
Xu et al. Journal of Hematology & Oncology           (2022) 15:87  
https://doi.org/10.1186/s13045-022-01307-2

REVIEW

Reshaping the systemic tumor immune 
environment (STIE) and tumor immune 
microenvironment (TIME) to enhance 
immunotherapy efficacy in solid tumors
Liangliang Xu1†, Chang Zou2,3,4†, Shanshan Zhang5†, Timothy Shun Man Chu6,7, Yan Zhang1, Weiwei Chen8, 
Caining Zhao8, Li Yang1, Zhiyuan Xu1, Shaowei Dong2, Hao Yu10, Bo Li11, Xinyuan Guan1,8,9*, Yuzhu Hou12* and 
Feng‑Ming Kong1,8* 

Abstract 

The development of combination immunotherapy based on the mediation of regulatory mechanisms of the tumor 
immune microenvironment (TIME) is promising. However, a deep understanding of tumor immunology must involve 
the systemic tumor immune environment (STIE) which was merely illustrated previously. Here, we aim to review 
recent advances in single-cell transcriptomics and spatial transcriptomics for the studies of STIE, TIME, and their 
interactions, which may reveal heterogeneity in immunotherapy responses as well as the dynamic changes essen‑
tial for the treatment effect. We review the evidence from preclinical and clinical studies related to TIME, STIE, and 
their significance on overall survival, through different immunomodulatory pathways, such as metabolic and neuro-
immunological pathways. We also evaluate the significance of the STIE, TIME, and their interactions as well as changes 
after local radiotherapy and systemic immunotherapy or combined immunotherapy. We focus our review on the 
evidence of lung cancer, hepatocellular carcinoma, and nasopharyngeal carcinoma, aiming to reshape STIE and TIME 
to enhance immunotherapy efficacy.
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Overview of the current status and advanced 
technology in immunotherapy for solid tumors
Immunotherapy is a type of cancer treatment options 
that boosts the patient’s own immune system to elimi-
nate cancer cells which has changed the landscape in 
oncologic care and clinical trials in many kinds of solid 
tumors. There were over 70 FDA-approved immuno-
therapy drugs up to now at April 2022. Currently, more 
than 3000 immunotherapy-related clinical trials cover-
ing more than 50 types of cancers have been registered 
around the world (https://​clini​caltr​ials.​gov/).

Immunotherapy mainly includes cancer vaccines ther-
apy, oncolytic virus therapy, dendritic cell (DC) therapy, 
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adoptive cell therapy, antibody–drug conjugates (ADCs), 
and immune checkpoint inhibitors (ICIs). Among them, 
ICIs by using antibodies to programmed cell death pro-
tein 1 (PD-1) and programmed death ligand 1 (PD-L1) 
are the main and most successful immunotherapy can-
didates thus far [1, 2]. PD-1 is induced on T cells fol-
lowing TCR signaling activation and leads to impaired 
T cell function and to immune escape upon ligation to 
its ligand PD-L1. PD-1 inhibitor immunotherapy blocks 
the interaction between PD-L1 on the surface of tumor 
cells or antigen-presenting cells and PD-1 on the surface 
of CD8+ T cells. It reactivates the tumor-killing abil-
ity of CD8+ T cells, thereby exerting anti-tumor effects. 
The PD-L1 and PD-L2 are the two ligands for PD-1. The 
PD-L1 inhibitor only blocks the binding of PD-1/PD-L1, 
while PD-1 inhibitor blocks the bindings of both PD-1/
PD-L1 and PD-1/PD-L2 at the same time [3]. Meanwhile, 
PD-L1 can also bind to other receptors like B7-1 (CD80) 
[4]. Inhibition of PD-1/PD-L1 binding reactivates the 
tumor-killing ability of CD8+ T cells, thereby exerts anti-
tumor effects. Although some reported that PD-1 inhibi-
tors may have better efficacy than PD-L1 inhibitors and 
a higher incidence of pneumonitis that PD-L1 inhibitors 
[5], there is no strong evidence showing the superiority of 
one over the other. We thus elect PD-1 inhibitor as repre-
sentative of immunotherapy for the following review.

Currently in the clinic, the use of the biomarker-guided 
PD-1 inhibitor immunotherapy is mainly guided by the 
PD-1/PD-L1 expression level, tumor mutation burden 
(TMB), and tumor microsatellite instability (MSI) [6, 7]. 
In advanced non-small cell lung cancer (NSCLC), PD-1 
inhibitor immunotherapy increased the 5-year survival 
rate from less than 5% to around 16% [8, 9]. For stage 
IV NSCLC patients with PD-L1 expression ≥ 50%, the 
5-year survival rate reached 31.9% [8, 9]. In advanced 
hepatocellular carcinoma (HCC) without knowledge 
of PD-L1 expression levels, the median survival time of 
patients was less than 1  year, and the median survival 
time with PD-1 inhibitor immunotherapy alone reached 
15.6 months [10, 11]. Among Chinese patients adminis-
tered with PD-L1 inhibitors combined with VEGF inhibi-
tors, the median survival time was up to 24.0 months [12, 
13]. In advanced nasopharyngeal carcinoma (NPC), the 
progression-free survival (PFS) of PD-1 inhibitor immu-
notherapy alone was 4.7  months and the 6-month PFS 
rate was 50% [14], while PD-1 inhibitors combined with 
chemotherapy achieved an objective effective rate of up 
to 91%, a disease control rate as high as 100%, and an 86% 
6-month PFS [15]. Overall, there are significant successes 
in clinical practice in immune checkpoint inhibitors 
in many other solid tumors in addition to the above-
mentioned cancers [16–18]. Tumor immunotherapy 
strategies based on immune checkpoint inhibitors and 

immune cell therapy have become the frontier of oncol-
ogy research. However, the overall pan-cancer response 
rate of PD-1 inhibitor alone was only 20% [19], while 
combination with radiotherapy increased the response 
rate to 40% [19]. The underlying reasons for such a low 
response rate are poorly understood.

In the past, tumor immunology research mainly stud-
ied the genomic/transcriptomic profile at the cell popula-
tion level or detected the expression of a few molecules 
in tumor tissue. However, these strategies cannot fully 
describe the functions of various cell types or charac-
terize the changes involved in the immune processes of 
malignant tumors, largely due to the high heterogeneity, 
complexity, and plasticity of the tumor immune microen-
vironment (TIME).

One must be kept in mind that cancer progression and 
their responses to treatment are also directly influenced 
by systemic tumor immune environment (STIE), i.e., the 
global immunity of the host, the macro-environment of 
the host anti-tumor immunity. STIE, in coordination 
with TIME, determines the host responses to the immu-
notherapy. Hiam-Galvez et  al. [20] (recently published 
in Nature Review Cancer) described such systemic can-
cer immunity focusing on the immune cell traffics in the 
STIE, connecting the STIE with lymphatic organs, largely 
based on the data from the mouse models. This review 
aims to illustrate the orchestrated effect of the TIME and 
STIE, through the use of the modern technologies such 
as the single-cell technology and spatial transcriptomics, 
in the context of patient and tumor as a whole, with an 
emphasis on the major challenges facing cancer immu-
notherapy. Additionally, it further assesses the immune 
modulating effects of cancer local radiotherapy on sys-
temic therapy, to explore strategies to reshape TIME and 
STIE for improved efficacy of tumor immunotherapy.

