. Our data identified two cis-effects on chromosome 
7q, SND1 and CDK5. Upregulation of SND1 expression 
modulated STAT3 activity, while CDK5 further phos-
phorylated STAT3, which was related to cell proliferation 
(Fig. 2S).

Integrated multi‑omics analyses of tumors and MNUs
Multi-omic profiles of both tumors and MNUs were 
derived, presenting a unique opportunity to explore 
multi-omic remodeling upon tumorigenesis. We com-
pared differences between tumors and MNUs at differ-
ent omics levels. Principal component analysis (PCA) of 
RNA-seq (27,828 genes), proteome data (5546 proteins), 
and phosphoproteome data (1672 phosphoproteins) 
showed a clear separation of tumors and MNUs at all 
three omics levels (Additional file  4: Fig. S4A–C; Addi-
tional file 15: Table S3). Differential gene analysis between 
tumors and MNUs resulted in 1726 mRNA, 2676 pro-
teins, and 784 phosphoproteins (Additional file  4: Fig. 
S4D–F; Wilcoxon rank-sum test, FDR < 0.01, T/MNU 
ratio > 2 or < 1/2; Additional file 15: Table S3). For further 
comparison, we include data from recent publish prot-
eomic landscape of 16 major types of human cancer [35]. 
By performing comparative analysis, we observed that 
225 of the 288 urothelial cancer-type-specific proteins 
identified by Zhou Y. et al. were also identified in our pro-
teomic data (Additional file 4: Fig. S4G). Further pathway 
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enrichment analysis using these differential genes indi-
cated that upregulation of the cell cycle pathway and 
downregulation of the transmembrane transport path-
way in tumors occurred at all three omics levels (Fig. 3A; 
Additional file 4: Fig. S4H–J), suggesting that the differ-
ences between tumors and MNUs were reflected at all 
omics levels. Key factors in the cell cycle and transmem-
brane transport pathways, such as CDK1 and SLC14A1, 
were correlated with clinical outcomes (Additional file 4: 
Fig. S4K). Notably, the urothelial bladder-specific pro-
teins nominated by Zhou et al. [35], such as those of the 
UPK family (uroplakins; UPK3A and UPK3BL among 
others), were observed to be downregulated in tumors 
(Fig.  3A; Wilcoxon rank-sum test, FDR < 0.01, T/MNU 
ratio < 0.5), and patients with higher expression of those 
uroplakin proteins in tumors appeared to have better 
prognostic outcomes (Fig.  3B; log-rank test, p < 0.05). 
These proteins are specifically expressed in the urothelial 
epithelium, necessary for urothelial bladder permeability 
barrier [36]. The loss of these proteins in tumors implied 
the cellular atypia due to initiation of urothelial bladder 
cancer in the urothelial epithelium.

Interestingly, we found divergence in tumors and 
MNUs differences among the three omics levels. For 
example, the 174 proteins (Wilcoxon rank-sum test, 
FDR < 0.01, T/MNU ratio > 2) that showed greater 
changes in protein abundance than in corresponding 
mRNA abundance (Wilcoxon rank-sum test, FDR < 0.01, 
T/MNU ratio < 2) were mainly involved in pathways 
related to protein processing in endoplasmic reticulum 
and cell–cell adhesion (Fig. 3C). The correlation between 
the differences in tumor-MNU protein and mRNA abun-
dance was intermediate compared to previous findings 
(Fig.  3C, Spearman’s r = 0.27; p = 2.2 × 10−16) [37, 38]. 
To assess the potential clinical relevance of genes show-
ing significant mRNA–protein correlations, we examined 

whether these were associated with patient survival. 
Interestingly, genes associated with significant differ-
ences in survival, especially at both protein and mRNA 
levels, showed the strongest mRNA–protein correlations 
(Fig.  3D; Additional file  15: Table  S3). Further pathway 
enrichment analysis showed that genes with significant 
survival differences at both protein and mRNA levels 
participated in focal adhesion, ECM-receptor interaction, 
and PI3K-Akt signaling pathways (Fig.  3E), suggesting 
that alterations in key signaling, especially at all omics 
levels, were associated with tumorigenesis and tumor 
progression.

To further investigate the dominant signal transduction 
pathway, we studied the phosphoproteome. The results 
revealed that 991 phosphosites mapped to 379 phos-
phoproteins showing greater changes than correspond-
ing protein abundance (Fig. 3F; Wilcoxon rank-sum test, 
FDR < 0.01, T/MNU ratio > 2) were significantly enriched 
in pathways, including the cell cycle and cell–cell adhe-
sion (MCM2-S13, TP53BP1-S1367, and MYH9-S1943 
among others) (Fig.  3G). Kinase substrate enrichment 
analysis (KSEA) of the phosphoproteome of tumors and 
MNUs revealed the dominant kinases that were acti-
vated in tumors, including CSNK2A1, AURKA, VRK1, 
PRKDC, MAP2K7, and ERBB2 (Fig.  3H; Methods). 
Among these, many activated kinases, such as PRKDC, 
MAP2K7, and ERBB2, are targets of approved inhibi-
tors. Further investigation of differentially changed phos-
phosites showed that elevated substrates involved in the 
cell cycle, ErbB signaling, and cell–cell adhesion were 
observed in tumors (Fig.  3I). In addition to kinase tar-
gets, plasma membrane proteins are also attractive thera-
peutic targets in cancer treatment. Therefore, we further 
performed supervised analysis to filter out plasma mem-
brane proteins (Fig.  3J; Methods). Eighteen proteins 
(FLNA, PKN1, LAMA4, etc.) met the screening criteria 

Fig. 3  Integrated multi-omics analyses of tumor tissues compared with MNUs. A Differentially expressed genes, proteins and phosphoproteins 
in tumors and MNUs and their associated biological pathways (top panel). A list of urothelial bladder signature proteins that were differentially 
expressed in tumors and MNUs (p value from Wilcoxon rank-sum test) (bottom panel). B Two proteins (UPK3BL and UPK3A) were significantly 
associated with prognosis (overall survival) (p value from log-rank test). C Fold changes of genes and proteins in tumors and MNUs (Spearman’s 
r = 0.26, p = 2.2E−16) (left) and pathways enriched for respective specific changed molecules (right). D Boxplot showing the mRNA–protein 
correlations for the genes associated with significant and nonsignificant differences in patient survival at the protein or mRNA level (p value from 
Kruskal–Wallis test). E Pathways enriched for genes with survival differences at protein or mRNA level. F Fold changes of proteins and phosphosites, 
and their correlations in tumors and MNUs. Red dots: phosphosites are greater than twofold changes in tumors compared to MNUs, and changes 
of phosphosites abundance are greater than changes of their corresponding protein abundance. G Pathways enriched with cancer-related 
phosphosites. H KSEA analyses of kinase activities in tumors and MNUs. I Heatmap of activated kinases in tumors and substrates corresponding to 
associated biological pathways (left). Inferred activity was calculated via KSEA analyses, and purple boxes indicate the existence of an FDA-approved 
drug. (J and K) Strategy for candidate target genes (J) and heatmap showing the proteins that meet the screening criteria (K). Cancer dependency 
map-supported (https://​depmap.​org) panels on the right show log2-transformed relative survival averaged across all available urinary tract cell lines 
after depletion of the indicated gene (rows) by RNAi or CRISPR. Their presence in serum was annotated from Plasma Proteome Database (PPD), and 
drug targets were based on the Drug Gene Interaction Database (http://​www.​dgidb.​org/). L Overview of significantly enriched pathways in tumors 
and MNUs

(See figure on next page.)

https://depmap.org
http://www.dgidb.org/
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and were annotated for the degree to which short hairpin 
RNA (shRNA)-or CRISPR-mediated depletion reduced 
survival and proliferation in urothelial cancer cell lines 
[39, 40] (Fig. 3K; Additional file 15: Table S3). We further 
investigated these 18 proteins by assessing immunohisto-
chemistry (IHC) expression in the Human Protein Atlas 
(HPA). Five of these 18 exhibited overrepresented tumor-
specific staining in urothelial bladder cancer samples 
(Additional file  4: Fig. S4L, M), including PKN1, which 
had approved drug and were also associated with prog-
nosis (Additional file  4: Fig. S4N). However, the other 
13 proteins did not yield staining information or show 
low staining in HPA, and merit further investigation. An 
overview of significantly enriched pathways between the 
tumors and MNUs in urothelial bladder cancer served 
as guide for future studies and therapeutic opportunities 
(Fig. 3L).

Proteogenomic profiles distinguished NMIBC from MIBC
According to the T-category and histologic grading, UC 
is divided into NMIBC and MIBC (T-category) or high-
grade and low-grade (histologic grading) [41]. Our cohort 
contained 116 UC patients, comprising 45 NMIBCs (Ta 
[n = 11], T1 [n = 34]) and 71 MIBCs (T2 [n = 46], T3 
[n = 22], T4 [n = 3]), that were mainly invasive (including 
propria membrane infiltration and muscle infiltration). 
As for the histologic grading, MIBCs were all high-grade, 
while 7 of NMIBCs were low-grade and 38 were high-
grade. We showed representative hematoxylin and eosin 
(H&E)-stained slides of low-grade NMIBC (NMIBC LG)/
high-grade NMIBC (NMIBC HG) and MIBC samples 
(Additional file  5: Fig. S5A–C). MIBC has a poor prog-
nosis compared with NMIBC due to early occult meta-
static dissemination [42], which was also observed in our 
data (Fig. 4A). PCA analysis of RNA-seq (27,752 genes), 
proteomic (5683 proteins), and phosphoproteomic 

(2014 phosphoproteins) data separated MIBC samples 
from NMIBCs (Fig.  4B; Additional file  5: Fig. S5D, E), 
revealing the molecular differences between MIBCs and 
NMIBCs. Pathway enrichment analysis of differentially 
expressed molecules (Additional file 5: Fig. S5F, G; Wil-
coxon rank-sum test, p < 0.01, MIBC/NMIBC ratio > 2 
or < 1/2) showed that NMIBC-enriched molecules were 
involved in oxidative phosphorylation and lipid metabo-
lism, including glycerophospholipid and arachidonic acid 
metabolism, whereas molecules enriched in MIBC mainly 
participated in regulation of actin cytoskeleton and com-
plement and coagulation cascades (Fig.  4C; Additional 
file 5: Fig. S5H–J). To further investigate the differences 
among low-grade NMIBC, high-grade NMIBC, and 
MIBC, we surveyed the differential expressed proteins 
in the featured pathways in the low-grade NMIBC, high-
grade NMIBC, and MIBC. Interestingly, we found that 
the expression level of proteins participated in MIBCs-
enriched pathways gradually increased from low-grade 
NMIBC, high-grade NMIBC to MIBC, while the expres-
sion level of proteins participated in NMIBCs-enriched 
pathways gradually decreased (Additional file 5: Fig. S5K, 
L; Kruskal–Wallis test, p < 0.0001). For example, proteins 
that function in regulation of actin cytoskeleton (EHD2, 
ELN, LCP1, etc.) showed a gradual increasing trend from 
low-grade NMIBC, high-grade NMIBC to MIBC and 
presented relative high-risk scores for a mortality prog-
nosis of UC (Additional file  5: Fig. S5M). In contrast, 
proteins in oxidative phosphorylation and lipid metabo-
lism (NDUFA7, CYP2J2, GPX2, etc.) presented a gradual 
decreasing trend from low-grade NMIBC, high-grade 
NMIBC to MIBC and showed low-risk scores for a mor-
tality prognosis of UC (Additional file 5: Fig. S5N). This 
finding reveals that the differences identified in NMIBC 
and MIBC were also found in low-grade NMIBC and 

(See figure on next page.)
Fig. 4  Proteogenomic profiles distinguished NMIBC from MIBC. A Overall survival analysis of NMIBC versus MIBC patients (p value from log-rank 
test). 95% confidence interval was also presented. B PCA analysis of proteomic data (5683 proteins) between MIBC and NMIBC. Red dots: MIBC; 
blue dots: NMIBC. C Differentially variational genomic events (top panel) and differentially expressed genes, proteins and phosphoproteins in 
MIBC and NMIBC and their associated biological pathways (bottom panel). Fisher’s exact test was used for arm-level can events and the status of 
genes mutation. The Wilcoxon rank-sum test was used for differential expression analysis. D Significantly different arm-level CNA events in MIBC 
and NMIBC and their association with prognosis. E Survival analysis of NMIBC and MIBC patients with chromosome 5p gain versus WT (p value 
from log-rank test). F Pathways enriched in differentially expressed proteins between 5p gain and WT. G Overlap of genes with significant positive 
cis-effect genes on 5p based on RNA-Seq or proteomic data (top panel) and log2-fold change between NMIBC and MIBC were shown for the nine 
overlapping genes (bottom panel). The dots represent proteins; the triangles represent mRNA. H Heatmap of copy number gain of 5p and the 
mRNA/protein abundance of TRIO. I Volcano plot showing the correlation between enriched Gene Ontology biological processes and TRIO mRNA 
abundance. J Volcano plot showing the correlation between small GTPases and TRIO based on mRNA level. The one highlighted in red is reportedly 
activated by TRIO. K Correlation of TRIO mRNA abundance with RHOG mRNA abundance. L Correlation of RHOG protein abundance with ROCK1 
protein abundance. M Evaluation of kinase activities in tumors of NMIBC and MIBC via KSEA. Drug targets were based on the Drug Gene Interaction 
Database (http://​www.​dgidb.​org/). N Diagram illustrating differences between NMIBC and MIBC tumors in terms of phosphorylation abundance 
and kinase activity for ROCK1. O Heatmap of the mRNA abundance of actin cytoskeleton reorganization related genes. P A brief model depicting 
the functional impact of chromosome 5p gain. The p values in I–L were calculated by Spearman’s correlation test

http://www.dgidb.org/
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high-grade NMIBC and presented a gradual tendency 
from low-grade NMIBC, high-grade MIBC to MIBC.

To determine the divergence of genomic drivers in 
MIBC and NMIBC, we compared the differences in 
genomic variations between them. FGFR3 mutations 
were observed more frequently in NMIBCs, whereas 
TP53 and RB1 displayed higher mutation rates in MIBCs 
(Fig.  4C), which was consistent with previous findings 
[42]. At the arm event level, chromosome gains, such as 
chromosome 5p, 7p, and 20q gains, were more predomi-
nant in MIBCs than in NMIBCs (Fig.  4C; Fisher’s exact 
test, p < 0.05). Among the significant differential arm-
level CNA events, only 5p gain was associated with poor 
prognosis in the entire cohort (Fig.  4D; log-rank test, 
p < 0.05). Surprisingly, we found that the poor prognoses 
of 5p gains were observed only in NMIBC patients but 
not in MIBC patients (Fig. 4E; log-rank test, p < 1 × 10−3). 
We further investigated the proportion of 5p gains in 
NMIBC and MIBC patients and found that the percent-
age of patients with 5p gain in MIBCs (80%) was higher 
than that in NMIBCs (20%), implying the function of 5p 
gain in the progression from NMIBC to MIBC. Pathway 
enrichment analysis using proteomic data showed upreg-
ulation of proteins involved in antigen processing and 
presentation, actin filament-based movement, and regu-
lation of GTPase activity in the 5p gain group, compared 
with the WT group (Fig. 4F; Additional file 16: Table S4), 
which was consistent with MIBC-enriched pathways.