The tumor microenvironment (TME), tumor 
immune microenvironment (TIME), and systemic 
tumor immune environment (STIE)
Solid tumor is a highly complex tissue containing highly 
heterogeneous cancer cells that differ in compositions 
and evolutionary states derived from different upstream 
mutations and the tumor microenvironment (TME) 
formed by immune cells, stromal cells, blood/lymphatic 
vessels, nerve terminals, and extracellular matrix (ECM) 
which contains various signal molecules and acts as 
immune modulating microenvironment that continu-
ously reshapes the local immunity. The composition of 
TME is a key determinant of tumor–host interaction. 
Tumor immune microenvironment (TIME), compos-
iting different cell groups of the immune system and 
their interactions in the TME niche, has been known for 
its key role on the processes of carcinogenesis, cancer 
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progression, and responses to the treatments [21]. TIME 
can be divided into infiltrated–excluded (“Cold tumors”) 
in which CD8+ T cells were excluded from the tumor 
center, and infiltrated–inflamed (“Hot tumors”) in which 
an infiltrated–inflamed TIME was observed, as demon-
strated by the increased expression of PD-L1 in tumors 
and highly activated CD8+ T cells expressing GRZB, IFN-
γ, as well as the presence of infiltrated–tertiary lymphoid 
structures (TLSs) that are like lymph nodes, containing 
B cells, dendritic cells, and Treg cells [21]. “Hot tumors” 
have more specific molecular markers on the surface that 
can be recognized and attacked by T cells that can trigger 
the anti-tumor immune responses. PD-1/PD-L1 inhibi-
tors increase the interaction between conventional den-
dritic cells (cDCs) and naive T cells in the draining lymph 
node and co-stimulated with CD28, facilitating the initia-
tion and rapid expansion of new T cell clones with new 
antigen specificities [22, 23]. Moreover, PD-1/PD-L1 
inhibitors also prompt the reproduction of existing T cell 

clones in circulation. These expanding peripheral T cells 
eventually infiltrate the tumor in the TIME and express 
markers of antigen-specific activation and display func-
tional cytotoxicity [20–23]. In addition, CD40 agonism 
can be used to accomplish productive de novo immune 
responses. It can actuate cDC activation in the presence 
of resistance to checkpoint blockade and trigger these 
new T cell responses to replace exhausted intratumoral 
clones [20, 21]. Cancer cells with inclusion of a small pro-
portion of cancer stem cell (CSC) interact with TIME 
immune cells (e.g., macrophages, MDSCs; DCs; NK 
cells; T cells; B cells), stromal cells (e.g., fibroblasts and 
cancer-associated fibroblasts) and the ECM within TME 
and result in immune activation or immunosuppression 
effects, thereby affecting the proliferation or metastasis 
of tumor cells [24].

STIE, primarily controlled by the circulating blood and 
lymphatic vessels, consisting of the immune modulating 
molecules and immune cells (Fig. 1), plays an imperative 

Fig. 1  STIE and TIME relationship. The anatomic and interactive relationship between TIME and STIE as well as key components of STIE are shown. 
STIE circulating in the blood and lymphatic vessels are in close contact with, and directly provide cell and molecular components to the tumor 
extracellular matrix which can be considered as part of TIME. The major cell and immune regulator components of STIE and TIME may vary 
with cancer type, examples of non-small cell lung cancer (NSCLC), hepatocellular carcinoma (HCC), and nasopharyngeal carcinoma (NPC) are 
summarized in Table 1. CC, cancer cell; CSC, cancer stem cell; Mac, Macrophage; DC, Dendritic cell; MDSC, myeloid-derived suppressor cells; NK, 
natural killer cells; IDO, Indoleamine 2,3-dioxygenase; Kyn, kynurenine; Trp, tryptophan
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role in communication between the primary tumor site 
to the distant organs and the host immune organs such 
as bone marrow and lymph nodes [20]. The functional 
immune modulators include proteins, cytokines, and 
metabolites, while the immune cells comprise myeloid 
cell lineages (neutrophils, monocytes, megakaryocytes, 
platelets, basophils, eosinophils) and lymphoid cell line-
ages (T cells, B cells/plasma cells, and NK cells).

There are extensive interactions between TIME and 
STIE. STIE and TIME are closely related to each other 
and integrated through capillary vessels and lymphatic 
drainage system in the tumor. The circulation of lym-
phatic vessels and blood vessels, which carry immune 
modulating factors and immune functional cells, is the 
direct link between the TIME and STIE. Tumors can 
invade through the blood or lymphatic vessels with the 
help of immune cells from STIE, and after the infiltration 
of tumor into the blood or lymphatic vessels, immune 
cells within the STIE entered the TIME and promoted 
the metastasis of tumor cells. For example, monocytes 
derived from the peripheral blood (STIE) could enter 
the tumor tissue and differentiate into macrophages [25]. 
Preclinical data from various human and mouse cancer 
models showed that cancers disrupted the hematopoiesis 
which subsequently restricted the expansion of immature 
neutrophils and monocytes in the STIE. Then, this crip-
ple STIE hinders the transport of immune cells to TIME 
sites which contribute to local immunosuppression [20]. 
In addition to the commonly studied cellular components 

of TIME (Fig.  1), immune modulating molecules like 
TGF-β1, IDO, and Artemin in the ECM have also been 
considered as important parts of STIE in local tumor, and 
to play critical roles in cancer development and cancer 
immunity [26–28]. Many cell components of the TIME 
are up- or down-regulated (comparison with adjacent 
normal tissue), while many of the cell components and 
immune regulators in STIE can be higher or lower than 
that of the primary tumor, or non-cancer donors. Simi-
larities and variations are also observed from one pri-
mary tumor to another, as examples in NSCLC, HCC, 
and NPC (Table  1). In general, the exhausted T cells 
increased in the TIME and STIE of tumor patients.

The compositions of STIE and TIME are very complex 
and involve various pathways and mechanisms and vary 
with the primary tumor types [29–32, 41–51, 56–60] 
(Fig. 1 and Table 1). Majority of cell and molecular com-
ponents in the TIME are also present in STIE, at a level 
similar, higher, or lower relative to TIME. One has to 
note that the research on cellular molecular level of the 
STIE is very limited at this time, in particular comparison 
with the TIME.

The efficacy of immunotherapy relies heavily on the 
status of STIE and TIME. Immunotherapy augments the 
anti-tumor immunity in the STIE and TIME and becomes 
a new strategy for tumor treatment that has brought fun-
damental changes in the fields of cancer research and 
cancer care. To summarize the interactive roles of STIE 
and TIME and clarify their impacts on tumor progression 

Table 1  Major immune components of STIE and TIME

↑, Upregulation; ↓, Downregulation; -, symbol No significant change in the cited literature studies; ↑, ↓ and - reflected the changes in tumor tissue or cancer patients 
compared with adjacent normal tissue or non-cancer donors; *: Compared with tumor tissue; T T cells, TCM central memory T cell, NK natural killer, NKT natural killer T 
cell, DC dendritic cell, REF reference. NSLC non-small cell lung cancer, HCC hepatocellular carcinoma, and NPC nasopharyngeal cancer are shown as examples

Cancer
type

STIE TIME REF

Cell Immune regulator Cell Immune regulator

NSCLC ↑: CD8+ GranB+T, Naïve 
CD4+, CD4+NKT, Ter cell, NK, 
Cytolytic CD16+NK, CD14+ 
monocyte, basophil
-: Neutrophil, CD16+ mono‑
cyte
↓: CD8+PD-1+T, CD8+T CM, 
Treg, CD1c+DC, Macrophage, 
Eosinophil, Mast cell

↑: TGF-β1, IDO, Artemin, PD-1, 
PD-L1, CTLA-4, GITR, IL-17
↓: BMI1

↑: CD8+PD-1+ T, CD8+ T CM, 
Treg, Infiltrated CXCR3+NK, 
CD1c+DC
-: Naïve CD4+, Macrophage, 
CD14+monocyte, Neutrophil, 
Eosinophil
↓: CD8+ GranB+T, 
CD16+monocyte, NK, 
CD4+NKT, Cytolytic CD16+NK, 
Basophil, Mast cell

↑: TGF-β1, CTLA4, CD11c, 
CD14, CD39, ICOS, 41BB, IL-6, 
PPARγ
↓: IL-8, IL-1β, IFN-γ, Granzyme 
B, CD57, CD86, CD206

[29–40] [29]*

HCC ↑: Treg, MDSC
↓: CD8+ T, CD4+ T

↑: PD-L1, IL-6, LAYN
↓: PD-1, CTLA4, IFN-γ, LAG3, 
TIM3, PTPRO

↑: CD8+T, CD4+T, Treg, B cell, 
Monocyte, DC, Kupffer cell, 
Neutrophil
↓: NK, NKT

↑: PD-1, PD-L1, CTLA4, TIM3, 
LAG3, IFN-γ, IL-10, IgA
↓: CCL4, CCL14

[41–55]

NPC ↑: NK, PD-1+ NK
-: Treg
↓: CD8+T, CD4+T, B cell

↑: IL-2, IL-10, IL-18, MMP-9, 
CR1, IgM

↑: CD8+ T, Treg, B cell, 
PD-1+CXCR5−CD4+ Th-
CXCL13,
CD19+ B cell
↓: NK

↑: PD-1, FOXP3, LAG3, 
HAVCR2, IFN-γ, IL2RA, IL-18, 
IL-21, CCL19, CCL20, CXCL10, 
CXCL13

[56–65]
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and therapeutic efficacy, we elected to address the follow-
ing challenges associated with PD-1 inhibitor treatment: 
(1) an overall low response rate and the heterogeneity of 
therapeutic efficacy of immunotherapy, (2) the communi-
cations between STIE and TIME that establish the envi-
ronment for cancer metastasis (e.g., brain metastasis), 
(3) hyperprogressive disease, and (4) treatment-related 
adverse effects. Additionally, we will take snapshot of the 
accumulating evidence of the changes of TIME and STIE 
induced by local radiation therapy (RT) and systemic ICI 
therapy, to explore the reshaping strategies which may 
provide strategies to improve the efficacy of immuno-
therapy by modulating TIME and STIE.