To further investigate the potential mechanism, we 
focused on the cis-effects of chromosome 5p. A total of 
27 and 30 significantly positive cis-effects were observed 
at the mRNA and protein levels, respectively, in which 
nine cis-effects overlapped between both (Fig.  4G). 
Among these nine cis-effects, only Trio Rho guanine 
nucleotide exchange factor (TRIO) was significantly 
upregulated in MIBC as compared to NMIBC at both 
the mRNA and protein levels (Fig.  4G, H; Wilcoxon 
rank-sum test, p < 0.05, MIBC/NMIBC ratio > 1.5; Addi-
tional file  16: Table  S4). TRIO encodes a large protein 
that functions as a GDP to GTP exchange factor for Rho 
GTPases, which plays a role in cell invasion and growth 

by promoting actin remodeling [43, 44]. The abundance 
of TRIO at both mRNA and protein levels in urothe-
lial bladder tumors was positively correlated with the 
reorganization of the actin cytoskeleton gene ontology 
(GO) biological processes (BP) gene set (Fig.  4I; Addi-
tional file  5: Fig. S5O). Expression of RHOG, a TRIO-
activating Rho GTPase [45], positively correlated with 
TRIO at the mRNA level (Fig. 4J, K; Spearman’s r = 0.42, 
p = 5.6E−3). A significantly positive correlation between 
TRIO and RHOG was also observed in the TCGA BLCA 
cohort (Additional file  5: Fig. S5P; Spearman’s r = 0.25, 
p = 3.3E−7). In addition, Rho-associated protein kinases 
(ROCKs) are reported as the best-characterized down-
stream effectors of Rho GTPases [46]. The correlation 
between RHOG and ROCK1 was significantly positive 
at both mRNA and protein levels (Fig.  4L; Additional 
file  5: Fig. S5Q). We then performed kinase activity 
analysis based on the levels of substrate phosphoryla-
tion and compared specific activated kinases between 
MIBC and NMIBC (Methods). As a result, ROCK1 was 
found to specifically activate kinases in MIBC and was 
targeted by FDA-approved drugs (Fig. 4M). The expres-
sion of ROCK1 substrates (ACTG1 T318, MYLK S1776, 
CALD1 S202, etc.), which facilitate regulation of the 
actin cytoskeleton and cell motility, was also upregulated 
in MIBC (Fig.  4N). Therefore, TRIO activated RHOG 
and then RHOG activated downstream effectors ROCK1, 
thereby increasing the reorganization of the actin 
cytoskeleton (Fig.  4O, P). In sum, our data revealed the 
potential role of 5p gain in progression from NMIBC to 
MIBC, through mechanism of modulating actin cytoskel-
eton implicating in tumor cells invasion.

Proteomic subtypes of UC and signature proteins
Consensus clustering identified three proteomic subtypes 
based on 5489 proteins present in more than 30% of 116 
tumors (Fig.  5A; Additional file  6: Fig. S6A; Methods). 
They were designated U-I (n = 37), U-II (n = 23), and 
U-III (n = 56) with distinct molecular and clinical fea-
tures (Fig.  5A–C; Additional file  17: Table  S5). Patients 
in U-I had the best OS and PFS, whereas patients in 

Fig. 5  Proteomic subtypes of UC and signature proteins. A Heatmap of differentially regulated proteins among the proteomic subtypes (Kruskal–
Wallis test, p < 0.05), annotated with clinical features. Fisher’s exact test was used for categorical variables: age, gender, hyperglycosemia, HBP, 
smoking status, metastasis status, status of FGFR3/TP53/RB1 mutation, pathological subtypes, differentiation, and TNM stage. B Kaplan–Meier 
curves for overall survival and progression-free survival of different proteomic subgroups (p value from log-rank test). C Pathways significantly 
enriched in the proteomic subtypes. D Comparisons between our classifier and other classifiers. E Luminal markers were enriched in the UI and 
UII subtypes, while basal markers were enriched in the UIII subtype (Wilcoxon rank-sum test, p < 0.05). F The kinase family was enriched in different 
proteomic subtypes (Kruskal–Wallis test, p < 0.05). G Representative kinase and its phosphorylation sites enriched in different proteomic subtypes 
(Kruskal–Wallis test, p < 0.05). H The expression of FGFR3 in patients with or without FGFR3 mutation. I The pathways correlated with FGFR3 protein 
abundance. J Ranked co-phosphorylation signature of the mTOR pathway aligned with clinical features. K Summary of key FGFR3 mutation 
associated

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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U-III had the worst OS and PFS (Fig.  5B; log-rank test, 
p < 0.05). Combined with the clinical data, tumors with 
papillary and NMIBCs were mostly enriched in the U-I 
(Fig.  5A, Fisher’s exact test, p < 0.05), whereas patients 
in U-III had a higher degree of nerve invasion, metas-
tasis, and vascular invasion (Fig.  5A, Fisher’s exact test, 
p < 0.05). Univariate Cox regression analysis of proteomic 
subtypes and clinical features is shown in Additional 
file 6: Fig. S6B. The results revealed that proteomic sub-
types (Additional file  6: Fig. S6B; hazard ratio, 2.0; 95% 
confidence interval [Cl], 1.3–3.1; p < 0.001; Additional 
file  17: Table  S5) were authenticated as an independent 
prognosticator, after controlling for stage, nerve invasion, 
and vascular invasion.

Subgroup-specific pathway enrichment analysis indi-
cated different features among the three proteomic 
subgroups. Subgroup U-I was characterized by the high-
est level of metabolism-related pathways, such as pro-
panoate metabolism, lipid metabolism process, and 
arachidonic acid metabolism (CYP2J2, ALOX5, AKR1C3, 
etc.) (Fig. 5C). Subgroup U-II was more related to tumor 
proliferation, including cell cycle (MCM2, ANAPC4, 
CHEK1, etc.), RNA splicing, and DNA repair. Sub-
group U-III was characterized by pathways, such as 
those pertaining to extracellular matrix disassembly, 
complement and coagulation cascades, and PI3K-AKT 
signaling pathway; some of these were associated with 
tumor environment and immune response. Genes linked 
to representative pathways among different proteomic 
subgroups at different omics levels are shown in Fig. 5A. 
Notably, some genes were correlated well with the clinical 
outcomes (Additional file 6: Fig. S6C). Furthermore, mul-
tiple previously described UC subtype markers are shown 
in Additional file  6: Fig. S6D. FGFR3 signatures (IRS1, 
FGFR3, PTPN13, etc.) were highly expressed in U-I (Wil-
coxon rank-sum test, p < 0.05), while differentiation sig-
natures (PPARG, SPINK1, DHRS2, etc.) were expressed 
at higher levels in U-I and U-II. Interestingly, tRNA 
aminoacylation (GARS, RARS, and TARS) was highest 
expressed in U-II. EMT signatures (TGFBI, VIM, and 
CAV1), wild-type p53 signatures (DES, FLNC, CNN1, 
etc.), and CSC signatures (NES, CD47, and THY1) were 
overexpressed in U-III. These results emphasized the 
association between increased biosynthetic, translation, 
and turnover rates and rapid tumor proliferation.

To directly translate our findings into laboratory 
tests for tumor classification, we performed differential 
expression analysis and functional analysis and identified 
24 proteins biomarkers that showed dominant expression 
in a specific proteomic subgroup and were functionally 
relevant to the main function of the distinctive sub-
group (Additional file 6: Fig. S6E). We further performed 
survival analysis and found eight (CYP2J2, PRKCB, 

COL1A1, etc.) were correlated with poor prognosis 
(Additional file 17: Table S5). We then randomly selected 
three protein marker candidates (CYP2J2, MLH1, and 
PRKCB) to validate their expression in specific proteome 
subgroup (U-I, U-II, and U-III). As a result, in consist-
ent with our proteomic data, PRKCB was confirmed to 
be overrepresented in U-III, MLH1 was overrepresented 
in U-II, and CYP2J2 was overrepresented in U-I (Addi-
tional file 6: Fig. S6F). These suggested that the panel of 
biomarker candidates could be used to distinguish differ-
ent subtypes in clinic.

To explore the correlation between proteomic sub-
types and mutational signatures, 12 main signatures 
were identified (Additional file  7: Fig. S7A; Additional 
file  17: Table  S5; Methods). Signature 1 (aging-related) 
was a dominant identified in 82 patients (Additional 
file  7: Fig. S7A; Additional file  17: Table  S5). The other 
major signatures were Signature 2 (APOBEC-a, n = 33), 
Signature 6 (defective mismatch repair, n = 66), Signa-
ture 13 (APOBEC-b, n = 23), and Signature 16 (strong 
transcriptional strand-bias for C>T, n = 8). The most 
dominant signature, Signature 1, was mostly identified in 
subgroup U-I (Additional file 7: Fig. S7A; Kruskal–Wal-
lis test, p < 0.05). Signature 2 (APOBEC-a) and Signature 
13 (APOBEC-b) were mainly identified in subgroups U-II 
and UI-III (Fisher’s exact test, p < 0.05). Four signatures 
were significantly associated with survival, nerve inva-
sion, TNM stage, vascular invasion, and papillary (Addi-
tional file 7: Fig. S7B; Wilcoxon rank-sum test, p < 0.05). 
Signature 1 was mostly found in patients carried papillary 
carcinoma (Additional file 7: Fig. S7B; p < 0.05), Signature 
6 was mostly observed in patients with lower TNM stage 
(Additional file 7: Fig. S7B; p < 0.05), and Signature 16 was 
mostly found in patients with vascular invasion (Addi-
tional file 7: Fig. S7B; p < 0.05).

Furthermore, we conducted clustering analyses on 
the tumor transcriptome (n = 43, consensus clustering) 
and phosphoproteome (n = 105, consensus clustering) 
(Methods; Additional file 6: Fig. S6A; Additional file 17: 
Table S5) and also identified three subtypes in each data-
set. Moderate concordance among proteomic, transcrip-
tomic, and phosphoproteomic subgroups was uncovered 
(59.0% between proteome and transcriptome and 39.5% 
between proteome and phosphoproteome). The phos-
phoproteomic subgroup with poor overall survival was 
consistent with the proteomic subgroup U-III. An analy-
sis combining the mRNA, protein, and phosphoprotein 
helps to decipher the diverse biology and heterogeneity 
of the molecular processes within UC.

We compared the three clusters with the results 
obtained from earlier classifiers (Fig.  5D). Comparison 
between UNC classification [11] and ours indicated that 
U-I and U-II (as revealed by our classifier) matched well 
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with the luminal subtype, while U-III matched well with 
the basal-like subtype. In detail, the luminal markers 
(KRT18, KRT7, GPX2, etc.) were overexpressed in U-I 
and U-II, whereas basal markers (KRT14, KRT5, STAT3, 
etc.) were overexpressed in subgroup U-III (Fig.  5E). 
Comparison between MDA classification and our results 
indicated that U-I matched well with the luminal sub-
type, U-II matched well with the TP53-like subtype, 
while U-III subgroup matched well with the basal sub-
type (Fig. 5D). Comparison between MDA classification 
[10] and ours indicated that urobasal A and genomically 
unstable subtypes were enriched in U-I, the infiltrated 
subtype was enriched in U-II, and SCC-like and uroba-
sal B subtypes were enriched in U-III (Fig. 5D). Compari-
son between TCGA classification [8] and ours indicated 
that U-I agreed well with luminal-papillary and luminal 
(Fig. 5D), U-II agreed well with luminal-infiltrated, while 
U-III was consistent with basal–squamous types. These 
results revealed that our proteome subgrouping showed 
consistencies with transcriptome-based subgrouping. 
Since proteins are the major executors of biological func-
tions, the proteomic subgrouping reinforces previous 
transcriptome data and facilitates the discovery of variant 
proteins, serving as the resource of the biomarker candi-
dates and therapeutic targets.

Considering that protein kinases have been devel-
oped as viable drug targets of cancer therapy, we next 
inferred kinase activities based on differentially abundant 
phosphosites in each proteomic subtype, by performing 
kinase–substrate enrichment analysis (Methods). Signifi-
cant differences between the inferred activated kinases 
were observed among the three proteomics subtypes, of 
which U-I was predominantly featured in the TK kinase 
group (ERBB3, SRC, YES1, etc.), U-II was characterized 
by CMGC (CDK1, CDK4, WEE1, etc.), and U-III was 
characterized by two major kinase groups, AGC (PRKCB, 
PRKCE, and STK10, etc.) and CMGC (GSK3A, GSK3B, 
CDK5, etc.) kinase groups (Fig. 5F; Additional file 7: Fig. 
S7C). Further investigation into the differentially altered 
phosphosites showed that elevated substrates involved in 
the ERBB pathway (EGFR-pY1110, SRC-pY149, MAPK1-
pY187, etc.) were observed in U-I, DNA repair, and the 
cell cycle (LIG1-pS76, MCM4-pS3, MCM2-pS13, etc.) 
in U-II, and Interleukin-2 production and extracellular 
matrix organization (VIM-pS34, ACTG1-pS323, and 
MYH9-pS1714, etc.) in U-III (Fig.  5G). These findings 
suggest that different proteomics subtypes are featured 
with different kinase and could be treated with corre-
sponding kinase inhibitors. For example, Patritumab, an 
ERBB3 inhibitor, and Saracatinib, a SRC inhibitor, have 
the potential to be utilized for patients in U-I, Dinaciclib, 
a CDK1 inhibitor, and Palbociclib, a CDK4 inhibitor, for 
patients in U-II, and Enzastaurin, a PRKCB inhibitor, for 

patients in U-III (Fig. 5G). Importantly, among the poten-
tial inhibitors nominated by us, Saracatinib was dem-
onstrated potent antimigratory and anti-invasive effects 
in  vitro and inhibited metastasis in a murine bladder 
cancer model [47]. CDK4/6 inhibitors (Palbociclib) have 
been tested in bladder cancer [48] and reported to be 
potential therapeutic agents for RB positive bladder can-
cer [49].

Genomic information showed that subgroup U-I and 
U-II carried a higher mutation rate of FGFR3 (Fig.  5A; 
Fisher’s exact test, p < 0.05). The mutational hotspots in 
FGFR3 in our cohort were similar to those in the TCGA 
BLCA cohort (Additional file  7: Fig. S7D, E). Notably, 
most tumors carrying FGFR3 mutations also harbor 
PIK3CA mutations, while TP53 and FGFR3 mutations 
are mutually exclusive in bladder cancer. To investigate 
how mutations in FGFR3 drive its clinical features, we 
examined the expression of FGFR3 at different omics 
levels in patients with or without FGFR3 mutations. The 
results showed that FGFR3 expression was higher in 
patients carrying FGFR3 mutations at mRNA, protein, 
and phosphoprotein levels (Fig. 5H; Wilcoxon rank-sum, 
p < 0.05; Fold change > 2). To further establish a con-
nection between genetic alterations and correspond-
ing downstream pathways, we explored the correlation 
between the protein abundance of FGFR3 and enriched 
pathways. It has been reported that FGFR3 regulates 
mTORC1/2-cSREBP1 through PI3K/AKT-dependent 
and PI3K/AKT-independent signaling [50]. Notably, 
we found that the protein abundance of FGFR3 was 
positively correlated with the mTOR pathway (Fig.  5I). 
Additionally, higher expression of FGFR3 was positively 
correlated with higher phosphorylation of putatively 
druggable kinases AKT, RICTOR, and RPS6KB1 (Fig. 5J). 
The summary of the FGFR3 mutation associations is 
shown in Fig. 5K.

Immune cell infiltration in UC tumors
The tumor microenvironment component in our cohort 
was studied using xCell based on proteomic data of 116 
tumors, which had been used in proteomic consensus 
clustering (Methods; Additional file 18: Table S6). These 
molecularly based cell-type classifications were sup-
ported by ESTIMATE analysis [51] (Methods; Additional 
file  18: Table  S6), yielding the Pearson correlation coef-
ficients of 0.68 and 0.69 for protein and mRNA data of 
immune- and stromal-derived signatures, respectively 
(Additional file  8: Fig. S8A). Consensus clustering of 
the cell signatures identified two NMIBC subtypes and 
three MIBC subtypes as follows: Cold-mixed (n = 22); 
Cold-tumor (n = 27); Metabolism (n = 11); Cell cycle 
(n = 30); and Hot-tumor (n = 26) (Fig.  6A, C). Among 
these, Cold-mixed and Cold-tumor were obtained from 
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NMIBC. Comparing this with proteomic subtypes, we 
observed that hot-tumor was enriched in U-III, while the 
Cold-tumor cluster was compatible with U-I (Fig. 6A, E). 
In addition, combined with clinical data, we observed 
the immune subgroups significantly differed in OS and 
PFS (Fig.  6D; Additional file  8: Fig. S8B; log-rank test, 
p < 0.05).

The Cold-tumor cluster tumors displayed low 
immune and stromal scores (Fig.  6A; t test, p < 0.05), 
higher frequencies of FGFR3 mutations, ART1 muta-
tions, and 9q34.3 deletions (Fisher’s exact test, p < 0.05), 
increased mTOR signaling and ERBB signaling (Wil-
coxon rank-sum, p < 0.05), as well as the enrichment of 
endothelial cells and keratinocytes (t test, p < 0.05). In 
particular, keratinocytes were upregulated in tumors car-
rying FGFR3 mutations compared with the wild-type 
(Fig. 6B).

The Hot-tumor cluster was characterized by the high-
est immune score and multiple types of immune cells, 
including neutrophils, eosinophils, and multipotent 
progenitors (MPP) (Fig.  6A; t test, p < 0.05). Proteomic 
analysis has showed that upregulation of immune-related 
pathways, including that of JAK STAT signaling (Fig. 6A, 
C; Kruskal–Wallis test, p < 0.05), is involved in tumor 
cell recognition and tumor-driven immune escape [52]. 
Expression levels of the immune evasion markers, CD40, 
WARS, SAMD9L, GBP1, and GBP5, were upregulated in 
this cluster (Fig.  6A; Wilcoxon rank-sum, p < 0.05; Fold 
change > 2), as were the mRNA signatures (CD274 and 
CTLA4) associated with T cell exhaustion, implicating 
for immune checkpoint therapy.

The Cold-mix cluster was distinguished from the Cold-
tumor cluster by stronger signatures for Pro B-cells, 
CMP, and pDC (Fig. 6A; t test, p < 0.05), upregulation of 
O-glycan biosynthesis, and interaction between L1 and 
ankyrins (Fig.  6A; Kruskal–Wallis test, p < 0.05), and by 
containing a higher degree of male patients (Fisher’s exact 
test, p < 0.05). The Cell cycle cluster was characterized 

by CD4+ T cells, CD4+ memory T cells, and Th1 cells 
(Fig. 6A; t test, p < 0.05), and regulation of the cell cycle 
and mismatch repair pathways (Fig.  6A; Kruskal–Wal-
lis test, p < 0.05). The Metabolism cluster showed a cer-
tain degree of similarity with the Hot-tumor cluster. This 
cluster was characterized by fibroblast cells and NKT 
(Fig.  6A; t test, p < 0.05), and regulation of metabolism 
pathways, such as histidine metabolism and beta-alanine 
metabolism (Fig.  6A; Kruskal–Wallis test, p < 0.05). We 
also found that proliferator-activated receptor (PPAR) 
signaling pathway (Fig. 6A; Kruskal–Wallis test, p < 0.05) 
was regulated in this cluster.

Interestingly, we found that 9q34.3 amplification, 
which was significantly positively correlated with the 
immune score (Fig.  6F; Spearman’s r = 0.22, p = 0.016), 
was observed more frequently in the Hot-tumor cluster 
than in the Cold-tumor cluster (Fig.  6E; Fisher’s exact 
test, p < 0.05). To further investigate the potential mecha-
nism by which 9q34.3 affects immune activity in UC, we 
focused on the effect of cis- on 9q34.3. Eleven signifi-
cantly positive cis-effects were observed at protein level, 
and three of these (QSOX2, TRAF2, and UAP1L1) were 
associated with poor prognosis (Fig. 6G; hazard ratio > 2, 
p < 0.05). Tumor necrosis receptor-associated factor 2 
(TRAF2) was overexpressed in the Hot-tumor cluster 
tumors, compared to the Cold-tumor cluster at both 
mRNA and protein levels (Fig. 6H; Fold change > 2; Wil-
coxon rank-sum test, p ≤ 0.061). Next, we found that the 
protein abundance of TRAF2 was positively correlated 
with the TNFR2 non-canonical NF-κB pathway (Addi-
tional file  8: Fig. S8C; Spearman’s r = 0.32, p = 5e−4) 
[53], and the mRNA abundance of TRAF2 was positively 
correlated with the mRNA abundance of TNF (Addi-
tional file  8: Fig. S8D; Spearman’s r = 0.37, p = 0.016) 
and TNFR2 (Additional file  8: Fig. S8E; Spearman’s 
r = 0.54, p = 3.2e−4). These results indicate the activa-
tion of NF-κB1. We further found that the predicted 
NF-κB1 activities, inferred by the mRNA expression 

(See figure on next page.)
Fig. 6  Immune cell infiltration in UC tumors. A Heatmap illustrating cell-type compositions and activities of selected individual gene/proteins 
and pathways across the five immune clusters. The heatmap in the first section illustrates the immune/stromal signatures from xCell. The mRNA 
and protein abundance of key immune-related markers and ssGSEA scores based on global proteomics data for biological pathways upregulated 
in different immune groups are illustrated in the remaining sections. B xCell immune/stromal signatures in FGFR3 or ART1 mutations compared 
with WT. C Contour plot of two-dimensional density based on immunes core (y-axis) and stromal scores (x-axis) for different immune clusters. For 
each immune cluster, key upregulated pathways are enriched based on global proteomics (Kruskal–Wallis test, p < 0.05). D Kaplan–Meier curves 
for overall survival of different immune clusters (p value from log-rank test). E Heatmap of the comparison between immune clusters (columns) 
with proteomic subtypes and different peak events. Each row sums to one, with different blocks showing the proportion of tumors belonging to 
different immune clusters. F Volcano plot showing the correlation between different peak events and immune score. G Volcano plot showing the 
cis-effect genes on 9q34.3 (Spearman’s correlation coefficients, p < 0.05). Bigger bubbles showing genes with significant hazard ratio. H Heatmap 
showing the copy number alter, mRNA abundance, protein abundance of TRAF2. I Heatmap showing the estimated NFKB1 activity and the 
mRNA abundance of the targets, the middle red points indicate hazard ratios for each protein, and the endpoints represent lower or upper 95% 
confidence intervals. J TRAF2 was differentially expressed in PD-L1+ group and PD-L1-group. K–L Boxplots show the quantification of the IHC 
results. M A model depicting the multi-level regulation of TRAF2 copy number alterations
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of its target genes (Methods), were positively corre-
lated with the protein abundance of TRAF2 (Additional 
file  8: Fig. S8F; Spearman’s r = 0.32, p = 0.039). Many 
target genes of NF-κB1 were upregulated along with the 
increase in the NF-κB1 activity (Fig.  6I). Some studies 
had revealed that several signaling cross talk pathways, 
such as p53, STAT3, and NF-κB, regulate PD-L1 expres-
sion [54]. Surprisingly, the mRNA abundance of PD-L1, 
a target of NF-κB1, was positively correlated with the 
mRNA abundance of TRAF2 (Additional file 8: Fig. S8G; 
Spearman’s r = 0.39, p = 0.012). The significant correla-
tion between TRAF2 and PD-L1 was also observed in the 
TCGA BLCA cohort (Additional file 8: Fig. S8H; Spear-
man’s r = 0.32, p = 2.2e−11). Furthermore, the mRNA 
abundance of TRAF2 was positively correlated with CD8 
enrichment score (Additional file 8: Fig. S8I; Spearman’s 
r = 0.33, p = 0.033), indicating that TRAF2 plays a role in 
peripheral CD8+ T cell [55].

Based on the observation above, we performed further 
investigation on PD-L1 immunotherapy in our cohort. To 
be more specific, by surveying the clinical data of patients 
in our cohort, we found that 47 patients were detected 
for PD-L1 expression by IHC, in which 27 patients 
were defined as PD-L1 positive (TPS: > 1%), whereas 20 
patients were defined as PD-L1 negative (TPS: < 1%). 
Further comparative analysis between PD-L1 positive 
and negative patients confirmed the positive association 
between the elevated expression of TRAF2 and increased 
PD-L1 expression (Fig. 6J; Additional file 8: Fig. S8J).

To further validate the positive association between 
TRAF2 and PD-L1, we collected FFPE samples from 
an independent validation cohort containing 14 UC 
patients treated with PD-L1 inhibitors (5 responders 
(PR, partial response), 9 non-responders (PD, progres-
sive disease)). Clinical data are summarized in Addi-
tional file  18: Table  S6. We examined the expression of 
TRAF2 and PD-L1 on the tissue level by immunohis-
tochemistry of consecutive slides and observed signifi-
cant elevated expression of both TRAF2 and PD-L1 in 
responders compared to non-responders (Fig.  6K, L; 
Additional file 8: Fig. S8K). This result further confirmed 
that the elevated expression TRAF2 is associated with the 
increased expression of PD-L1 and is related to patients’ 
responses. A summary of the TRAF2 amplification asso-
ciations is shown in Fig. 6M.

Clinical features associated with proteomic 
and phosphoproteomic profiles
To explore the biological characteristics of our cohort 
in an unbiased proteome-wide manner, weighted cor-
relation network analysis (WGCNA) was performed 
using 6692 proteins present in more than 10% of the 116 
tumors (Methods). The clustering dendrogram of the 
samples is shown (Additional file  9: Fig. S9A–C; Addi-
tional file  13: Table  S1). Co-expression analysis yielded 
15 consensus modules (Fig.  7A), ranging in size from 
157 proteins (MEmidnightblue module) to 2257 proteins 
(MEturquoise module). The modules were subsequently 
analyzed by pathway enrichment to characterize the 
associated biology (Fig. 7B; Additional file 19: Table S7).

Among these modules, MEred was significantly cor-
related with chromosome 5p gain (Fig.  7A; r = 0.18, 
p < 0.05). The genes in this module were enriched in regu-
lation of cell proliferation (Fig.  7B; p = 2.21E−04) and 
positive regulation of GTPase activity (p = 2.21E−04). 
In addition, we found that serum albumin value and 
serum urea levels were correlated with poor prognosis 
(Additional file  9: Fig. S9D–E; log-rank test, p < 0.05). It 
has been reported that serum albumin shows poten-
tial as a reliable biomarker of inflammation. We further 
found that serum albumin was significantly correlated 
with the MEgreenyellow module, where pathway analy-
sis of the genes in this module showed that abnor-
mal serum albumin was associated with endocytosis 
(Fig.  7B; p = 6.89E−04), intracellular protein transport 
(p = 7.5E−03) and vesicle-mediated transport (p = 0.015). 
Furthermore, the MEblue module was significantly cor-
related with OS, in which 211 out of 607 genes were sig-
nificantly correlated with clinical outcomes. The genes 
in this module were enriched in focal adhesion (Fig. 7B; 
p = 2.85E−34), complement and coagulation cascades 
(p = 2.29E−26), and the PI3K-AKT signaling pathway 
(p = 8.09E−11). We further performed supervised analy-
sis to filter potential drug targets (https://​www.​prote​inatl​
as.​org/), and 23 genes (GARS, CFI, MYLK, etc.) met the 
criteria, in which six (GARS, CAV1, P4HA2, etc.) were 
reportedly correlated with poor prognosis and overrep-
resented in the staining of urothelial bladder cancer sam-
ples in the HPA database (Additional file 9: Fig. S9F–G; 
Additional file 19: Table S7).

Fig. 7  Clinical outcomes associated with proteomics and phosphoproteomic profiles. A Heatmap showing the correlation between modules 
obtained from WGCNA analysis and clinical outcomes. B Enrichment pathway of different modules (Wilcoxon rank-sum test, p < 0.05). The dot 
plot on the left summarizes ssGSEA pathway scores based on proteomics data among samples with different histological variation statuses. C The 
ssGSEA pathway analysis of different histological variations (Wilcoxon rank-sum test, p < 0.05). D Signature proteins of pathways associated with 
different histological variations (Wilcoxon rank-sum test, p < 0.05). E Evaluation of kinase activities in tumors across different histological variation via 
KSEA. F–H Diagram showing kinase–substrate associations among papillary, NOS, and differentiation variation tumors

(See figure on next page.)

https://www.proteinatlas.org/
https://www.proteinatlas.org/
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Heterogeneity of histopathological characteristics 
adds complexity to the diversity of bladder cancer. His-
tologically, UC is divided into papillary (papilloma, 
low malignant potential, and papillary carcinoma) and 
non-papillary (urothelial carcinoma in  situ and inva-
sive) categories [56]. The non-papillary category is fur-
ther classified into several differentiation forms, such 
as glandular differentiation, squamous differentiation, 
micropapillary differentiation, and invasive urothelial 
carcinoma not otherwise specified (NOS). Papillary car-
cinoma, NOS, glandular differentiation, squamous differ-
entiation, and micropapillary differentiation accounted 
for 29.3%, 42.0%, 11.5%, 7.0%, and 3.8% of all tumor 
samples, respectively (Additional file 9: Fig. S9H). These 
results are consistent with those of previous studies [57, 
58].

To find the divergence of tumors with different his-
tological variants at the molecular level, proteomic 
data were analyzed using gene set enrichment analysis 
(GSEA) (Fig. 7C–D; Additional file 19: Table S7). The 
results revealed that metabolism-related pathways, 
such as oxidative phosphorylation and glycerophos-
pholipid metabolism (PCYT2, MBOAT7, DGKA, 
etc.), were enriched in papillary carcinoma. Vascular 
endothelial growth factor receptor signaling (NRP1, 
ELMO1, NCK1, etc.), as well as cell adhesion mediated 
by integrin, was enriched in NOS. Furthermore, differ-
ent differentiation variants were correlated with differ-
ent pathways. For example, glandular differentiation 
was characterized by the citrate cycle (TCA) (PDHB, 
SDHA, PCK2, etc.) and N-glycan biosynthesis and ala-
nine, as well as by aspartate and glutamate metabolism 
(IL4I1, GFPT1, ASNS, etc.). Squamous differentia-
tion was characterized by keratinocyte differentiation 
(ANXA1, KRT16, SPRR1A, etc.) and hemidesmosome 
assembly (KRT14, LAMA3, KRT5, etc.). Micropapil-
lary differentiation was distinguished by lysosomes 
(CTSC, SCARB2, LAMP1, etc.) and tight junctions 
(OCLN, CGN, MYH10, etc.).