STIE and TIME on the heterogeneity 
of immunotherapy efficacy
STIE on immunotherapy efficacy
The significant impact of STIE on the cancer immuno-
therapy efficacy was recently comprehensively empha-
sized by a study from Stanford by Spitzer, demonstrating 
the key role of STIE on cancer immunotherapy [20]. The 
investigators performed an organism-wide study in 
genetically engineered cancer models using mass cytom-
etry and analyzed immune responses in several tissues 
after immunotherapy and developed intuitive models to 
visualize single-cell omics data with statistical inference. 
They reported that: (1) systemic immune activation was 
evident shortly after effective therapy was administered; 
(2) during tumor rejection/eradication, only systemic 
peripheral immune cells sustained their proliferation, (3) 
an emergent population of peripheral CD4+ T cells were 
significantly expanded in patients responding to immu-
notherapy. This work emphasized the critical impact of 
systemic immune responses that drives tumor regression. 
Recently, a comprehensive review summarized responses 
of STIE immune cells to ICI treatment [20] demonstrated 
the critical role of systemic immunity (equivalent to our 
STIE) for effective natural and therapeutically induced 
anti-tumor immune responses, with most of the litera-
ture from studies of mouse models. In clinic, reduction 
in circulating lymphocytes, i.e., lymphopenia, an impor-
tant change in cell component of STIE, has been widely 
observed and recognized to impact the tumor control 
and the therapeutic efficacy of various cancers such as 
lung cancer, breast cancer, pancreatic cancer, melanoma, 
and sarcoma [66]. In addition, it has been reported that 
high levels of lymphocytes and low neutrophil-to-lym-
phocyte ratio (NLR) are associated with better survival 
of lung cancer patients [67]. In patients with liver cancer 
receiving immunotherapy, it was noted that those who 
did not respond to immunotherapy had higher CD4+ T 
cells and Th17 cells and lower CD8+ T cells [68]. Viral 
carcinogenesis-associated HCC and NPC are mainly 

caused by chronic hepatitis B virus (HBV) and Epstein–
Barr virus (EBV), respectively. NPC, an endemic disease 
usually found in Southeast Asia and North Africa and 
etiologically linked to Epstein–Barr virus infection, rep-
resents a classic ’inflammatory tumor’ that exhibits dense 
lymphocytes infiltration and high expression of PD-L1 
[69]. Stromal cells are in close proximity to and in con-
tact with NPC cells, which could make NPC microenvi-
ronment highly heterogeneous and immunosuppressive, 
preventing tumor cells from being infiltrated by drugs 
and immune attack, and promote tumor progression. 
Therefore, the NPC is a heavily immune cell infiltrated 
cancer with a low degree of differentiation. The high infil-
tration status of macrophage, plasmacytoid DC (pDC), 
DC1, NK cell and plasma cells were associated with good 
prognosis of NPC. There is a dynamic status of T cells 
from activation to exhaustion in TIME in patients with 
NPC. The exhausted T cells exhibit features associated 
with tertiary lymphoid structures (TLS) formation via 
B cell recruitment and increased abundance of suppres-
sive regulatory T cell (Treg) in the microenvironment, 
where myeloid recruitment is an NPC-specific event. In 
addition, T cells entered the TIME and upregulated the 
activity of IFN-α and IFN-γ response pathways in mac-
rophages, suggesting a potential anti-tumor capacity of 
these macrophages in NPC [56, 69, 70]. In summary, the 
composition of TIME explained the mechanism of PD-1 
inhibitor immunotherapy efficacy.

PD‑L1 in STIE on immunotherapy efficacy
The circulating immune regulatory factors of the STIE 
have also been studied as biomarkers in predicting the 
treatment outcome in clinic. Such effect has been fre-
quently demonstrated in clinical studies. For example, 
the expression status of PD-1/PD-L1, TGF-β1, and IDO1 
was different among individuals even with the same type 
of cancer. A study of 107 patients with NSCLC revealed 
that PD-L1 has an observed intratumoral heterogeneity 
in 78% and inter-tumor heterogeneity in 53% of cases 
[71]. Plasma soluble PD-L1 (sPD-L1) is another key STIE 
factor which is elevated in a variety of malignancies and 
has clinical significance [33]. Okuma et al. [33] reported 
that majority (75%) of patients with high plasma sPD-L1 
levels experienced disease progression in NSCLC treated 
with the PD-1 inhibitor nivolumab. The time to treat-
ment failure and overall survival (OS) were significantly 
worse in those with higher plasma sPD-L1 levels when 
compared to those with lower levels. Similarly, Maz-
zaschi et  al. found that high levels of sPD-L1 negatively 
affected progression-free survival (PFS) and OS in 109 
NSCLC patients treated with ICI [72]. Finkelmeier et al. 
[73] also found that plasma sPD-L1 levels were positively 
correlated with liver cirrhosis and cancer stage related 
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in HCC patients who were exposed to PD-1 inhibitor 
immunotherapy. Indeed, our recent meta-analysis of 8 
studies (710 patients) demonstrated that plasma sPD-L1 
levels were associated with the clinical outcome of tumor 
patients and might serve as a predicting biomarker of OS 
in NSCLC patients given with ICI-based therapies [74].

TGF‑β1 in STIE on TIME and tumor response to PD‑1 
inhibitor immunotherapy and radiotherapy
TGF-β1 is a known immune suppressor which plays a key 
role in immune modulation. Figure 2 shows the multiple 
roles of TGF-β1 on TIME and STIE. It inhibits antigen-
presenting cells and immune effector cells, like CD8+ T 
cells, and upregulates Treg cells. Most cancer cells have 
inactivated their epithelial anti-proliferative response and 
benefit from TGF-β1 by augmenting their gene expres-
sion, immunosuppressive cytokine release, and epithe-
lial plasticity [75]. There is also upregulation of TGF-β1 
expression and autocrine signaling in cancers [76, 77]. 
TGF-β1 enhances the invasive ability, stem cell-like char-
acteristics, and therapeutic resistance of cancer cells 
[78]. In TIME, TGF-β1 produced by cancer cells, stro-
mal fibroblasts, and other cells further promotes cancer 
progression by shaping tumor structure and inhibiting 

the activity of anti-tumor immune responses, thereby 
creating an immunosuppressive microenvironment that 
prevents or weakens the efficacy of anticancer immu-
notherapy [78]. As a promoter for carcinogenesis and 
tumor progression, the function of TGF-β1 varies with 
the tumor types and the stages of tumor development 
and the background genetic alterations. In early-stage 
tumors, TGF-β1 induces apoptosis and restrains the 
proliferation of cancer cells. Paradoxically, it has tumor-
promoting effects in advanced cancer [79]. In addition, 
TGF-β1 drives tumor stem cell proliferation and contrib-
utes to treatment resistance [80]. A study by using mouse 
model with immune-cold phenotype has demonstrated 
that the therapeutic combination of TGF-β1 blocking 
and PD-L1 inhibitor therapy reduced TGF-β1 signal 
transmission in stromal cells, increased the probability 
of T cells penetrating into tumor center, and stimulated 
strong anti-tumor immunity and mediated tumor regres-
sion [79].