To systematically identify druggable targets spe-
cific to histological variants, we performed functional 
enrichment analysis using phosphoproteomic data. 
The results showed that phosphoproteins showing 

high expression in papillary carcinoma were enriched 
in ERBB signaling and MAPK signaling. Phospho-
proteins upregulated in NOS were enriched in focal 
adhesion and muscle contraction (Additional file  9: 
Fig. S9I). In addition, we pooled the tumors showing 
different differentiations, such as glandular differen-
tiation, squamous differentiation, and micropapillary 
differentiation, into one group and named this the 
differentiation variation. We found that keratino-
cyte differentiation and cell division were enriched in 
the differentiation variation group (Additional file  9: 
Fig. S9I). Various kinase activities in tumors with dif-
ferent histological variations were assessed. ERBB3/
ERBB4/RAF1 kinases were activated in papillary car-
cinoma compared to other variants, PAK3/PAK6/
CDK1 kinases were activated in NOS, and PRKACA/
PRKACB/PRKACG kinases were activated in differ-
entiation variants (Fig.  7E). These kinases and corre-
sponding substrates are shown in Fig.  7F–H. Among 
these kinases, CDK1 is reportedly the only essential 
member of the CDK subfamily, which plays an impor-
tant role in cell cycle progression [59]. In summary, 
different histological variants were characterized by 
different pathways and activated kinases, providing 
evidence for the need for personalized treatment.

GARS promotes bladder cancer cell proliferation 
through non‑canonical function
We found that the expression levels of GARS, which is 
known to be significantly increased in tumor tissues com-
pared to MNUs, were also increased during UC progres-
sion (Fig. 8A). Since GARS has not been reported as being 
associated with the onset of bladder cancer, we explored 
the role of GARS in bladder cancer progression. Using 
western blotting, we confirmed that GARS protein levels 
were profoundly upregulated in tumor tissues (Fig.  8B). 
Other kinds of aminoacyl-tRNA synthetases, including 
AARS, TARS, and SARS, which were used as controls, 
were not significantly altered (Fig.  8B). Overexpressing 
GARS in the human urinary bladder carcinoma cell lines, 
T24 and 5637, promoted DNA synthesis (Additional 
file  10: Fig. S10A–B), cell cycle progression (Additional 
file  10: Fig. S10C–D), and cell proliferation (Additional 

(See figure on next page.)
Fig. 8  GARS promotes bladder cancer cell proliferation through non-canonical function. A GARS was differentially expressed in tumors and MNUs 
(p value from Wilcoxon rank-sum test). B The expression levels of indicated proteins and global K-Gly in tumor tissues compared with those of 
adjacent normal tissues. C The pentose phosphate pathway was activated, while glycolysis was downregulated in GARS-overexpressing cells. D 
Global K-Gly levels in T24 and 5637 GARS-overexpressing cell lines. E Interaction between GARS and PGK1, and interaction between GARS and 
PKM2, in both 5637 and T24 cell lines detected by co-immunoprecipitation assays. F Interaction of GARS with PGK1 and PKM2 in the bladder cancer 
tumor tissues, detected by co-immunoprecipitation assays. G K-Gly levels of PGK1 and PKM2 in both 5637 and T24 GARS-overexpressing cells. H 
Enzymatic activities of PGK1 and PKM2 in T24 GARS-overexpressing cells. I Beta-alanine inhibits K-Gly formation. J The effect of beta-alanine and 
GARS on T24 cells xenografts in nude mice. K A model depicting the regulation of GARS
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Fig. 8  (See legend on previous page.)
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file 10: Fig. S10E–F), while knocking down GARS inhib-
ited these three processes. Moreover, although induction 
of genotoxic stress by cisplatin led to cell cycle progres-
sion block and decreased cell proliferation in both T24 
and 5637 cells, increase in GARS in cisplatin-treated cells 
rescued the blocked cell cycle and exhibited a stronger 
pro-proliferative effect, compared to GARS in normal 
cell cultures (Additional file 10: Fig. S10A–F). The levels 
of other types of aminoacyl-tRNA synthetases, as well 
as the levels of 4EBP and S6K, were not altered between 
tumors and MNUs in UC, suggesting that the oncogenic 
role of GARS was not due to protein translation (Fig. 8B). 
Measuring the metabolites profile using LC–MS revealed 
that the pentose phosphate pathway was activated, while 
glycolysis was downregulated in GARS-overexpressing 
cells (Fig.  8C). These results suggest that upregulated 
GARS enhances DNA synthesis and promotes cell pro-
liferation by activating pentose phosphate pathway flux. 
However, the mechanism by which GARS regulates glu-
cose metabolism remains unknown.

GARS enhances metabolic flux in pentose phosphate 
pathway by inhibiting PGK1 and PKM2
In addition to mediating protein translation, GARS cata-
lyzes the glycine modification of protein lysine residues 
(K-Gly) and transfers the glycine signal by altering the 
function of the modified protein K-Gly [60]. Accord-
ingly, we found that K-Gly levels were significantly 
increased in tumor tissues, compared to MNUs, in UC 
patients (Fig.  8B). K-Gly levels were determined by the 
concentration levels of GARS and glycine. Nuclear mag-
netic resonance indicated that glycine levels between the 
tumor and MNUs of UC were not altered (Additional 
file  11: Fig. S11A), suggesting that increased K-Gly lev-
els seen in UC were caused by upregulated GARS pro-
tein abundance. Furthermore, we validated that, in both 
cultured T24 and 5637 cells, overexpression of GARS 
led to increased global K-Gly levels in cells (Fig. 8D). In 
a previous study of our investigating protein lysine ami-
noacylation [60], we searched for lysine aminoacylation 
in a tryptic peptide library of human liver cancer and 
identified large numbers of proteins, as well as potential 
K-Gly modified proteins. The search results suggested 
that the enzymes in glycolysis were enriched, including 
PGK1 and PKM2 (Additional file 20: Table S8). To verify 
this, we first validated that the interaction between GARS 
and PGK1, as well as the interaction between GARS and 
PKM2, using co-immunoprecipitation assays with pro-
teins exogenously expressed proteins in both 5637 and 
T24 cell lines (Fig.  8E). Moreover, in the tumor tissues, 
we used a co-immunoprecipitation assay to validate 
interactions between GARS and PGK1 as well as between 
GARS and PKM2 (Fig.  8F). Accordingly, we found that 

overexpression of GARS led to increased K-Gly levels of 
PGK1 and PKM2, in both 5637 and T24 cells (Fig. 8G). 
Although the abundances of PGK1 and PKM2 were not 
altered by GARS (Additional file  11: Fig. S11B), enzy-
matic activities of PGK1 and PKM2 were decreased in 
GARS-overexpressing T24 cells (Fig.  8H), suggesting 
that increased GARS levels enhanced the pentose phos-
phate pathway flux through attenuating the glycolysis 
flux by reducing the activities of PGK1 and PKM2. To 
inhibit the GARS-induced oncogenic effect on cells, we 
tested whether the structural analog of glycine was able 
to inhibit the K-Gly formation in cells, including ala-
nine, beta-alanine, and sarcosine (Additional file 11: Fig. 
S11C). We found that only beta-alanine inhibited K-Gly 
formation in cultured cells (Fig.  8I). Furthermore, we 
found that beta-alanine inhibited the DNA synthesis 
(Additional file 11: Fig. S11D) and cell cycle progression 
(Additional file 11: Fig. S11E) and thus promoted the cell 
apoptosis (Additional file  11: Fig. S11F) and attenuated 
cell proliferation in both 5637 and T24 cells (Additional 
file  11: Fig. S11G). In addition, we noted that increased 
GARS abundance promoted the xenograft growth of T24 
cells, whereas inhibition of K-Gly by beta-alanine delayed 
the xenograft growth in tumor cells, thereby validat-
ing the oncogenic role of K-Gly in the development of 
UC (Fig. 8J). Taken together, we found that upregulated 
expression levels of GARS promoted the UC progression 
through enhancing the pentose phosphate pathway by 
inhibiting activities of PGK1 and PKM2.

Discussion
Here, we present a large-scale omics study on urothelial 
carcinoma of the bladder. Whole-genome sequencing, 
RNA sequencing, and proteomics, and phosphoprot-
eomic data were generated as resource from a Chinese 
cohort of 116 patients. Our analysis provides a compre-
hensive insight into the molecular characterization of UC 
by encompassing somatic mutations, the mechanisms 
underlying NMIBC infiltrating into MIBC, proteomic 
subtypes, tumor microenvironment, and protein covaria-
tion networks capturing functional associations.

The genomic landscape revealed the consistency 
between our study and other studies, the frequent muta-
tion rates of TP53, ARID1A, FGFR3, and PIK3CA, being 
a fine case in point. Copy number variations (CNVs) also 
act as an important driving force in several cancers. Prot-
eomic characterization has provided valuable insight into 
CNA effects and their attenuation at the protein level, as 
CNA-mRNA correlations were significantly higher than 
CNA-protein correlations for genes. Notably, 139 sig-
nificant cis-effects overlapping among mRNA, protein, 
and phosphoprotein levels were significantly enriched 
in positive regulation of GTPase activity, regulation of 
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cell cycle, focal adhesion, and the ErbB signaling path-
way, suggesting that core pathways activated in UC were 
affected by genomic aberrations. Furthermore, SND1 
(chromosome 7) exerts a cis-effect on protein level and 
was associated with the activation of STAT3, which was 
relevant to tumor proliferation.

A deeper understanding of UC based on proteomics 
fills the gap between genome abnormalities and onco-
genic protein machinery. Integrated proteogenomic 
characterization of tumors and MNUs revealed that 
some urothelium-specific proteins were less expressed 
in tumors than in MNUs, such as UPK family (UPK3A 
and UPK3BL among others). These proteins play an 
important role in urothelial bladder physiology functions 
[61], such as epithelial cell differentiation and urea trans-
membrane transport. Interestingly, phosphoproteomic 
analysis of tumors and morphologically normal human 
urothelium nominated UC-associated activated kinases, 
including CDK1 and PRKDC.

The two main categories of bladder cancer are NMIBC 
and MIBC. From a clinical standpoint, the progres-
sion from NMIBCs to MIBCs is the major determinant 
in the decision making leading to cystectomy [62]. Cur-
rently, markers that adequately predict the switch from 
NMIBCs to MIBCs are lacking. In this study, we found, 
for the first time, that 5p gain was associated with both 
poor prognosis (both OS and PFS). More importantly, 
when 5p gain occurs in NMIBCs, the survival rate dra-
matically decreases to a level that is comparable with that 
of MIBC, as opposed to WT NMIBC patients, who had a 
longer survival time. Therefore, our data revealed that 5p 
gain plays a role in the progression of NMIBC to MIBC, 
by modulating the actin cytoskeleton, which is implicated 
in tumor cell invasion.

Our study reports the first proteomic classification 
of UCs, and three proteomic subtypes that had distinct 
molecular features linked to the clinical, prognostic, 
and pathological features were identified. Comparisons 
between other classifications and our study showed a 
connection between proteomic and transcriptomic sub-
groups in the Eastern and Western countries. U-I and 
U-II, based on the proteomic subtypes, shared lumi-
nal features, whereas the U-III proteomic subtype pre-
sented with a more basal phenotype, as revealed by the 
transcriptomic classification. U-I and U-II contained the 
most NMIBCs, which is consistent with the results of 
another study, which characterized most NMIBC sam-
ples as luminal [63]. Furthermore, the phosphoproteome 
was applied in analyzing kinase features of proteomic 
subgroups. The results showed that ERBB3, SRC, and 
YES1 were activated in U-I, while CDK1 was activated 
in U-II, and PRKCB was activated in U-III. This obser-
vation suggests that ERBB3 and CDK1 inhibitors have 

the potential to be considered as therapeutical drugs for 
the luminal subtype, for which chemotherapy options 
are considered to be unsuitable. Taken together, these 
revealed that our proteome subgrouping was consistent 
with transcriptome-based subgrouping. Since proteins 
are the major executors of biological functions, the pro-
teomic subgrouping reinforces previous transcriptome 
data and facilitates the discovery of variant proteins, 
which provide a resource for discovering potential bio-
marker candidates or therapeutic targets in the future.

Integrated proteogenomic analysis extensively charac-
terized the immune landscapes of UCs. Further studies 
identified a number of potential therapeutic vulnerabili-
ties, including IDO1 inhibition in immune-hot-tumors. 
We highlighted the specific association between 9q34.3 
amplification and immune-hot phenotype, which sug-
gested the activation of NF-κB1. Tumors showing high 
NF-κB1 activity are also enriched in a tumor-initiating 
cell expression signature [64]. In addition, the expres-
sion of PD-L1, an NF-κB1 target, was increased in 
patients carrying 9q34.3 amplification. These results 
suggest that patients with 9q34.3 amplification showed 
elevated expression level of PD-L1 and may benefit from 
therapy targeting PD-L1. Moreover, from follow-up, we 
found that two patients in our cohort were treated with 
Atezolizumab (a PD-L1 inhibitor) and showed favorable 
response (evaluated by clinical exports; Additional file 18: 
Table  S6). Further investigation revealed that these two 
patients carried 9q34.3 amplification. Our data suggested 
the close relationship between PD-L1 and 9q34.3 amplifi-
cation, which could be further verified in a larger cohort 
in the future.

PD-L1 expression, tumor mutational burden (TMB), 
and PD1 expression are known to be associated with the 
responses of immune checkpoint inhibitor (ICI) therapy, 
yet the relationship among them was found to be con-
flicting. Previous work conducted by Chen Y et  al. has 
indicated that the relationship among the PD-L1 expres-
sion, TMB, and PD-1 expression showed demographi-
cally diversity. To be more specific, the significantly 
positive association between PD-L1 and PD-1 was only 
observed in Chinese patients [65]. In consistent with this 
previous research, in our study, we also did not observe 
significant correlation between the expression of PD-L1 
or PD-1 with TMB (Spearman R = 0.0054, P = 0.97), 
while the significant positive correlation was found 
between the expression of PD-L1 and PD1. Our findings 
further confirm the diverse molecular features of Chinese 
population (Additional file 12: Fig. S12A–D).

Histological variants of UC are clinically significant 
at various levels, including diagnostic, prognostic, or 
therapeutic [56]. In our study, we explored the distinct 
features of histological variants in UC at protein and 
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phosphoprotein levels which were not reported before. 
The results showed that papillary carcinoma was char-
acterized by a low immune score, increased metabo-
lism-related pathways, and the activated ERBB3/ERBB4 
kinases. These results suggested that although immuno-
therapy is deemed unsuitable for patients with papillary 
carcinoma, they have the potential to be benefit from 
treatment with ERBB3/ERBB4 kinase inhibitors.

Our integrated analysis revealed that tRNA ami-
noacylation was higher in the subtype U-II. We found 
that GARS, not other types of aminoacyl-tRNA syn-
thetases, was upregulated in tumor tissues. However, the 
mechanisms underlying the action of GARS in bladder 
cancer remain unclear. We found that GARS promote 
the bladder cancer progression in human urinary bladder 
carcinoma cell lines, T24 and 5637, through enhancing 
pentose phosphate pathway flux by inhibiting activities of 
PGK1 and PKM2. The enhanced pentose phosphate path-
way supports DNA synthesis and rapid cell proliferation.

In summary, multi-omics integrative analysis is a valua-
ble and powerful tool that provides a complementary and 
more comprehensive understanding of UC and offers an 
opportunity to expedite the translation of basic research 
to more precise diagnosis and treatment procedures at 
the clinical level. We believe that the broad usage of these 
data sets leads to new biological discoveries and gener-
ates useful therapeutic hypotheses.

Conclusions
In summary, we firstly delineated the proteogenomic 
landscape of the Chinese UC. We found that 5p gain 
acts as a key factor participating in the progression from 
NMIBC to MIBC. Furthermore, proteomic-based classi-
fication of UC combined with multi-omics data revealed 
the molecular signatures of each subgroup and the sub-
group-specific kinase. Analysis of the immune subtypes 
of UC revealed that 9q34.3 amplification was associated 
with the higher PD-L1 expression. Finally, we found 
that GARS promotes the bladder cancer progression in 
human urinary bladder carcinoma cell lines, T24 and 
5637, through enhancing pentose phosphate pathway 
flux by inhibiting activities of PGK1 and PKM2. These 
results suggested that GARS could be a new therapeutic 
target in UC.

Methods
Sample selection
The UC samples and morphologically normal adja-
cent urothelium tissue samples used in this study were 
obtained from the Zhongshan Hospital, Fudan Univer-
sity. Patients, who did not undergo any anticancer treat-
ments prior to surgery, were randomly selected from 
January 2011 to December 2017 upon their first visit. 

Primary tumor tissues and morphologically normal adja-
cent urothelium (MNU) tissues were surgically resected 
and formalin-fixed paraffin-embedded (FFPE). A total of 
116 patients were collected based on the clinical informa-
tion including gender, age, smoking status, nerve or vas-
cular invasion, metastasis, hyperglycemia, hypertension, 
histological subtype, TNM staging (AJCC cancer staging 
system 8th edition), tumor purity, date of surgical resec-
tion, patients’ overall survival, and progressive-free sur-
vival time. All the clinical information is summarized in 
Additional file 13: Table S1 (Table 1).

FFPE tissue samples from 15 UC patients treated with 
anti-PD-L1 immunotherapy were included in the anti-
PD-L1 cohort. The patients were categorized into 3 
responders and 12 non-responders according to multi-
disciplinary radiologic evaluations. Samples were taken 
shortly before the initiation of the indicated treatment. 
All the clinical information is summarized in Additional 
file 18: Table S6. The study was approved by the Research 
Ethics Committees of Zhongshan Hospital (B2019-
200R), and written, informed consent was provided by all 
patients.

Sample preparation
The tissue specimens used were FFPE. The sample prepa-
ration followed  FFomic strategy. Accurate evaluation of 
tumor cellularity was determined using the middle sec-
tion of each tumor tissue block, which was resected and 
subjected to hematoxylin and eosin (H&E) staining. For 
proteomic, genomic, and phosphoproteomic sample 
preparation, slides (10  μm thick) were sectioned, depar-
affinized with xylene, and washed in an ethanol gradi-
ent. Specimens selected according to H&E staining were 
scraped using a dissecting microscope and then stored 
at − 80  °C until needed. For RNA sample preparation, 
slides (10  μm thick) were sectioned, were not dewaxed, 
and stored at room temperature for further progressing. 
In addition, divergent histological variant tumors of one 
patient were scraped according to H&E staining. Tumor 
sections were required to contain an average of 70% 
tumor cell nuclei with equal to or less than 20% necro-
sis for inclusion in the study. Each sample was assigned a 
new research ID, and the patient’s name or medical record 
number used during hospitalization was de-identified.

Pathology review
All samples were systematically evaluated to confirm 
the histopathological diagnosis and any variant histol-
ogy according to the World Health Organization (WHO) 
classification by three expert genitourinary pathologists. 
Additionally, all tumor samples were assessed for tumor 
content, the presence and extent of tumor necrosis, and 
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signs of invasion into the muscularis propria. Tumor 
samples were also evaluated for the presence and extent 
of inflammatory infiltrates, as well as for the type of 
the infiltrating cells (lymphocytes, neutrophils, eosino-
phils, histiocytes, plasma cells) in the tumor microen-
vironment. Any non-concordant diagnoses among the 
three pathologists were re-reviewed, and a resolution 
was reached following discussion. All the information is 
included in Additional file 13: Table S1.

Whole‑exome sequencing
DNA extraction
DNA from the tumor tissues and MNU tissues was 
extracted according to the manufacturer’s instructions of 
a QIAamp DNA Mini Kit (QIAGEN, Hilden, Germany). 
The quality of isolated and contaminated samples was 
verified using the following methods: (i) DNA degrada-
tion and contamination were monitored on 1% agarose 
gels; and (ii) DNA concentration was measured using 
Qubit® DNA Assay Kit in a Qubit® 2.0 Fluorimeter (Inv-
itrogen, CA, USA).

Library preparation
An amount of 0.6 µg genomic DNA per sample was used 
as input material for the DNA preparation. Sequenc-
ing libraries were generated using an Agilent SureSelect 
Human All Exon kit (Agilent Technologies, CA, USA) 
following the manufacturer’s recommendations, follow-
ing which index codes were added to each sample. Briefly, 
fragmentation was carried out using a hydrodynamic 
shearing system (Covaris, Massachusetts, USA) to gen-
erate 180–280  bp fragments. The remaining overhangs 
were converted into blunt ends via exonuclease/poly-
merase activities. Following adenylation of the 3’ ends of 
DNA fragments, adapter oligonucleotides were ligated. 
DNA fragments with ligated adapter molecules at both 
ends were selectively enriched in a PCR reaction. Follow-
ing the PCR reaction, libraries were hybridized with the 
liquid phase via a biotin-labeled probe following which 
magnetic beads with streptomycin were utilized to cap-
ture the exons of genes. Captured libraries were enriched 
via a PCR reaction to add index tags in preparation for 
sequencing. Products were purified using an AMPure XP 
system (Beckman Coulter, Beverly, USA) and quantified 
using the Agilent high sensitivity DNA assay on the Agi-
lent Bioanalyzer 2100 system.

Clustering and sequencing
Clustering of index-coded samples was performed on 
a cBot Cluster Generation System using a HiSeq PE 
Cluster Kit (Illumina) according to the manufacturer’s 
instructions. After cluster generation, the DNA libraries 

were sequenced on the Illumina HiSeq platform and 
150 bp paired-end reads were generated.

Whole‑exome sequencing data analysis
Quality control
The original fluorescence image files obtained from 
the HiSeq platform were transformed to short reads 
(raw data) by base calling, following which these short 
reads were recorded in FASTQ format, which contains 
sequence information and corresponding sequencing 
quality information. Sequence artifacts, including reads 
containing adapter contamination, low-quality nucleo-
tides, and unrecognizable nucleotides (N), undoubtedly 
set the barrier for the subsequent reliable bioinformatics 
analysis. Hence, quality control is an essential step that 
must be applied to guarantee meaningful downstream 
analysis.

The data processing steps were as follows:

•	 Paired reads were discarded if either read contained 
adapter contamination (> 10 nucleotides aligned to 
the adapter, allowing ≤ 10% mismatches).

•	 Paired reads were discarded if more than 10% of 
bases are uncertain.

•	 Paired reads were discarded if the proportion of low-
quality (Phred quality < 5) bases is either read was 
over 50%.

All downstream bioinformatics analyses were based on 
high-quality clean data, which were retained after these 
steps. At the same time, QC statistics including total read 
number, raw data, raw depth, sequencing error rate, per-
centage of reads with Q30 (the percentage of bases with 
Phred-scaled quality scores greater than 30), and GC 
content distribution were calculated and summarized.

Reads mapping to reference sequence
Valid sequencing data were mapped to the reference 
human genome (UCSC hg19) using Burrows–Wheeler 
aligner (BWA) software [66] to obtain the original map-
ping results stored in BAM format. If one read, or one 
paired read, was mapped to multiple positions, the strategy 
adopted by the BWA was to choose the most likely place-
ment. If two or more most likely placements were present, 
the BWA picked one randomly. Then, SAMtools [67] and 
Picard (http://​broad​insti​tute.​github.​io/​picard/) were used 
to sort BAM files and perform duplicate marking, local 
realignment, and base quality recalibration to generate 
final BAM files for computation of the sequence cover-
age and depth. The mapping step was very difficult due 
to mismatches, including true mutations and sequencing 
errors, and duplicates resulting from PCR amplification. 

http://broadinstitute.github.io/picard/
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These duplicate reads were uninformative and should not 
be considered as evidence for variants. We used Picard to 
mark these duplicates for the follow-up analysis.

Variant calling
Samtools mpileup and bcftools were used to perform 
variant calling and identify SNPs and InDels. Somatic 
SNP variant calls were assessed using MuTect [68], and 
the Indels variant calls were assessed using Strelka [69] 
with default options. The resulting somatic mutations 
were annotated using the ANNOVAR RefSeq gene-based 
annotation.

Copy number analysis
Copy number alterations (CNAs) were called by follow-
ing the somatic CNA calling pipeline in GATK’s (GATK 
4) Best Practice. The results of this pipeline and segment 
files of every 1000 were input in GISTIC2 [70], to iden-
tify significantly amplified or deleted focal-level and arm-
level events, with a Q value < 0.1 considered significant. A 
log2 ratio cutoff 1 was used to define SCNA amplification 
and deletion. We further summarize the arm-level copy 
number change based on a weighted sum approach [71], 
in which the segment-level log2 copy ratios for all the 
segments located in the given arm were added up with 
the length of each segment being weighted. To exclude 
false positives as much as possible, relatively stringent 
cutoff thresholds were used with the following param-
eters: -ta 0.1 -tb 0.1 -brlen 0.98 -conf 0.9. Other param-
eters were the same as default values.

Co‑occurrence and mutual exclusivity analysis of mutations
Co-occurrence and mutually exclusive mutated genes 
were detected using Fisher’s exact test in order to deter-
mine the co-occurrence and mutually exclusively of sig-
nificantly mutated genes in our mutational dataset.

Analysis of significantly mutated genes
Filtered mutations (including SNV and indel) were fur-
ther used to identify significantly mutated genes by 
MutSigCV (https://​softw​are.​broad​insti​tute.​org/​cancer/​
cga/​mutsig, version 1.4) with default parameters. Final 
MutSigCV P values were converted to q values using the 
method of Benjamini and Hochberg [72], and genes with 
q ≤ 0.1 were declared to be significantly mutated.

Mutation frequency in the Fudan cohort and previous UC 
studies
Mutation frequencies for previous UC studies in the 
TCGA cohort [73] were downloaded from the cBio-
Portal [74], while those in the Beijing cohort [19] were 
downloaded from the Beijing Institute of Genomics Data 

Center (https://​bigd.​big.​ac.​cn). The frequencies of all 
genes were compared with those from the Fudan cohort 
using Spearman’s correlation similarity matrix.

Mutational signature analysis using the Sigminer approach
Mutation signatures were jointly inferred for 113 tumors 
using the R package sigminer [75]. The sigminer approach 
(https://​github.​com/​Shixi​angWa​ng/​sigmi​ner) was used 
to extract the underlying mutational signatures. The 
96 mutation vectors (or contexts) generated by somatic 
SNVs based on six base substitutions (C>A, C>G, C>T, 
T>A, T>C, and T>G) within 16 possible combinations 
of neighboring bases for each substitution were used as 
input data to infer their contributions to the observed 
mutations. Sigminer using a nonnegative matrix fac-
torization (NMF) approach was applied to decipher the 
96 × 113 (i.e., mutational context-by-sample) matrix for 
the 30 known COSMIC cancer signatures  (https://​can-
cer.​sanger.​ac.​uk/​cosmic/​signa​tures) and infer their expo-
sure contributions.

Mutational signature analysis using the deconstruct Sigs 
approach
The mutational signature of each sample was decon-
structed using the deconstructSigs approach [76] and its 
R package (deconstructSigs v1.8.0) with default param-
eters. Thirty COSMIC cancer signatures were consid-
ered, and their contributions (weights) in each patient 
were normalized between 0 and 1, and signatures with a 
weight below 0.08 were filtered out.

Functional annotation
Functional annotation is vital because the link between 
genetic variations and diseases is clarified by this pro-
cess. ANNOVAR was performed to annotate the variant 
call format (VCF) obtained in a previous study [77]. The 
dbSNP, 1000 Genome, and other related databases were 
used to characterize the detected variants. Given the sig-
nificance of exonic variants, gene transcript annotation 
databases, such as Consensus CDS, RefSeq, Ensembl, 
and UCSC, were also included in the determination of 
amino acid alterations. Annotation content contained the 
variant position, variant type, and conservative predic-
tion, among others. These annotation results would help 
locate disease-causal mutants. The details of the annota-
tion are provided in the supplementary material.

Tumor mutational burden
TMB was defined as the number of somatic mutations 
(including base substitutions and indels) in the coding 
region. Synonymous alterations were also counted [78]. 
To calculate the TMB, the total number of mutations 

https://software.broadinstitute.org/cancer/cga/mutsig
https://software.broadinstitute.org/cancer/cga/mutsig
https://bigd.big.ac.cn
https://github.com/ShixiangWang/sigminer
https://cancer.sanger.ac.uk/cosmic/signatures
https://cancer.sanger.ac.uk/cosmic/signatures
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counted was divided by the size of the coding sequence 
region of the Agilent SureSelect Human All Exon V6.

Proteomic and phosphoproteomic analysis
FFPE protein extraction and trypsin digestion
Samples were lysed in TCEP buffer (2% deoxycholic acid 
sodium salt, 40  mM 2-chloroacetamide, 100  mM Tris–
HCl, 10 mM Tris(2-chloroethyl) phosphate, 1 mM PFSM, 
pH 8.5) supplemented with protease inhibitors and phos-
phatase at 99 °C for 30 min. After cooling to room tem-
perature, trypsin (Promega, Madison, WI, USA, #V5280) 
was added and digested for 18 h at 37 °C. 10% formic acid 
was added and vortexed for 3 min, followed by sedimen-
tation for 5 min (12,000g). Next, a new 1.5-mL tube with 
extraction buffer (0.1% formic acid in 50% acetonitrile) 
was used to extract the supernatant (vortex for 3 min, fol-
lowed by 12,000g of sedimentation for 5 min). Collected 
supernatant was transferred into a new tube for drying 
using a SpeedVac.

First dimensional reversed‑phase separation for proteome
The dried tryptic peptides were re-dissolved in 10  mM 
NH4HCO3 (pH 10), vortexed for 3 min, and then centri-
fuged at 12,000g for 3 min. Peptides were separated in a 
home-made reverse-phase C18 column in a pipet tip with 
nine fractions using an increasing gradient of increasing 
acetonitrile (6%, 9%, 12%, 15%, 18%, 21%, 25%, 30%, and 
35%) under basic conditions (pH 10). The nine fractions 
were combined into three fractions (6% + 15% + 25%, 
9% + 18% + 30%, 12% + 21% + 35%), dried in a vacuum 
concentrator (Thermo Scientific), and then analyzed by 
mass spectrometry for proteomic profiling.

The enrichment of phosphorylated peptides
For phosphoproteomic analysis, slides (10  μm thick) 
from FFPE blocks were macro-dissected, deparaffinized 
with xylene, and washed with ethanol. Extracted tis-
sues were lysed and digested with trypsin following the 
same protocol as previously described for “FFPE pro-
tein extraction and trypsin digestion.” Tryptic peptides 
were used for phosphopeptide enrichment using a High-
Select Fe-NTA kit (Thermo Fisher Scientific, Rockford, 
IL, USA, #A32992) according to the kit manual and a 
previous report [79] with some modifications. In brief, 
peptides were suspended in binding/wash buffer (con-
tained in the enrichment kit) and mixed with the equili-
brated resins. The peptide–resin mixture was incubated 
for 30 min with three gentle blows at room temperature. 
Following incubation, the resins were washed thrice with 
binding/wash buffer and twice with water. The enriched 
peptides were eluted with elution buffer (contained in the 
enrichment kit) and immediately dried using a SpeedVac 
at 45 °C for mass spectrometry analysis.