Our group has previously demonstrated that TGF-
β1 in STIE might be a biomarker for tumor progres-
sion and survival in lung cancer [34, 81, 82]. Comparing 
the expression levels of TGF-β1 in plasma of healthy 
donors and patients with lung cancer, 50% of lung cancer 

Fig. 2  The functions of immune regulator TGF-β1 on TIME and STIE. TGF-β1 has dual roles in the TIME and STIE. TGF-β1 has multiple impacts on 
different kinds of immune cells. The detail functions of TGF-β1 are shown by different arrows (Solid arrow: stimulation, Dashed arrow: possible 
stimulation, Vertical-horizontal line: suppression). TGF-β1: Transforming growth factor-beta1; TIME: Tumor Immune Microenvironment; STIE: Systemic 
Tumor Immune Environment
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patients had an increased level of TGF-β1 [34], which 
decreases sharply after radiotherapy [81]. TGF-β1 may 
be used to predict the long-term outcome of lung can-
cer patients receiving radiotherapy. Monitoring TGF-β1 
level may help predict the persistence and recurrence of 
the disease after treatment [82]. Meanwhile, we also have 
demonstrated and validated in patients with NSCLC that 
the addition of IL-8 and TGF-β1 improved model accu-
racy for radiation-induced pulmonary toxicity (RILT) 
[83, 84]. In addition, in 166 inoperable stage I–III NSCLC 
patients who received chest radiotherapy (≥ 55 Gy) with 
or without chemotherapy, 14 functionalities of 11 genes 
in the TGF-β1 pathway were detected via genetic varia-
tions of single-nucleotide polymorphisms (SNPs). Four 
SNPs (SMAD3: rs12102171, BMP2: rs235756, SMAD9: 
rs7333607, and SMAD4: rs12456284) were found to 
be significantly associated with the survival of NSCLC 
patients after radiotherapy [85]. Moreover, the level of 
circulating TGF-β1 was higher in lung cancer patients 
and persistent of high level was correlated with poorer 
prognosis, further suggesting STIE TGF-β1 as an immu-
nosuppressive biomarker [86].

IDO in STIE on TIME and tumor response to PD‑1 inhibitor 
immunotherapy
IDO, a well-known immunosuppressive immune check-
point molecule, catalyzes the breakdown of tryptophan 
(Trp) to kynurenine (Kyn), and its expression is also 
heterogeneous in STIE [87]. Various IDO inhibitors 
have been attempted in clinical trials for cancer immu-
notherapy [88]. It has been shown that IDO1+ mac-
rophage population is enriched in patients with NSCLC 
progression [89]. Figure  3 shows the multiple roles of 
IDO on TIME and STIE. Markers of IDO activity were 
reported as predictors of treatment outcomes for NSCLC 
patients. Botticelli et al. found that higher IDO activity in 
circulating blood revealed the resistance to PD-1 inhibi-
tor immunotherapy in lung cancer which suggested the 
potential benefit of PD-1 inhibitor immunotherapy com-
bined with IDO inhibitors in patients with higher IDO 
[37]. We recently found that among 116 NSCLC patients, 
changes in IDO metabolites levels after treatment pre-
dicted treatment outcomes [90]: (1) Baseline IDO activity 
was predictive of OS, and higher IDO activity was associ-
ated with a higher risk of distant metastasis and shorter 
survival time; (2) the ratio of kynurenine after/before 
radiotherapy could be used as biomarker for immune sta-
tus during radiotherapy. Measurements of these immu-
nomodulatory metabolites could predict OS in patients 
with NSCLC [90, 91]. In early NSCLC patients receiv-
ing definite radiotherapy, elevated IDO activity was 
associated with poor survival outcomes [90]. Accord-
ing to the IDO levels, the immunosuppressive effects of 

hypo-fractionated stereotactic body radiotherapy (SBRT) 
were lower than that of three-dimensional conformal 
radiation therapy (3D-CRT) [91]. These clinical data are 
examples that demonstrate the predictive and prognostic 
potential of STIE immunomodulatory factors in terms of 
patient and treatment outcomes.

Like TGF-β1, the IDO signaling pathway is upregu-
lated in patients with progressive disease. Bivona et  al. 
[89] compiled a list of 49 clinical biopsy samples from 
30 NSCLC patients before and after targeted therapy. 
Patients with responsive disease showed alveolar regen-
eration cell signals, suggesting treatment-induced trans-
formations of the original cell state. Patients with disease 
progression have upregulated IDO signaling pathways. 
Further studies have found that the failure of combina-
tion immunotherapy with IDO inhibitors and PD-1 
inhibitors may be due to tumor immune microenviron-
ment status being ignored [89]. A study showed that, 
under the background of anti-CTLA-4 immunotherapy, 
host-derived IDO can inhibit the infiltration and accu-
mulation of tumor-reactive T cells in B16 melanoma 
tumors and weaken the anti-tumor efficacy. Growth of 
B16 melanoma was considerably delayed compared to 
wild-type mice, and overall survival rate was improved in 
IDO knockout mice treated with anti-CTLA-4. IDO defi-
ciency also has synergistic effects with immunotherapy 
targeting PD-1/PD-L1 and glucocorticoid-induced tumor 
necrosis factor receptor. Furthermore, the experimen-
tal results showed that the overexpressed IDO tumors 
were resistant to CTLA-4 treatment, but not to CTLA-4/
indoximod (IDO inhibitor) combination treatment [92]. 
There were also reports showing circulating IDO level 
correlations with overall survival, progression-free sur-
vival, and distant metastasis of patients with breast 
cancer, lung cancer, melanoma, and glioblastoma [90, 
91, 93, 94]. These discoveries are informative and may 
facilitate the design of personalized treatment plans of 
immunotherapy.

Artemin in STIE on TIME and tumor response to PD‑1 
inhibitor immunotherapy
Artemin is a  neurotrophic factor  in the  glial cell 
line-derived neurotrophic factor (GDNF) family of 
ligands  within the  TGF-β superfamily of signaling mol-
ecules.  Artemin is also involved in the regulation of 
the tumor progression and tumor responses to cancer 
therapies, including immunotherapy and radiotherapy. 
The Artemin receptor is GDNF family receptor alpha-3 
(GFRα3) which in itself cannot transmit signals to the cell, 
but passes signals when binding to Artemin to recruit 
the co-receptor RET and subsequently enters the cell 
through RET tyrosine kinase activity [95]. In hepatocellu-
lar carcinoma, Artemin inhibits tumor cell apoptosis and 
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promotes its migration by upregulating the expression of 
TROIBP and ITGB5 [35]. Tumor-inducible, erythroblast-
like cells (Ter-cells) with Ter-119+CD45−CD71+ mark-
ers deriving from megakaryocyte–erythroid progenitor 
cells produces Artemin in the spleen and leads high level 
of Artemin in the blood [35]. Studies have shown that 
Artemin enhances the resistance of lung cancer cells 
to radiotherapy through the TWIST1-BCL2 pathway 
[96], suggesting that Ter cells may inhibit the therapeu-
tic effects of radiotherapy through Artemin. Our group 
found that radiotherapy significantly reduced the number 
of tumor-induced Ter cells in the spleen of tumor-bear-
ing mice and the peripheral blood of cancer patients [36]. 
In addition, in cancer patients and tumor-bearing mice, 

radiotherapy reduced the level of Artemin in serum and 
the expression of GFRα3 in tumor tissues [36]. Moreover, 
our studies also revealed that Artemin significantly inhib-
ited the killing effect of CD8+ T cells on tumor cells and 
reduced the effects of radiotherapy and PD-L1 inhibitor 
therapy on tumor growth [36]. The impacts of Artemin 
on PD-L1 inhibitor therapy and the underlying regula-
tory mechanisms need further research.