Nano‑LC–MS/MS analysis
For the proteome profiling samples, peptides were ana-
lyzed on a Q Exactive HF-X Hybrid Quadrupole-Orbitrap 
Mass Spectrometer (Thermo Fisher Scientific) coupled 
with a high-performance liquid chromatography system 
(EASY nLC 1200, Thermo Fisher Scientific). Dried pep-
tide samples re-dissolved in Solvent A (0.1% formic acid 
in water) were loaded onto a 2-cm self-packed trap col-
umn (100 μm inner diameter, 3 μm ReproSil-Pur C18-AQ 
beads, Dr. Maisch GmbH) using Solvent A and separated 
on a 150-μm-inner-diameter column with a length of 
15 cm (1.9 μm ReproSil-Pur C18-AQ beads, Dr. Maisch 
GmbH) over a 75-min gradient (Solvent A: 0.1% formic 
acid in water; Solvent B: 0.1% formic acid in 80% ACN) at 
a constant flow rate of 600 nL/min (0–75 min, 0 min, 4% 
B; 0–10 min, 4–15% B; 10–60 min, 15–30% B; 60–69 min, 
30–50% B; 69–70 min, 50–100% B; 70–75 min, 100% B). 
Eluted peptides were ionized at 2  kV and introduced 
into the mass spectrometer. Mass spectrometry was 
performed in data-dependent acquisition mode. For the 
MS1 Spectra full scan, ions with m/z ranging from 300 
to 1400 were acquired by an Orbitrap mass analyzer at 
a high resolution of 120,000. The automatic gain control 
(AGC) target value was set to 3E+06. The maximal ion 
injection time was 80 ms. MS2 spectral acquisition was 
performed in the ion trap in a rapid speed mode. Precur-
sor ions were selected and fragmented with higher energy 
collision dissociation (HCD) with a normalized collision 
energy of 27%. Fragment ions were analyzed by an ion 
trap mass analyzer with an AGC target at 5E+04. The 
maximal ion injection time of MS2 was 20 ms. Peptides 
that triggered MS/MS scans were dynamically excluded 
from further MS/MS scans for 12 s.

For the phosphoproteomic samples, peptides were 
analyzed on a Q Exactive HF-X Hybrid Quadrupole-
Orbitrap Mass Spectrometer (Thermo Fisher Scientific) 
coupled with a high-performance liquid chromatog-
raphy system (EASY nLC 1200, Thermo Fisher Scien-
tific). Dried peptide samples re-dissolved in Solvent A 
(0.1% formic acid in water) were loaded onto a 2-cm 
self-packed trap column (100 μm inner diameter, 3  μm 
ReproSil-Pur C18-AQ beads, Dr. Maisch GmbH) using 
Solvent A and separated on a 150-μm-inner-diameter 
column with a length of 30  cm (1.9  μm ReproSil-Pur 
C18-AQ beads, Dr. Maisch GmbH) over a 150-min gra-
dient (buffer A: 0.1% formic acid in water; buffer B: 0.1% 
formic acid in 80% ACN) at a constant flow rate of 600 
nL/min (0–150  min, 0  min, 4% B; 0–10  min, 4–15% B; 
10–125  min, 15–30% B; 125–140  min, 30–50% B; 140–
141 min, 50–100% B; 141–150 min, 100% B). The eluted 
phosphopeptides were ionized and detected by a Q 
Exactive HF-X Hybrid Quadrupole-Orbitrap mass spec-
trometry. Mass spectra were acquired over the scan range 
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of m/z 300–1400 at a resolution of 120,000 (AUG target 
value of 3E+06 and maximum injection time 80  ms). 
For the MS2 scan, higher energy collision dissociation 
fragmentation was performed at a normalized collision 
energy of 30%. The MS2 AGC target was set to 5E+04 
with a maximum injection time of 100 ms. The peptide 
mode was selected for monoisotopic precursor scan, and 
charge state screening was enabled to reject unassigned 
1+, 7+, 8+, and > 8+ ions with a dynamic exclusion time 
of 40  s to discriminate against previously analyzed ions 
between ± 10 ppm.

MS database searching
Peptide and protein identification
MS raw files were processed with a “Firmiana” (a one-
stop proteomic cloud platform) [20] against the human 
National Center for Biotechnology Information (NCBI) 
RefSeq protein database (updated on 04-07-2013, 
32,015 entries) using Mascot 2.4 (Matrix Science Inc., 
London, UK). The maximum number of missed cleav-
ages was set to two. Mass tolerances of 20 ppm for the 
precursor and 50 mmu for production were allowed for 
Q Exactive HFX. The fixed modification was cysteine 
carbamidomethylation, while the variable modifica-
tions were N-acetylation and methionine oxidation. For 
the quality control of protein identification, the target-
decoy-based strategy was applied to confirm that the 
false discovery rate (FDR) of both peptides and proteins 
was lower than 1%. The program percolator was used to 
obtain the probability value (q value) and showed that 
the FDR (measured by the decoy hits) of every pep-
tide–spectrum match (PSM) was lower than 1%. All 
peptides shorter than seven amino acids were removed. 
The cutoff ion score for peptide identification was set at 
20. All PSMs in all fractions were combined for protein 
quality control, which was a stringent quality control 
strategy. The q values of both target and decoy pep-
tide sequences were dynamically increased employing 
the parsimony principle until the corresponding pro-
tein FDR was less than 1%. Finally, to reduce the false 
positive rate, proteins with at least two unique peptides 
were selected for further investigation.

Label‑free‑based MS quantification of proteins
The one-stop proteomic cloud platform, “Firmiana,” 
was further employed for protein quantification. The 
identification results and the raw data from the mzXML 
files were loaded. Then, for each identified peptide, the 
extracted-ion chromatogram (XIC) was extracted by 
searching against MS1 based on its identification infor-
mation, and the abundance was estimated by calculat-
ing the area under the extracted XIC curve. For protein 

abundance calculation, the non-redundant peptide list 
was used to assemble proteins following the parsimony 
principle. Protein abundance was then estimated by a 
traditional label-free, intensity-based absolute quantifi-
cation (iBAQ) algorithm, which divided protein abun-
dance (derived from identified peptide intensities) by 
the number of theoretically observable peptides. Match 
between runs [80] was used to improve parallelism 
between tumor and MNU tissues from 116 patients. 
We built a dynamic regression function based on com-
monly identified peptides in tumor and non-tumor tis-
sues. According to the correlation value, R2, Firmiana 
chooses a linear or quadratic function for regression to 
calculate the RT of the corresponding hidden peptides 
and check the existence of the XIC based on the m/z 
and calculated RT. The program evaluated the peak area 
values of the existing XICs. The peak area values were 
calculated as parts of the corresponding proteins. Pro-
teins with at least two unique peptides with a 1% FDR 
at the peptide level were selected for further analysis. 
Then, the fraction of total (FOT), a relative quantifica-
tion value that was defined as a protein’s iBAQ divided 
by the total iBAQ of all identified proteins in one exper-
iment, was calculated as the normalized abundance of a 
particular protein among experiments. Finally, the FOT 
was further multiplied by 1E−5 for ease of presenta-
tion and FOTs less than 1E5 were replaced with 1E5 to 
adjust extremely small values.

Batch effect analysis
Hierarchical clustering, dip statistic test, and principal 
component analyses were implemented in R v.3.4.1 to 
assess batch effects in our proteome dataset with respect 
to the following two variables: batch identity and sam-
ple type (tumors and MNUs). For hierarchical clustering 
analysis, pairwise Spearman’s correlation coefficients of 
the 157 tumor samples that passed quality control were 
investigated. Samples of the same type exhibited high 
similarity, whereas samples of different types clearly dif-
fered. There was no clear association between batch iden-
tity and correlation coefficients. The density plot of the 
normalized intensities of the proteins identified in each 
sample showed that all samples passed quality control 
with an expected unimodal distribution (dip statistic 
test). The results of principal component analysis showed 
that batch effects were negligible for batch identity but 
significant for the sample types.

Quality control of the mass spectrometry data
For quality control of performance of mass spectrom-
etry, the HEK293T cell (National Infrastructure Cell Line 
Resource) lysates were measured every 3 days to set the 
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quality control standard. The quality control standard 
was digested and analyzed using the same method and 
conditions as the 20 samples. A pairwise Spearman’s cor-
relation coefficient was calculated for all quality control 
runs in a statistical analysis environment R v.3.2.129, and 
the results are shown in Additional file  1: Fig. S1F. The 
average correlation coefficient among the standards was 
0.90, while the maximum and minimum values were 0.93 
and 0.82, respectively.

RNA‑Seq
RNA extraction
RNA was extracted from tissues by using the RNAs-
torm™ FFPE kit (CELLDATA, USA, #CA94538) accord-
ing to the manufacturer’s protocol. RNA integrity and 
concentration were determined using a NanoDrop 
8000 spectrophotometer (Thermo Fisher Scientific). For 
library preparation of RNA sequencing, a total amount 
of 500  ng RNA per sample was used as input mate-
rial for RNA sample preparations. Sequencing librar-
ies were generated using a Ribo-off® rRNA Depletion 
Kit (H/M/R) (Vazyme, Nanjing, China, #N406) and a 
VAHTS® Universal V6 RNA-seq Library Prep Kit for 
Illumina (#N401-NR604) following the manufacturer’s 
recommendations. Index codes were added to attribute 
sequences to each sample. The libraries were sequenced 
on an Illumina platform and 150  bp paired-end reads 
were generated.

RNA‑Seq data analysis
RNA-seq raw data quality was assessed using FastQC 
(v0.11.9), and the adaptor was trimmed with Trim_
Galore (version 0.6.6) before any data filtering criteria 
were applied. Reads were mapped onto the human ref-
erence genome (GRCh38.p13 assembly) using STAR 
software (v2.7.7a). The mapped reads were assembled 
into transcripts or genes by using StringTie software 
(v2.1.4) and the genome annotation file (hg38_ucsc.
annotated.gtf ). For quantification purpose, the relative 
abundance of the transcript/gene was measured using 
the normalized metrics, FPKM (fragments per kilobase 
of transcript per million mapped reads). Transcripts 
with an FPKM score above one were retained, resulting 
in a total of 32,873 gene IDs. All known exons in the 
annotated files were 100% covered.

Quantification and statistical analysis
Missing value imputation
For the proteomic and phosphoproteomic data, FOTs 
multiplied by 1E5 were used for quantification, and 
missing values were imputed with 1E−5 and finally, 
log2-transformed, if necessary.

Differential protein analysis
Proteins that were expressed in more than 30% of the 
samples were selected for differential expression analy-
sis. The Wilcoxon rank-sum test was used to examine 
whether proteins were differentially expressed between 
tumors (n = 157 samples) and MNUs (n = 75 samples), 
NMIBCs (n = 45 samples) and MIBCs (n = 71 samples), 
or patients with different mutation statuses and CNA 
of statuses. Upregulated or downregulated proteins 
are defined as proteins differentially expressed in one 
group compared with the other group (Wilcoxon rank-
sum test, BH p < 0.05, T/N > 2 or < 1/2). The same strat-
egy was applied to the differential expression analysis of 
phosphoproteomic data and RNA-seq data.

Pathway enrichment analysis
Differentially expressed genes were subjected to gene 
ontology and KEGG pathway enrichment analysis in 
DAVID [81] with a p value/FDR < 0.05. We used gene 
sets of molecular pathways from the KEGG [82]/Hall-
mark [83]/Reactome [84]/GO [85] databases to com-
pute pathways.

Pathway scores and correlation analysis
Single-sample gene set enrichment analysis (ssGSEA) 
[86] was utilized to obtain pathway scores for each sam-
ple based on RNA-seq, proteomic, and phosphoprot-
eomic data using the R package GSVA [87]. Correlations 
between the pathway scores and other features were 
determined using Spearman’s correlation. Inferred activ-
ity was performed using ssGSEA implemented in the R 
package GSVA with a minimum gene set size of 10. The 
transcriptional targets of STAT3 transcription factors 
were collected from the ENCODE Project Consortium 
[88] and used to infer STAT3 activity via ssGSEA. Tran-
scriptional targets of NFKB1 transcription factors were 
collected from the ENCODE Project Consortium [88] 
and used to infer NFKB1 activity by using ssGSEA.

Candidate target of plasma membrane protein
The following three criteria were used to identify plasma 
membrane protein with prognostic power: 1) The can-
didate proteins were expressed in more than 80% of the 
157 tumor samples; 2) the candidates were expressed at 
least twofold higher in tumors than the MNUs (Wilcoxon 
rank-sum test, BH p < 0.01); and 3) the high expressions 
of candidates were negatively correlated with the overall 
survival (Kaplan–Meier analysis, log-rank test, p < 0.05).
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Phosphoproteomic data analysis
Database searching of MS phosphoproteomic data
Phosphoproteome MS raw files were searched against 
the human RefSeq protein database (27,414 proteins, 
version 04/07/2013) using Proteome Discoverer (version 
2.3.0.523) with a Mascot [89] (version 2.3.01) engine with 
a percolator [90]. Carbamidomethyl cysteine was used 
as a fixed modification, and oxidized methionine, pro-
tein N-term acetylation, and phospho (S/T/Y) were set 
as variable modifications. The false discovery rate (FDR) 
of peptides and proteins was set at 1%. The tolerance for 
spectral searches a mass tolerance of 20 ppm for the pre-
cursor. The maximum number of missing cleavage site 
was set at 2. For phosphosite localization, ptmRS [91] was 
used to determine phosphosite confidence and a phos-
phosite probability > 0.75 was used for further analysis.

Kinase activity prediction
To estimate changes in kinase activity, we performed 
kinase enrichment analysis on significantly differentiated 
phosphosites in tumors compared to MNUs, for MIBC 
and NMIBC or each subtype via kinase–substrate enrich-
ment analysis (KSEA) [92]. Known kinase–substrate site 
relationships from PhosphoSitePlus (PSP) [93] or Net-
worKIN 3.0 [94] with scores greater than 1 were used 
for kinase–substrate analysis. A kinase score was given 
for each kinase based exclusively on the collective phos-
phorylation status of its substrates and transformed into 
a z-score. For kinase enrichment analysis, the threshold 
used for significantly enriched kinases was p < 0.05.

mRNA, proteomic, and phosphoproteomic 
subgrouping analysis
Consensus clustering analysis
Prior to clustering analysis, proteins that were 
expressed in more than 30% of patient samples were 
selected (n = 5489). To identify new proteomic sub-
types of UC, consensus clustering (R package Con-
sensusClusterPlus v.1.48.0) [95, 96], and a reconciling 
clustering algorithm with a resampling technique, was 
conducted on 5489 proteins. The clustering algorithm 
was k-means using Euclidean distance. Consensus 
Cluster Plus parameters were reps = 1000, pItem = 0.8, 
pFeature = 1, clusterAlg = “pam,” distance = “spear-
man,” plot = “PDF” Euclidean distance and 1.00 resa-
mpling repetitions in the range of 2–10 clusters. 
The consensus matrices for k = 3, 4, and 5 clusters 
are shown in Additional file  5: Fig. S5A. A consensus 
matrix with k = 3 appeared to yield the clearest cut 
between clusters and showed a significant association 
with the patient survival. The same strategy was applied 
to the phosphoproteomic data and RNA-seq data.

Subtype‑specific expressed proteins analysis
The 5489 proteins used for consensus clustering were 
subjected to differential expression analysis among the 
three subtypes using the Kruskal–Wallis test. Upregu-
lated or downregulated proteins were defined as sub-
type-specific expressed proteins (Kruskal–Wallis test, 
p < 0.05; one subtype/other subtype > 1.5 or < 2/3) and 
used for subgroup-specific pathway analysis. The same 
strategy was applied to the phosphoproteomic data and 
RNA-seq data for subtype-specific expression analysis.

Comparison of the UC‑proteomic subgrouping with previous 
UC subgroupings
We applied our subtype classifier to an mRNA data set 
from TCGA, resulting in three clusters (U-I, U-II, and 
U-III) being obtained from the TCGA cohort.

Correlation between proteomic subtypes and clinical features
For the purpose of measuring correlations between 
proteomic subtypes and clinical features, Fisher’s exact 
test was performed on categorical variables, including 
driver gene mutations, chromosome 5p gain, gender, 
age-group, smoke status, nerve invasion, vascular inva-
sion, metastasis, hyperglycemia, hypertension, TNM 
stage, and histological type.

WGCNA analysis
Weighted gene correlation network analysis (WGCNA) 
[97] was used to identify groups of co-regulated genes 
in an unsupervised manner. We input 6692 proteins 
present in more than 10% of the 116 patients into 
WGCNA. A sample network was constructed to iden-
tify outlying samples with a standardized connectivity 
score of less than − 2.5 [98]. A signed gene co-expres-
sion network was constructed with a soft threshold 
power of 10. Groups of co-regulated genes (modules) 
correlated with each other with a Pearson correla-
tion coefficient of 0.9, or better, were merged. Pathway 
enrichment analysis was used for the functional annota-
tion of the identified modules (n = 16). The eigengenes 
of each module were used to measure the association 
between modules and clinical information.

Survival analysis
Kaplan–Meier survival curves (log-rank test) were used 
to determine the overall survival (OS) and progression-
free survival (PFS) of proteomic subtypes and patients. 
The coefficient value, which is equal to ln (HR), was 
calculated using Cox proportional hazards regression 
analysis. p values less than 0.05 were considered signifi-
cantly different and selected for Cox regression multivari-
ate analysis. Prior to the log-rank test of a given protein, 
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phosphoprotein, or phosphosite, survminer (version 0.2.4, 
R package) with maxstat (maximally selected rank sta-
tistics; http://r-​addict.​com/​2016/​11/​21/​Optim​al-​Cutpo​
int-​maxst​at.​html) was used to determine the optimal 
cutoff point for the selected samples according to a previ-
ous study [99]. OS curves were then calculated (Kaplan–
Meier analysis, log-rank test) based on the optimal cutoff 
point.

Multi‑omics data analysis
Effects of copy number alterations
SCNAs affecting mRNA and protein/phosphoprotein 
abundance in either “cis” (within the same aberrant 
locus) or “trans” (remote locus) mode were visualized by 
multiOmicsViz (R package) [100]. Spearman’s correlation 
coefficients and associated multiple-test adjusted p val-
ues were calculated for all CNA–mRNA pairs for 16,274 
genes, resulting in CNA-protein pairs for 8987 genes and 
CNA-phosphoprotein pairs for 5147 genes, respectively.

mRNA–protein correlation in tumors and MNUs
The Spearman correlation coefficients of genes/proteins 
were calculated for those that were detected in more 
than 30% of the tumors (5001 genes in 43 samples) or 
MNUs (3983 genes in 22 samples) in both RNA-Seq and 
MS data. Functional pathways were enriched by gene set 
enrichment analysis (GSEA) enrichment analysis using 
the correlation-ranked list of proteins.

Defining cancer‑associated genes
Cancer-associated genes (CAG) were compiled from 
genes defined by Bailey et al. [101] and cancer-associated 
genes listed in Mertins et  al. [102] and adapted from 
Vogelstein et al. [103].

Gene Set Enrichment Analysis (GSEA)
GSEA was performed by the GSEA software (http://​
softw​are.​broad​insti​tute.​org/​gsea/​index.​jsp). Gene sets 
including KEGG, GO Biological Process (BP), Reactome, 
and HALLMARK downloaded from the Molecular Sig-
natures Database (MSigDB v7.1, http://​softw​are.​broad​
insti​tute.​org/​gsea/​msigdb/​index.​jsp) were used.

Immune subtype analysis
The abundances of 64 different cell types for UCs were 
computed via xCell using protein expression values [104]. 
Additional file 18: Table S6 contains the final score com-
puted by xCell of different cell types for tumor samples. 
Consensus clustering on xCell signatures was performed 
in order to identify groups of samples with the same 

immune/stromal characteristics. Consensus clustering 
was performed using the R package ConsensusClus-
terPlus [95]. For estimating tumor purity, immune and 
stromal scores were determined based on proteomic 
data using the R package GSVA [87]. ssGSEA was uti-
lized to obtain pathway score based on proteomic data 
using the R package GSVA. A one-versus-all test was 
used to select cell types in different immune cluster, and 
a Wilcoxon rank-sum test was performed subsequently 
to find pathways differentially expressed between cold-
tumor- and hot-tumor-enriched subgroup. Additional 
file 18: Table S6 shows genes/proteins and pathways dif-
ferentially expressed based on RNA-seq and proteomic 
abundance.

Immunohistochemistry (IHC)
Formalin-fixed, paraffin-embedded tissue sections of 
10  µM thickness were stained in batches for detect-
ing CYP2J2, MLH1, PRKCB, TRAF2, PD-L1 in a central 
laboratory at the Zhongshan Hospital according to stand-
ard automated protocols. Deparaffinization and rehy-
dration were performed, followed by antigen retrieval 
and antibody staining. CYP2J2, MLH1, PRKCB, TRAF2, 
and PD-L1 IHC were performed using the Leica BOND-
MAX auto staining system (Roche). Rabbit monoclonal 
anti-CYP2J2 antibody (Proteintech Group, #13562-1-
AP), anti-MLH1 antibody (Proteintech Group, #11697-
1-AP), anti-PRKCB (Proteintech Group, #12919-1-AP), 
anti-TRAF2 (Proteintech Group, #26846-AP), and anti-
PD-L1 antibody (Abcam ab205921) were introduced, 
followed by detection with a Bond Polymer Refine Detec-
tion DS9800 (Bond). Slides were imaged using an OLYM-
PUS BX43 microscope (OLYMPUS) and processed using 
a ScanScope (Leica).

Functional experiments
Antibodies and reagents
Primary antibodies used in this study included GARS 
(Proteintech Group, Rosemont, USA, #15831-1-AP), 
AARS2(Proteintech Group, #22696-1-AP), TARS (Pro-
teintech Group, #67828-1-Ig), SARS (Proteintech Group, 
#15162-1-AP), p-4E-BP (Thr37/46, Cell Signaling Tech-
nology, Danvers, USA, #2855), 4E-BP (Cell Signaling 
Technology, #9644), p-S6K (Cell Signaling Technology, 
#9202), S6K (phospho T389 + T412, Abcam, Cambridge, 
UK, #ab60948), K-Gly, Actin (GenScript, New Jersey, 
USA, #A00702), Flag (Abmart, #M20008), Myc (Abmart, 
Shanghai, China, #M20003), PGK1(Wuhan Fine Biotech, 
Wuhan, China, #FNab06354), and PKM2(Cell Signaling 
Technology, #4053).

http://r-addict.com/2016/11/21/Optimal-Cutpoint-maxstat.html
http://r-addict.com/2016/11/21/Optimal-Cutpoint-maxstat.html
http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp


Page 33 of 39Xu et al. Journal of Hematology & Oncology           (2022) 15:76 	

Cell culture
Human T24 cells and 5637 cells were kindly provided by 
the Cell Bank of the Chinese Academy of Science (Shang-
hai, China). Human T24 cells were cultured in McCoy’s 
5a medium (Invitrogen) containing 10% fetal bovine 
serum (Invitrogen, Carlsbad, CA, USA), 100 units/mL 
penicillin (Invitrogen), and 100  μg/mL streptomycin 
(Invitrogen). The 5637 cells were cultured in RPMI-1640 
medium (Invitrogen) containing 10% fetal bovine serum 
(Invitrogen, Carlsbad, CA, USA), 100 ug/mL penicil-
lin (Invitrogen), and 100  μg/mL streptomycin (Invitro-
gen). The cells were incubated in a 5% CO2 atmosphere 
at 37  °C. Cell transfection was performed using Lipo-
fectamine 3000 (Invitrogen).

RNA interference
Synthetic oligos were used for siRNA-mediated silencing 
of GARS, and scrambled siRNA was used as a control. 
Cells were transfected with siRNAs using Lipofectamine 
3000 according to the manufacturer’s protocol. Knock-
down efficiency was verified by western blotting. The 
siRNA sequences were as follows: GARS, 5′-CTT​GAG​
ACC​AGA​AAC​TGC​A-3′.

Proliferation assay
Cell proliferation was assessed using a Cell Counting Kit-8 
(Dojindo Laboratories, Kumamoto, Japan). In brief, cells 
were seeded in a 96-well plate at a density of 4 × 103 cells 
per well and allowed to adhere. Cell Counting Kit-8 solu-
tion (10 μL) was added to each well, and the cells were 
cultured in 5% CO2 at 37 °C for 2 h. Cell proliferation was 
determined by measuring the absorbance at 450 nm.

In vivo xenograft studies
Four- to six-week-old BALB/c nude mice were obtained 
(Shanghai SLAC Laboratory Animal Co., Ltd., Shanghai, 
China) for in vivo xenografts. Control cells and T24/5637 
cell lines stably overexpressing GARS shRNA were sub-
cutaneously heterotransplanted into the left and right 
flanks of each mouse, respectively. For beta-alanine treat-
ment, 100  mg/kg beta-alanine (Cat no.  107959, Sigma, 
Inc.) was intraperitoneally injected into the abdomi-
nal cavities of the animals twice a week. The mice were 
maintained under the specified conditions. At the end 
of the experiment, the tumors were excised, weighed, 
and imaged. All procedures were performed with the 
approval of the Animal Care Committee of the Fudan 
University.

NMR measurement
Dried extracts were reconstituted in 570 μL of phosphate 
buffer (0.15  M, K2HPO4-NaH2PO4, pH 7.43) containing 

80% D2O (v/v) and TSP (0.2915  mM). The mixture was 
then centrifuged at 16,099g for 10 min at 4 °C. Next, 530 
μL of each supernatant was transferred into a standard 
5  mm NMR tube for analysis. All the one-dimensional 
1H NMR spectra were acquired at 298  K on a Bruker 
Advance III 600 MHz NMR spectrometer (600.13 MHz 
for proton frequency) equipped with a quaternary cryo-
genic inverse probe (Bruker Biospin, Germany) using 
the first increment of the gradient selected NOESY pulse 
sequence (NOESYGPPR1D). Then, 64 transients were 
collected into 32  k data points with a spectral width of 
20 ppm for each sample. The total relaxation delay time 
to obtain completely relaxed NMR spectra was 26 s. All 
NMR spectra were processed using the TOPSPIN soft-
ware package (version 3.6.0, Bruker Biospin, Germany). 
For 1H NMR spectra, an exponential window function 
was employed with a line broadening factor of 1 Hz and 
zero-filled to 128 K prior to Fourier transformation. Each 
spectrum was then phase- and baseline-corrected manu-
ally with the chemical shift referenced to TSP (δ 0.00). 
The spectral regions were then integrated into bins with 
a width of 0.002 ppm (1.2 Hz) using the AMIX software 
package (version 3.8.3, Bruker Biospin). The absolute 
concentration of metabolites was calculated using the 
known concentration of TSP.

PKM2 and PGK1 enzymatic activity assays
After transfection, cells were cultured for 48 h. Then, the 
cells were collected in a centrifuge tube and the super-
natant was discarded after centrifugation. Next, 1 mL of 
extracting solution was added to 5 × 106 cells, and the 
cells were destroyed using ultrasound (ice bath; 200  W; 
ultrasound 3 s per time; 10 s interval; repeated 30 times). 
After centrifugation at 8000g at 4  °C for 10  min, the 
supernatant was collected and placed on ice for meas-
urement. A pyruvate kinase assay kit (BC0540, Solarbio, 
China) was used to determine PKM2 enzymatic activity. 
The working solution was real-time-prepared according 
to manufactures’ protocol. To detect PGK1 enzymatic 
activity, a reaction buffer containing 50  mM Tris–HCl 
(pH 7.6), 8  mM MgCl2, 4  mM ATP, 0.2  mM NADH, 
12  mM 3-phosphoglycerate, and 8 U GAPDH at room 
temperature was used. An aliquot of 10 μL of the cell 
lysate was used for these assays. The change in absorb-
ance was measured at 340 nm wavelength.

Statistical analysis
Standard statistical tests were used to analyze the clini-
cal data, including but not limited to Student’s t test, Wil-
coxon rank-sum test, chi-square test, Fisher’s exact test, 
Kruskal–Wallis test, and log-rank test. For categorical 
variables versus categorical variables (including driver 
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gene mutations, chromosome 5p gain, gender, age-group, 
smoke status, nerve invasion, vascular invasion, metasta-
sis, hyperglycemia, hypertension, TNM stage, and histo-
logical type), Fisher’s exact test was used in a 2 × 2 table, 
otherwise chi-square test was used. The Wilcoxon rank-
sum test was used to examine whether genes were dif-
ferentially expressed between tumors (n = 157 samples) 
and MNUs (n = 75 samples), NMIBCs (n = 45 samples), 
and MIBCs (n = 71 samples), or patients with different 
mutation statuses and CNA of statuses. The Kruskal–
Wallis test was used to test whether genes were differ-
entially expressed among the three proteomic subtypes 
or other subgroups. A one-versus-all test was used to 
select cell types in different immune cluster. To account 
for multiple-testing, the P values were adjusted using the 
Benjamini–Hochberg FDR correction. Kaplan–Meier 
plots (log-rank test) were used to describe overall sur-
vival. Variables associated with overall survival and pro-
gression-free survival were identified using univariate 
Cox proportional hazards regression models. Significant 
factors in univariate analysis were further subjected to 
a multivariate Cox regression analysis in a forward LR 
manner. All the analyses of clinical data were performed 
in R (version 3.4.3). For functional experiments, three 
biological repeats were performed independently, and 
results were expressed as mean ± standard error of the 
mean (SEM). The statistical significance of differences 
was determined by two-way ANOVA. Statistical analy-
sis was performed using GraphPad Prism (version 5.01). 
The p values less than 0.05, 0.01, 0.001, and 0.0001 were 
marked with *, **, ***, and ****, respectively. All the statis-
tical analysis had been checked by two statisticians.
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Additional file 1. Fig. S1: Multi-omics landscape of UC samples. Related 
to Figure 1. (A) Clinical data of our cohort. (B) Left: Sequencing depths of 
WES for tumors tissues and MNU tissues. Right: All input reads in RNA-seq 
for tumors tissues and MNU tissues. (C) The four mutational signatures 
identified in TCGA cohort by Sigminer analysis. (D) VENN plot of signatures 
identified among different cohort. (E) Proteins identified in tumor tissues 
and MNU tissues. (F) Cumulative number of protein identifications. Blue 
presents MNU samples; red presents tumor tissues. (G) Dynamic ranges of 
identified protein abundances identified in tumor tissues and MNU  

tissues. (H) The numbers of proteins identified in MNU tissues (blue) and 
tumor tissues (red). (I) Correlated matrix of 233 sample proteomes (Spear-
man’s correlation coefficients). Red color indicates high correlation; blue 
color indicates low correlation. (J) Distribution of protein abundances in 
tumors and MNUs by density plot. A unimodal distribution (dip test) was 
observed. All samples passed proteomic quality control. (K) Number of 
phosphoproteins (left) and phosphosites identified in tumors and MNUs. 
(L) Quality control of mass spectrometry using tryptic digest of 293T cells. 
The top-left half of the panel represents the pairwise Spearman’s correla-
tion coefficients of samples and the bottom-right half of the panel depicts 
the pairwise scatter plots from sample comparison. (M) Number of genes 
identified in tumors and MNUs using RNA-seq. (N) The overlap of genes 
identified in the proteome, phosphoproteome and transcriptome. Top: 
MNU tissue, bottom: tumor tissue.