Tumor neoantigens in STIE on TIME and PD‑1 inhibitor 
immunotherapy
STIE also contains tumor neoantigens, which are rep-
ertoire of peptides that displays on the tumor cell sur-
face but not normal tissues and serve as strong immune 

Fig. 3  The functions of immune regulator IDO on STIE and TIME. Indoleamine 2,3-dioxygenase (IDO) has multiple roles on STIE and TIME. The 
detailed functions of IDO in different cells as shown by arrows. IDO1, which suppresses Teff cells and MDSC, mainly catalyzes the breakdown of 
tryptophan (Trp) to kynurenine (Kyn) in the DC: Dendritic cells, Treg, Activated T cells, and APC cells: Antigen-presenting cells. IDO2 catalyzes 
in B cells. Solid arrow: stimulation, Dashed arrow: possible stimulation; Vertical-horizontal line: suppression. IDO1 and IDO2 are two different 
enzymes, that catalyze the same reaction. MDSC: Myeloid-derived suppressor cell; Teff: Effector T cells; CAF: Cancer-associated fibroblast; TAM: 
Tumor-associated macrophage
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modulators. New technologies that allow a quick screen-
ing of neoantigens in each patient and the production 
of personalized vaccines have broadened the clinical 
and research prospects. Smith et  al. [97] reported 20 
patients with resectable non-small cell lung cancer with 
PD-1 inhibitor before surgical resection. Using single-cell 
transcriptomics, they found dysfunctional TIL subpopu-
lations that were unable to recognize tumor antigens, 
including mutation-related neoantigens. Mutation-
associated neoantigen (MANA) was using specific T cell 
assays to identify MANA-specific T cell clones. Tumor 
neoantigen-specific T cells are related to the effects of 
PD-1 inhibitor immunotherapy. Therefore, monitoring 
the changes of neoantigen-specific T cells during PD-1 
inhibitor immunotherapy may be helpful to evaluate the 
response of PD-1 inhibitor immunotherapy. Our group 
has previously adopted single-cell sequencing to analyze 
the characteristics of tumor neoantigen-specific T cell 
subsets and evaluated the correlation between the tumor 
neoantigen-specific T cells and PD-1 inhibitor immuno-
therapy response [98]. In our tumor neoantigen study, 
neoantigens derived from EGFR mutation were identi-
fied in patients with lung cancer and found to be related 
to the survival of the patients [98]. One would assume 
that MANA or treatment-related changes would play an 
important role in treatment response of ICIs. Further 
study is needed on this topic.

TIME on PD‑1 inhibitor immunotherapy efficacy
The heterogeneity of the TIME is clearly one of the most 
important reasons for the various responses to PD-1 
inhibitors. The impact of TIME on PD-1 inhibitor immu-
notherapy efficacy has been a focus of a recent review 
[21]. In brief, Chen and Mellman [99] first proposed the 
concept of “Cancer Immune Cycle,” which simplified 
tumor immunity into seven end-to-end steps, includ-
ing (1) the release of tumor antigens, (2) the presenta-
tion of antigens, (3) the initiation and activation of T 
cells, (4) the migration of T cells, (5) the penetration of 
T cells into tumor tissues, (6) the recognition of tumor 
cells by T cells, and (7) the elimination of tumor cells. All 
the above steps are indispensable, function interactively 
with various components of TIME, and jointly in concert 
with STIE, outline the complex response of the immune 
system to tumors. In addition to the genetic differences 
of the tumor itself, the immune systems of different 
patients are dissimilar, which is one of the important rea-
sons behind the differences observed in the efficacy of 
PD-1 inhibitors in different patients [100]. The immune 
response triggered by effective and ineffective immuno-
therapy was compared in a triple-negative breast can-
cer. It was reported that the ineffective group mounted 
a short-term immune response toward the tumor, while 

the effective group mounted a coordinated immune 
response between different tissues including lymph 
nodes, bone marrow, and blood [101, 102]. Clearly, these 
phenomena are not explained by the activated immune 
cells, and one may hypothesize that the immune regula-
tors in the STIE play an important role. The differential 
responses to immunotherapy heavily rely on each process 
of the “Cancer Immune Cycle” which also links the inter-
action between TIME and STIE [103].

STIE and TIME in brain metastasis and PD‑1 inhibitor
Cancer metastasis is the major problem associated with 
cancer mortality. Brain metastasis (BrM) is a major prob-
lem for all cancers and accounts for about 20% of patients 
with solid tumors. Once a patient develops BrM, their 
prognosis is usually poor with an average survival time 
of less than 6  months. Nowadays, surgery, chemother-
apy, and radiotherapy are the main treatments for BrM 
patients, though they are mostly not curative. As the tox-
icities and side effects of the above-mentioned treatment 
methods are common in brain tissues, PD-1 inhibitor 
immunotherapy offers a novel approach for treating BrM 
patients more effectively. The OAK study [104] found that 
PD-L1 inhibitor monotherapy for NSCLC patients with 
brain metastases reduced the risk of death compared 
with chemotherapy (median OS, mOS: 20.1  months vs 
11.1 months) and delayed the time of new brain metas-
tases in patients with baseline brain metastases. A meta-
analysis of brain metastasis subgroups [105] found that 
PD-1 inhibitor immunotherapy was beneficial compared 
with chemotherapy in terms of mOS (8.4  months vs 
6.2 months) and the incidence of new intracranial lesions 
(13% vs 17%) [105–107]. The clinical trials of combina-
tion immunotherapy found that PD-1 inhibitor combined 
with chemotherapy significantly improved the mOS of 
patients with NSCLC brain metastases when compared 
with chemotherapy alone (19.2  months vs 7.5  months) 
[108]. In a study investigating the use of concurrent 
radiotherapy combined with PD-1 immunization, the 
inhibitor treatment group had significantly prolonged 
OS (24.7  months) when compared with the non-syn-
chronous combination therapy group (14.5 months) and 
the radiotherapy group (12.9  months) (P = 0.006) [109]. 
However, due to the heterogeneity and immunosuppres-
sive characteristics of the TIME of brain metastases and 
STIE of the patients, the overall effective rate of immu-
notherapy is still low. The specific mechanism of immu-
notherapy through the blood–brain barrier is poorly 
understood. As shown in Fig. 4, the connection between 
STIE and TIME was established by immune cells and 
their secreting immune modulating factors such as Kyn, 
TGF-β1, and Artemin. The STIE and TIME studies for 
brain metastases are limited. One study showed that the 
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immune cells of brain TME are largely determined by a 
specific tumor type rather than a central nervous system 
which has the “immune-privileged niche” [110]. Brain 
metastases from distant organs contain higher regulator 
T cells in the TIME. By contrast, gliomas-derived metas-
tases presented abundance of tumor-associated mac-
rophages [110]. A study on brain metastases with PD-1 
inhibitor immunotherapy found that the responders had 
increased T cells and dendritic cells [111]. Indeed, fur-
ther studies of the mechanisms that regulate the distri-
bution and function of TIME immune cells and STIE in 
brain metastases are needed to provide a way to improve 
the immunotherapy efficacy.

STIE/TIME cancer stem cells and their responses to PD‑1 
inhibitor
Regression and progression of cancer after PD-1 Inhibi-
tor are clearly a result of a complicated interaction 

between cancer cells and TIME cells, under a concerted 
regulation of STIE. Cancer stem cells (CSC), a special 
group of cells in tumors that maintain self-renewal and 
can differentiate into other tumor parenchymal cells, can 
also indirectly promote tumor development by attenuat-
ing immune surveillance [112]. CSCs are derived from 
the non-malignant stem or progenitor cells which are 
usually inhibited by Notch, WNT, Hedgehog, and Hippo 
signaling [113–115]. Xenotransplantation experiments 
have shown that even if one CSC enters the immunode-
ficient mice, tumors can be formed [116]. In vitro stud-
ies have shown that CSC has high expression levels of 
drug transporters [117, 118] and anti-apoptotic proteins 
[119, 120], low oxygen free radical levels [121–123], 
strong ability to repair DNA damage [124, 125], and 
slow proliferation rate [121, 126]. CSC can stay in a dor-
mant state for a long time with self-renewal ability and 
plasticity, which can produce heterogeneous tumor cells 

Fig. 4  STIE and TIME in brain metastasis. The figure shows the modulating role of systemic tumor immune environment (STIE) on the spread of 
primary tumor to the brain metastasized sites. It is relevant to local therapy such as radiation therapy (RT) and systemic therapy like PD-1 on the 
left panel and the components of STIE which include all circulating immune modulating molecules such as cytokines like TGF-β1, IDO biomarkers, 
Artemin and circulating immune cells such as lymphocytes on the right panel
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and contributes to tumor recurrence and metastasis 
[127, 128]. Studies have shown that CSC expresses high 
levels of PD-L1 and induces T cell apoptosis by binding 
to its cognate receptor PD-1 on T cells in breast cancer, 
colon cancer, head and neck squamous cell carcinoma, 
and lung adenocarcinoma. More PD-L1 is enriched in 
CSC abundant patients than non-CSC abundant patients 
[129]. Currently, targeting Notch, WNT, Hedgehog, and 
Hippo signaling pathways can inhibit CSC, and a num-
ber of clinical trials have been carried out [130]. PD-1 
inhibitor immunotherapy combined with targeted CSC 
therapy improved the effect of anti-tumor therapy [131, 
132], which suggests that CSC is one of the potential fac-
tors for the failure of PD-1 inhibitor immunotherapy. 
However, how CSC leads to the failure of PD-1 inhibi-
tor immunotherapy is still unclear. As CSC leads to a 
highly heterogeneous tumor immune microenvironment, 
single-cell multi-omics testing is long needed ideal tech-
nique to study the role of CSC in TIME. Our unpublished 
single-cell sequencing data found that CSC could highly 
express TGF-β1, which recruits MDSC, and subsequently 
form an immunosuppressive TIME. Meanwhile, PD-L1 
was also highly expressed in CSC which aids in immune 
surveillance evasion, which explains the molecular mech-
anisms of tumor dormancy. Furthermore, the presence 
of TGF-β1 and IDO in STIE is heterogeneous, i.e., there 
are differences in TGF-β1 and IDO in tumors with differ-
ent malignant degrees, indicating that their responses to 
treatment (at a proteomic level) were also heterogeneous.

There are many factors and cells in TIME and STIE 
related to the failure of ICIs. Traditional low-throughput 
detection methods might not be able to reflect the het-
erogeneity of the TIME between different tumors and 
within one tumor. Single-cell transcriptomic and spatial 
transcriptomic testing of TIME and STIE will provide 
more insight that may lead to a potential solution. The 
results of single-cell omics can reveal the response mech-
anisms of the tumor cells to PD-1 inhibitor immunother-
apy and identify predictive biomarkers for more effective 
treatment.

STIE and TIME in hyperprogressive disease following PD‑1 
inhibitor therapy
Hyperprogressive disease (HPD) refers to cases that 
the volume of the tumor lesion does not decrease 
but increases after immunotherapy, with a faster dis-
ease progression (typically at least two times) com-
pared to before treatment [133, 134]. HPD induced by 
PD-1 inhibitor immunotherapy is another challenge 
for immunotherapy alone in addition to their low 
response rate. Among tumor patients receiving PD-1 
inhibitor immunotherapy, 4–29% of patients develop 
HPD (approximately 13% of lung cancer) [135, 136]. 

It is unclear that which factors during PD-1 inhibi-
tor immunotherapy contribute to the HPD. One study 
found that samples from cancer patients experiencing 
HPD had a greater number of tumor-associated mac-
rophages [137]. It has been suggested that Fc receptors 
(antibody Fc receptors on the surface of cells such as 
macrophages) in TIME may be involved in this process. 
The possible mechanism is checkpoint inhibitor bind-
ing to this Fc receptor on macrophages and then inhib-
its the polarization of macrophages to the M2 subtype, 
thereby promoting the tumor growth [137].

Cancer genetic variation may play a significant role. 
Studies have found that 20% of cancer patients with 
EGFR mutations are more likely to have HPD. This pro-
portion increases to 50% in patients with MDM2 muta-
tions and 67% in patients with MDM4 mutations [138]. 
Our research team also analyzed the genomic mutation 
data of tumor patients in the early stage and found that 
the amplification of CCND1/FGF3/FGF4/FGF19 was 
prone to develop HPD (unpublished data). In addi-
tion, the immune cells and immune regulatory factors 
in the local tumor environment and circulating blood 
are directly related to the efficacy of immunotherapy 
and are also the main contributors to the progression 
of the disease. We analyzed the STIE of HCC patients 
treated by immunotherapy and found that patients who 
did not respond to immunotherapy had higher CD4+ 
T cells and Th17 cells and lower CD8+ T cells (unpub-
lished data). If specific molecules involved in HPD are 
identified, strategies to reduce PD-1 inhibitor immuno-
therapy-related deaths can be developed to improve the 
survival rates of potentially responsive patients. Due 
to concerns about HPD, immunotherapy is frequently 
restricted to cancer patients without genetic mutations. 
Moreover, it is important to distinguish the exact roles 
of PD-1 inhibitors between HPD and pseudoprogres-
sion cases.

Single-cell genomics research may identify some novel 
perspectives of TIME and STIE for this previously unan-
swered clinical problem. Single-cell transcriptomic data 
on the patients who undergo HPD show that TGF-β1, 
IGF-1, ERK/MAPK, and PI3K/AKT signaling pathway 
were activated in tumors. A subpopulation of innate lym-
phoid cells named ILC3 cells increased in cancer patients 
with HPD after PD-1 inhibitor immunotherapy. Besides, 
the immunogenicity decreased in HPD tumors after ther-
apy [139]. HPD tumors were infiltrated with more PD-1+ 
Treg than PD-1+ effector T cells which led to exacerbated 
growth in gastric cancer [140]. However, there is still a 
lack of research on the molecular mechanisms behind 
HPD in PD-1 inhibitor immunotherapy and the biomark-
ers to predict HPD. The role of STIE and its interaction 
with TIME deserve further study.
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STIE, TIME, and side effects of PD‑1 inhibitor 
therapy
PD-1 inhibitor immunotherapy can trigger adverse auto-
immune reactions, which are called as immune-related 
adverse events (irAEs), characterized by the infiltration of 
T cells in various organs, including skin, colon, liver, lung, 
and endocrine organs. IrAE significantly affects the sur-
vival time and quality of life in cancer patients [141]. A 
pooled analysis of 125 randomized clinical trials involving 
20,128 patients found that 2/3 of the patients experienced 
at least one irAE after PD-1/PD-L1 inhibitor treatment. 
A small percentage of patients (0.45%) even died of irAE 
(with pneumonitis being the most common cause of death 
[28%]) [142, 143].

Cytokines in STIE play a critical role on irAEs, and its 
significance can be exemplified by the cytokine release 
syndrome (CRS), a fatal inflammatory reaction after PD-1 
inhibitor immunotherapy. Patients with CRS may experi-
ence clinical symptoms such as low blood pressure, fever, 
headache, nausea, and diarrhea, in serious cases with 
encephalopathy, hypotension, hypoxia, liver dysfunction, 
and coagulation dysfunction. With the development and 
widespread use of immunotherapy, more and more tumor 
patients who received immunotherapy reported to have 
experience of CRS. In 2017, a patient with extensive met-
astatic alveolar soft sarcoma who received PD-1 inhibitor 
immunotherapy developed serious CRS symptoms. This 
is the first case of cytokine release syndrome in a patient 
receiving targeted treatment with PD-1 [144]. Gao et  al. 
[145] found that esophageal cancer (ESC) patient devel-
oped irAE including CRS after PD-1 inhibitor therapy and 
had diarrhea, thrombocytopenia, and multi-organ injury. 
However, in this case, CRS occurred during radiotherapy 
after PD-1 inhibitor therapy, suggesting that the combi-
nation of PD-1 inhibitors and radiotherapy may lead to a 
greater risk of developing CRS [145]. However, another 
case report showed that the irAEs of immunotherapy 
combined with radiotherapy were far less than those of 
immunotherapy combined with other treatments such as 
chemotherapy and targeted therapy [146], likely due to var-
ious radiotherapy technologies. At present, there are few 
studies on CRS induced by PD-1 inhibitor immunotherapy 
under the widespread use of PD-1 inhibitors. It is necessary 
to carry out relevant evaluations and unravel the underly-
ing immune-related risk factors. The characteristic of STIE 
and TIME of irAE needs more clear clarification to prevent 
the irAE.

Therapeutic strategies to reshape the STIE 
and TIME
Reshaping the STIE and TIME with local radiotherapy
Cancer treatment can induce changes in SITE and TIME 
which have subsequent effects on immunotherapy. 