Additional file 2. Fig. S2: Impact of copy number alteration on mRNA 
and protein expression. Related to Figure 2. (A) Functional impacts of CNA 
on phosphoprotein. Top panel: positive and negative correlations were 
indicated by red and blue colors, respectively. Bottom panel: number of 
phosphoproteins that were significantly associated with a specific CNA. 
(B) Pathways enriched for respective specific cis-effects. (C) 10 CAGs and 
pathways they affected in TCGA cohort. (D) Arm-level CNAs in TCGA 
cohort and Beijing cohort. Red denotes amplification and blue denotes 
deletion. (E) Compared arm-level CNAs among different cohorts. (F) 
Genome-wide focal amplifications and deletions. Chromosomal locations 
of peaks of significantly recurring focal amplifications (red) and deletions 
(blue) were filtered by FDRs. Peaks were annotated with candidate driver 
oncogenes or tumor suppressors.

Additional file 3. Fig. S3: Impact of copy number alteration on mRNA 
and protein expression. Related to Figure 2. (A) Left: Kaplan–Meier curves 
for progression-free survival based on the chromosome 5p gain and WT 
groups. Right: Kaplan–Meier curves for progression-free survival based on 
the chromosome 7q gain and WT groups. The p value was calculated by 
log-rank test. 95% confidence interval was also presented. (B–C) Volcano 
plot showing the cis-effect genes on chromosome 5p (B) and 7q (C). The 
dots represent proteins; the triangles represent mRNA. The p values were 
calculated by Spearman’s correlation test. (D–E) The expression status 
of the SND1 gene in different cancer subtypes from the TCGA dataset 
using TIMER2 (@@@timer.cistrome.org/) (E) and protein abundance of 
SND1 in tumor and MNU groups (D). The p values were calculated by 
Wilcoxon rank-sum test. * P < .05; ** P < .01; *** P < .001. (F–G) Expression 
levels of the SND1 were analyzed by the main pathological stages of the 
BLCA TCGA cohort (F) and our cohort (G) Log2 (TPM + 1) was applied for 
log-scale (p value from Kruskal–Wallis test). (H)  the correlation between 
enriched cell cycle pathway and SND1 protein abundance. (I–J) Correla-
tion of SND1 protein abundance with MCM2 protein change (I) and the 
correlation between SND1 and STAT3 in TCGA BLCA cohort (J) (p value 
from Spearman’s correlation test). (K) Correlation between SND1 protein 
abundance and estimated STAT3 activity (p value from Spearman’s cor-
relation test). (L) Overall survival analyses of UC patients with high or low 
levels of STAT3 protein abundance (p value from log-rank test). (M) Cor-
relation of SND1 protein abundance with STAT3 phosphorylation change 
(phosphoprotein).

Additional file 4. Fig. S4: Integrative analyses of transcriptomic, prot-
eomic, and phosphoproteomic Data in UC Samples. Related to Figure 3. 
(A–C) Principal component analysis (PCA) of proteomic data (5,546 
proteins) (A), phosphoproteomics (1,672 phosphoproteins) (B), and RNA-
Seq (27,829 genes) (C) between tumors and MNUs. Red dots: tumors; blue 
dots: MNUs. (D–F) Proteins (D), genes (RNA-Seq) (E), and phosphoproteins 
(F) abundance differences between tumors or MNUs (p from Wilcoxon 
rank-sum test). (G) VENN plot of urothelial cancer-type-specific proteins 
identified between Zhou’s cohort and Fudan cohort. (H–J) Pathways 
enriched for differentially expressed genes (H), proteins (I), and phospho-
proteins (J) in tumors and MNUs. (K) Representative proteins from one of 
the four biological pathways and their association with prognosis (overall 
survival) (p value from log-rank test). (L–M) Proportions of urothelial 
bladder tumors with high, medium, or low staining, or not detected (ND) 
as reported by the Human Protein Atlas (HPA) (L) and tumor-cell specific 
immunohistochemistry (IHC) staining scores defined by the HPA (M). (N) 
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IHC images for PKN1 proteins from HPA (left) and their association with 
clinical outcomes (overall survival) in all patients (p value from log-rank 
test).

Additional file 5. Fig. S5: Proteogenomic analysis between NMIBC and 
MIBC. Related to Figure 4. (A–C) H&E-stained slides of low-grade NMIBC 
(A), high-grade NIMBC (B), and MIBC tissues (C). (D–E) PCA of RNA-Seq 
(27,752 genes) (D) and phosphoproteomics (2,014 phosphoproteins) (E) 
between NMIBC and MIBC. (F–G) Genes (RNA-Seq) (F) and proteins (G) 
abundance differences between NMIBC and MIBC (Wilcoxon rank-sum 
test). (H–J) Pathways enriched for differentially expressed proteins (H) 
genes (RNA-Seq) (I) and phosphoproteins (J) in NMIBC and MIBC. (K–L) 
Line plots and boxplots of proteins involved in the crucial pathways from 
low-grade NMIBC, high-grade MIBC to MIBC. (M–N) Left, heatmap of 
protein abundance among low-grade NMIBC, high-grade MIBC, and MIBC. 
Middle, prognostic risk scores (overall survival) of each protein. The middle 
red points indicate log2-based hazard ratio for each protein; endpoints 
represent lower or upper 95% confidence intervals. Right, biological func-
tion category of the proteins. (O) Volcano plot showing the correlation 
between enriched Gene Ontology biological processes and TRIO protein 
abundance. (P) Correlation between TRIO and RHOG in the TCGA BLCA 
cohort. (Q) Correlation between RHOG mRNA abundance and ROCK1 
mRNA abundance. The p values in (O)–(Q) were calculated by Spearman’s 
correlation test.

Additional file 6. Fig. S6: Proteomic subtypes of UC and signature 
proteins. Related to Figure 5. (A) Consensus matrices of identified clusters 
(K=3), top: Clusters based on proteomic analysis data; median: clusters 
based on RNA data; bottom: clusters based on phosphoproteomic data. 
(B) Forest plot for multivariate Cox regressions for papillary, stage, never 
invasion, vascular invasion, gender HBP, hyperglycemia, smoking, age, and 
proteomic subtype, with the reference variable for each covariate set to 
the best-survival subtype. The main effects are presented as hazard ratios 
with 95% confidence intervals. (C) Signature proteins of each proteomic 
subtype and their association with prognosis (overall survival) (p value 
from log-rank test). (D) Gene expression signature scores.    (Kruskal–Wallis 
test, p < 0.05). (E) Proteins that were differentially expressed in the three 
proteomic subtypes. (F) IHC profiling of proteomic subtype markers in UC. 
FFPE sections were stained for CYP2J2, MLH1 and PRKCB protein markers 
in UC tumor tissues. The scale bar indicates 100 μm.

Additional file 7. Fig. S7: Proteomic subtypes of UC and signature 
proteins. Related to Figure 5. (A) Distributions of main COSMIC signatures 
in the proteomic subtypes across 116 UC patients. Right: Heatmap of the 
comparison between different proteomic subtypes. (B) Association of 
mutational signatures with clinical features (Wilcoxon rank-sum test, p < 
0.05). (C) Evaluation of kinase activities by KSEA in tumors across the three 
proteomic subtypes. (D) Mutational hotspots of FGFR3 in this study. (E) 
Mutational hotspots of FGFR3 in TCGA cohort.

Additional file 8. Fig. S8: Immune cell infiltration in UC tumors. Related 
to Figure 6. (A) Comparison between RNA-seq and global proteomics for 
estimating immunity (right) and stromal cell (left) infiltration based on 43 
UC tumor samples. (B) Kaplan–Meier curves for progression-free survival 
of different immune clusters (p value from log-rank test). (C) Volcano plot 
showing the correlation between enrichment pathway and TRAF2 protein 
Abundance. (D) Scatter plot showing the correlation between the mRNA 
abundance change of TRAF2 and the mRNA abundance change of TNF. 
(E) Scatter plot showing the correlation between the mRNA abundance 
changes in TRAF2 and TNFRSF1B. (F) Correlation between average mRNA 
abundance and estimated NFKB1 activity change. (G) Scatter plot showing 
the correlation between the mRNA abundance changes in TRAF2 and 
CD274. (H) Correlation between TRAF2 mRNA abundance and CD274 
protein change changes in the TCGA BLCA cohort. (I) Scatter plot showing 
the correlated between the mRNA abundance change of TRAF2 and CD8 
enrichment score. (J) TRAF2 identified in patients with PD-L1-positive by 
IHC in Fudan cohort. The scale bar indicates 100 μm. (K) IHC of TRAF2 and 
PD-L1 in PD-L1-response and non-response. The scale bar indicates 100 
µm.

Additional file 9. Fig. S9: Clinical outcomes associated with proteomic 
and phosphoproteomic profiles. Related to Figure 7. (A) Clustering 

dendrogram of samples based on their Euclidean distance. All samples are 
located in the clusters and also passed the cutoff thresholds. (B) Clustering 
dendrogram of genes, with dissimilarities based on topological overlap, 
together with assigned module colors. (C) left: the scale-free fit index 
(y-axis) as a function of the soft-thresholding power (x-axis); right: mean 
connectivity (degree, y-axis) as a function of soft-thresholding power 
(x-axis). (D–E) Clinical features (Serum albumin value and urea value) 
associated with prognosis (overall survival) (p value from log-rank test). (F) 
Representative proteins from the blue module and their association with 
prognosis (overall survival) (p value from log-rank test). (G) IHC images for 
GARS, CAV1, PH4A2, PLOD1, FLNA, and PRKG1 proteins in HPA database. 
(H) The distribution of different histological variations. (I) Pathways were 
enriched in different histological variations, based on phosphoproteome 
(Wilcoxon rank-sum p < 0.05).

Additional file 10. Fig. S10: GARS promotes bladder cancer cell prolifera-
tion through non-canonical function. Related to Figure 8. (A)–(B) DNA 
synthesis. Scale bar=100 µm. (C)–(D) Cell cycle progression. (E)–(F) in T24 
and 5637 cell lines subjected to GARS-overexpressing or knocking down. 
Scale bar=100 µm.

Additional file 11. Fig. S11: GARS promotes bladder cancer cell prolifera-
tion through non-canonical function. Related to Figure 8. (A) Metabolite 
levels of tumor and normal tissues of bladder cancer, as detected by NMR. 
(B) Levels of PGK1 and PKM2 in both 5637 and T24 GARS-overexpressing 
cells. (C) The structural analogs of glycine. (D–G) The effects of beta-
alanine on DNA synthesis (D), cell cycle progression (E), cell apoptosis (F), 
and slowed down the cell proliferation (G), in both 5637 and T24 cells; 
Scale bar=100 µm.

Additional file 12. Fig. S12: Relationships among PD-L1 expression, PD-1 
expression, and TMB. (A) Correlation analysis between PD-L1 expres-
sion and TMB in proteomic data. (B) Correlation analysis between PD-L1 
expression and TMB in mRNA data. (C) Correlation analysis between PD-1 
expression and TMB in mRNA data. (D) Correlation analysis between the 
expression of PD-L1 and PD-1 in mRNA data. The p values (A)–(D) were 
calculated by Spearman’s correlation test.

Additional file 13. Table S1: Clinicopathologic information and multi-
omics data in UC cohort. Related to Figure 1, Additional file 1: Fig. S1. A. 
Clinical data of UC samples. B. The sheet contains information of muta-
tions identified by WES in the 116 UC. C. Average sequencing depth on 
target. D. Significantly mutated genes identified by MutSig. E. Genome 
signature analysis. F. RNA clean reads. G. Genes identified at protein level 
(unique peptide ≥2). H. RNA-protein pairs. I. Phosphosites identified in UC 
samples. J. HEK293T used for QC.

Additional file 14. Table S2: CNV information in UC cohort. Related to 
Figure 2, Additional file 2: Fig. S2. A. This sheet contains somatic copy 
number gains and the relevant genes. B. This sheet contains somatic copy 
number losses and the relevant genes. C. List of cancer-associated genes 
(CAG), see Methods “Defining cancer-associated genes (CAG).” D. Lists of 
significant positive cis-effects in CNA-Protein and CAN-mRNA of chromo-
some 5p. E. Lists of significant positive cis-effects in CNA-Protein and 
CAN-mRNA of chromosome 7q.

Additional file 15. Table S3: Differentially expressed mRNAs, proteins, 
and phosphoproteins between tumors and MNUs. Related to Figure 3, 
Additional file 3: Fig. S3. A. Lists of mRNAs, proteins, and phosphoproteins 
used for principal component analysis (PCA). B. Lists of differentially 
expressed mRNAs, proteins and phosphoproteins (Wilcoxon rank-sum 
test, FDR < 0.01, Tumors/MNUs ratio > 2 or < 1/2) in tumors and MNUs. C. 
A list of genes with significant patient survival difference on both protein 
and mRNA level. D. A list of candidate target genes of UC.

Additional file 16. Table S4: Differentially expressed proteins between 
MIBCs and NMIBCs. Related to Figure 4, Additional file 4: Fig. S4. A. Lists of 
differentially expressed proteins in MIBCs and NMIBCs. B. Lists of differen-
tially expressed proteins in chromosome 5p gain compared with WT. C. 
The list of 9 significant positive cis-effects on chromosome 5p.

Additional file 17. Table S5: Multi-omics characteristics of proteomic 
subtypes in 116 UC samples. Related to Figure 5, Additional file 5: Fig. 
S5. A. Information of immune clusters. B. Genes upregulated in each 
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proteomic subtype. C. Lists of upregulated proteins in one of the three 
proteomic subtypes. D. Contributions of 30 COSMIC signatures in 113 UC 
patients. E. Genes of each Signatures used in this figure. F. Survival analysis 
of selected factors.

Additional file 18. Table S6: Differentially expressed among immune 
clusters. Related to Figure 6, Additional file 6: Fig. S6. A. Data analysis by 
xCell. B. Information of Immune cluster. C. Data analysis by estimate. D. 
Peaks correlated with immune score. E. Expression of immune checkpoint. 
F. Pathways upregulated in each immune cluster. G. Targets of NFKB1. H. 
Information of patients received PD-1 immunotherapy. I. TRAF2 identified 
in patients.

Additional file 19. Table S7: Differentially expressed among immune 
clusters. Related to Figure 7, Additional file 7: Fig. S7. A. Gene analysis by 
WGCNA. B. Pathways upregulated in modules. C. Genes were screened 
from the MEblue module. D. Genes upregulated in each histologic group. 
E. Pathways upregulated in each histologic group.

Additional file 20. Table S8: Modification identified in PGK1 and PKM2. 
Related to Figure 8. A. Modification identified in PGK1 and PKM2.
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