Radiotherapy is one of the strongest treatment modali-
ties to trigger an immune response. Local radiother-
apy can modify the TME and TIME and regulate STIE 
through multiple biologic mechanisms. From the seven 
end-to-end cancer immune steps of Chen and Mell-
man [99], radiotherapy can modulate TIME and STIE 
at least through the following corresponding steps: (1) 
kill tumor cells to produce immunogenic tumor neoan-
tigens, (2) alter cell surface molecules to facilitate anti-
gen presentation, (3) regulate immune effector cells, (4) 
induce production of immune modulating cytokines to 
attract immune potent cells to the tumor sites, (5) help 
immune cells penetrating into tumor tissues, (6) open the 
communication between CSC and TIME, and (7) induce 
production of immune modulating molecules such as 
TGF-β1 and IDO. Figure 5 demonstrates the transforma-
tion of the “Cold” to “Hot” immune environment after 
radiotherapy. An appropriate dose of focal radiotherapy 
can stimulate the tumor antigens to CD8+ T cells in the 
proximal TIME and have further effect on the distal sites 
through STIE [147]. Indeed, radiotherapy can activate 
anti-tumor immune responses, and combination with 
radiotherapy has become one of the important ways to 
improve the effectiveness of PD-1 inhibitor immuno-
therapy [148]. However, combination therapy with radio-
therapy and CTLA-4 inhibitors gave objective responses 
in only 18% of the enrolled patients and 31% of patients 
suffered from lung cancer patients [149]. Mechanistically, 
radiotherapy combined with PD-1 inhibitor immuno-
therapy can modulate immune function through various 
biology rationales including activating IFN-β, increas-
ing the activity of CD8+ T cells in peripheral blood, and 
produce an abscopal effect [149]. The specific reshaping 
functions of radiotherapy on STIE and TIME are shown 
in Table 2, using NSCLC, HCC, and NPC as examples. In 
general, radiotherapy disrupted immune cell infiltration 
and induced de novo inflammation in the TIME. Theo-
retically, radiotherapy would be beneficial to patients 
with “Cold” TIME rather than the “Hot” TIME as the 
radiotherapy may damage existing CD8+ T cells [150]. In 
addition, radiotherapy can prompt the PD-L1 expression 
in tumor [150] and trigger the activity of STIE through 
circulating immune cells such as CD8+ T cells [53]. Lan 
et  al. [151] also demonstrated that when RT combined 
with bintrafusp alfa (BA), a bifunctional functional pro-
tein targeting PD-L1 and TGF-β1 can reshape the TIME 
and STIE and stimulate tumor-killing immune reac-
tions. Specifically, BA combined with RT (BART) can 
enhance the anti-tumor activity, weaken tissue fibrosis, 
and increase tumor-infiltrating leukocytes in a variety of 
mouse tumor models with poor immune infiltration. For 
example, in the KPC mouse model, BART was able to fur-
ther reduce the 18 F-FDG SUVmax relatives to BA or RT 
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monotherapy and further delay tumor growth. In emT-6 
models, BA reduced α-smooth muscle actin (α-SMA), a 
marker of CAF activation, and collagen deposition, and 
increased CD8+ TIL [152]. Although RT significantly 
increased α-SMA levels, BA reversed RT-induced α-SMA 
and collagen deposition. It was also found that BA sig-
nificantly reduced RT-induced epithelial–mesenchy-
mal transformation (EMT), ECM, fibrosis, and vascular 
endothelial growth factor (VEGF) expression. Appar-
ently, BA and RT have synergistic activity, that is, BA can 

further enhance the positive immune modulation effect 
of RT, while reversing the negative effect of RT to some 
extent, leading to local remodeling of TME and enhanc-
ing the immune response.

In a joint experiment comparing stereotactic body 
radiotherapy (SBRT) of hypofractionated treatment with 
different immune checkpoint inhibitor (CTLA-4, PD-1 
inhibitors) therapies, radiotherapy combined with PD-1 
inhibitors resulted in longer disease-free survival than 
that of radiotherapy combined with CTLA-4 inhibitor 

Fig. 5  Therapy induced changes in STIE and TIME. The top panel is a simple schema of “cold” and “hot” tumors, and that PD-1 inhibitor is only 
effective in “hot” tumor. The 3 lower panels illustrate the transformation of the immune environment from the inactive status to the active status 
through reshaping STIE and TIME by radiotherapy, chemotherapy, and precision medicine therapy (like targeted therapy). In the left part, PD-1 
inhibitor immunotherapy is less effective as the local TIME is cold. In the right part, after receiving various types of therapy, the TIME becomes 
hot. Meanwhile, more activated immune cells such as CD8+ T cells appear in the STIE. PD-1 inhibitor immunotherapy can combine with all these 
therapies to improve the effectiveness of treatment. Multiple immune cells and immune cell-associated factors are involved in this process [153, 
154]. STIE: Systemic Tumor Immune Environment; TIME: Tumor Immune Microenvironment
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treatment [149, 155]. In terms of liver metastases, how-
ever, Zou et al. [53] found that patients with liver metas-
tases have restricted benefits from immunotherapy with 
PD-1 inhibitors. In a mouse liver metastasis model, 
through single-cell transcriptomic analysis for the detec-
tion of tumor liver metastasis, activated CD8+ T cells 
in the systemic circulation, the number of peripheral 
T cells, and the diversity and function of tumor T cells 
were shown to be decreased [53]. Through the shortage 
of CD8+ T cells and peripheral tolerance mechanisms in 
the host, liver metastases may cause resistance to adap-
tive immunotherapy. The combination of liver-directed 
radiotherapy and PD-1 inhibitor immunotherapy may 
promote systemic anti-tumor immunity. Liver-directed 
radiotherapy also reshapes the liver immune microen-
vironment, prevents the liver siphoning effect of T cells, 
and restores the therapeutic effect of PD-1 inhibitors in 
the liver metastasis model.

Our previous work has also demonstrated radiotherapy 
immunomodulatory effects [67], consistent with results 
of a meta-analysis of 18 studies (involving 7219 lung can-
cer patients) [175]. Patients with a high number of lym-
phocytes and a low ratio of neutrophils to lymphocytes 
(NLR) in STIE before treatment showed higher overall 
survival following RT [67]. Analysis of the different stages 
of tumors found that patients with low NLR have higher 
survival rates across all stages of tumors [67]. As previ-
ously mentioned, the metabolites of IDO changed heter-
ogeneously during radiotherapy: those with IDO activity 
decreased had significant better survival outcomes and 
less distant metastasis in lung cancer patients [90, 91]. 

Radiotherapy modulation effects on IDO immune status 
were heterogeneously with radiation doses and radiation 
technology. IDO activity first decreased after low doses 
of radiotherapy in most patients; at the end of treatment 
with high dose of treatment, some of them increased and 
some remained unchanged or decreased; the latter one 
had better outcome. Patients treated with SBRT (more 
conformal treatment, less normal tissue radiation ther-
apy) kept IDO level unchanged and had better survival, 
compared to less conformal 3D-CRT radiotherapy which 
increased IDO level in more patients [91]. Further studies 
are also needed to identify the underlying T cell and IDO 
pathways to answer questions including: which subtypes 
of T cells are involved in tumor control or progression? 
What are the factors that control these immune cells? 
What is the relationship between T cells and IDO metab-
olites? Studies have found that radiotherapy reduces the 
total count across all types of lymphocytes, such as CD4+ 
T cells, CD8+ T cells, B cells, and NK cells in STIE [176]. 
The use of STIE and TIME to predict possible adverse 
immune reactions deserves further study. Our team is 
currently investigating the changes in TIME and STIE 
of various types of cancer patients during PD-1 inhibi-
tor immunotherapy and combined PD-1 immunotherapy 
with radiotherapy.

Reshaping STIE and TIME with immunotherapy
Immunotherapy can change STIE and TIME. Most of 
this work is on the fate of T cell which is critical in the 
process of the reshaping of STIE and TIME with immu-
notherapy. T cell exhaustion is currently a major obstacle 

Table 2  Reshaping STIE and TIME with radiotherapy

CTC​ circulating tumor cells, T T cells, NK natural killer, DC dendritic cell, dLN tumor draining lymph nodes, Ter-cells tumor-inducible, erythroblast-like cells, NLR 
neutrophil-to-lymphocyte ratio, ALB albumin, AFP alpha-fetoprotein, ALC absolute lymphocyte count, MDC macrophage-derived chemokine, PBL peripheral blood 
lymphocytes, TIL tumor-infiltrating immune cell (e.g., lymphocyte, APC antigen-presenting cells), pEBV plasma Epstein–Barr virus; ↑, upregulation; ↓, downregulation; 
-, symbol, no significant change in the cited literature studies; ↑, ↓ and - reflected the changes in tumor tissue or cancer patients compared with adjacent normal 
tissue or non-cancer donors; REF reference

Cancer type STIE TIME REF

Cell Immune regulator Cell Immune regulator

NSCLC ↑: CD8+ T, CD4+ T, NK, B 
cell, CD3− immune cell, 
γ-H2AX foci PBL
-: CD3+ T
↓: CTC, NLR, ALC, Ter cell

↑: ssDNA, IFNs, STING/
TBK1 pathway, MIP-1α/
CCL3
↓: IDO, Artemin, MDC/
CCL22

↑: T cell repertoire, Effec‑
tor T, DC, N2 neutrophil, 
M2 macrophage, MDSC
-: NK, Treg in TIL
↓: Total lymphocyte, TIL

↑: TGF-β, IFN-γ, PD-L1, 
ICAM-1, MHC-I, Fas, CSF-1, 
SDF-1, GFRα3, CCL2, 
CXCL16, PD-L1 on cancer 
cell
-: PD-1, IFN Receptors, 
CXCL10, CXCL16

[33, 35, 36, 91, 155–166]

HCC ↑: TNF-α+ NK, 
CD3+CD56+NKT-like cell
↓: CD4+ T

↑: PD-L1, AFP, ALB, TNF-α ↑: CD4+ CD25+ T, 
CD4+ CD127+ T
↓: TIL

↑: TGF-β, MHC-I, PD-L1, 
PD-L1 on cancer, IFN-γ 
produced by dLN CD8+, 
CD4+ T
↓: HIF-1α

[53, 156, 158, 159, 162, 
167–171]

NPC ↑: CCR4+ CD8+ T ↑: CCL22
↓: pEBV,
miR-142-5p

↓: TIL ↑: TGF-β, PD-L1, MHC-I, 
PD-L1 on cancer

[156, 158, 159, 172–174]
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limiting the efficacy of T-cell-based immunotherapy 
[177]. The developmental hierarchy of exhausted CD8+ 
T cells (Tex) can be divided into four-stage according to 
transcriptional and epigenetic analyses, namely quies-
cent resident stage, proliferative circulating stage, circu-
lating mildly cytotoxic stage, and terminally exhausted 
resident stage. Both quiescent resident and proliferative 
circulating stages with marked TCF1-TOX were revers-
ible upon immunotherapy [178]. There are three poten-
tial reasons to explain the increase in tumor-specific T 
cell precursors after effective PD-1 inhibitor treatment: 
1. reversal of exhausted CD8+ T cells, 2. expansion of 
preexisting precursor cells in the tumor immune micro-
environment (TIME), and 3. T cells supplied from out-
side TIME such as the peripheral blood (STIE) [179]. The 
reversal of exhausted T cells may not be abundant in the 
PD-1 treatment responsive group as the previous mouse 
studies have shown that the epigenetic modifications and 
characteristics of exhausted T cells are stable and difficult 
to change [179, 180]. The clonal replacement of T cells 
was observed in exhausted CD8+ T cells and evident in 
patients with basal or squamous cell carcinoma [181]. In 
addition, Yost et al. found that the preexisting tumor-spe-
cific T cells in TIME were insufficient to reinvigorate and 
PD-1 treatment-responsive T cells were derived from the 
distinct clonal T cells which just entered the TIME [181]. 
Furthermore, Liu et al. found that exhausted T cells were 
unlikely to be derived from the reinvigoration of termi-
nally exhausted cells; instead, they were accumulated by 
(1) local expansion and (2) replenishment by peripheral 
T cells with both new and preexisting clonotypes [179, 
181].

Although PD-1 could reinvigorate exhausted CD8+ T 
cells [179, 181, 182], this immune therapy cannot revise 

the exhaustion-associated epigenetic imprint [180]. Effec-
tors like TOX, TOX2, AP-1, and RGS16 proteins play a 
key role in the regulation of T cell exhaustion in relation 
to the transcriptional and epigenetic aspects [177, 183–
186]. The specific reshaping of STIE and TIME by immu-
notherapy is shown in Table 3, using NSCLC, HCC, and 
NPC as example tumors. The exhausted T cells appeared 
after PD-1 inhibitor treatment [187–189]. The loss of T 
cell regulator such as IL-2 regarding as T cell growth fac-
tor is accompanied with T cell exhausted phenotype after 
PD-1 inhibitor treatment in NSCLC [190, 191]. In clini-
cal practice, T cell exhaustion is a major limiting factor of 
PD-1 and chimeric antigen receptor (CAR)-T cell thera-
peutics. Weber et al. designed a drug switch to regulate 
CAR signal to temporarily inhibit T cell activity, which 
helped preventing CAR-T cell being exhaustion and was 
able to effectively improve CAR-T cell’s anti-tumor activ-
ity in mouse models [192]. Furthermore, combining PD-1 
inhibitors with CAR-T immunotherapy can help reverse 
the effects of Tex.

Reshaping the STIE and TIME with chemotherapy, targeted 
therapy, or combined therapy
Cancer treatment can reshape the STIE and TIME 
which can conversely impact the curative effect of sub-
sequent immunotherapy (Fig.  5). Systemic therapeutic 
approaches such as chemotherapy can also turn “cold 
tumors” into “hot tumors” [154]. The reshaping after sys-
temic therapy is apparently complicated and varies with 
tumor types. Using NSCLC, HCC, and NPC as example 
tumors, the heterogenous changes of STIE and TIME 
after cancer systemic chemotherapy and targeted therapy 
are summarized in Table 4. Chemotherapy has extensive 
cytotoxic effects on highly proliferating cells, especially 

Table 3  Reshaping STIE and TIME with immunotherapy

T T cells, NK natural killer, DC dendritic cell, TIL tumor-infiltrating immune cell (e.g., lymphocyte, APC antigen-presenting cells); TEM effector memory T; Texp precursor 
exhausted T, EBV Epstein–Barr virus; TRAIL tumor necrosis factor-related apoptosis-inducing ligand, ↑, upregulation; ↓, downregulation; -, symbol: no significant 
change in the cited literature studies; ↑, ↓ and - reflected the changes in tumor tissue or cancer patients compared with adjacent normal tissue or non-cancer donors; 
REF reference

Cancer type STIE TIME REF

Cell Immune regulator Cell Immune regulator

NSCLC ↑: PD-1+ CD8+ T, Ki-67+ 
PD-1+ CD8+ T, ICOS+ 
CD4+ T, Neoantigen-
specific T

↑: IL-2R
↓: Exosomal PD-L1
(Patients responding to 
PD-1 inhibitor therapy)

↑: Antigen-specific CD8+ 
PD-1− T, ICOS+ CD4+ T, 
PD-1+ Treg, Texp, NK, Acti‑
vate PD-L1+ NK
↓: CD19+ B cell, CD8+ T

↑: TGF-β, IFN-γ, TNFα, 
PD-L1, CD38, CXCL13 on 
Texp, pSmad3 on cancer
↓: IL-2

[179, 193–204]

HCC ↑: CD8+ T, CD3+CD56+ NKT, 
CXCR3+CD8+ TEM, Treg, APC

↑: PD-1, TNF-α, IFN-γ, 
CD107a

↑: TOX+ T, 
CD8+ PD1+ CXCR+ T, 
TNF+ T, CD3+CD56+ NKT, 
CD39+CD8+ TIL

↑: IL-2, CCL4 [54, 55, 205–211]

NPC ↓: EBV-specific T ↑: IFN-γ ↑: IFNβ-dependent NK
↓: CCR4+ Treg

↑: TRAIL [212–214]
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on the hematopoietic and immune systems. Chemo-
therapy can also compromise PD-1 inhibitor therapy, 
from cytotoxicity on the immune cells [150]. Targeted 
therapy through small molecular inhibitor mainly func-
tions in the rapidly growing tumor cells. Compared with 
chemotherapy, targeted therapy inhibits tumor growth 
without adversely affecting the immune system, making 
it a potential option in combination with PD-1 inhibitor 
therapy [150]. It is also noted that chemotherapy agent 
cisplatin and targeted drugs like crizotinib (ALK and 
ROS1 inhibitor) can also induce similar immunogenic cell 
death and both increase CD8+ T cell infiltration [215]. 
For combined immunotherapy, a preclinical study on the 
Lewis lung carcinoma tumor model showed that combi-
nation therapy of IDO inhibitor with radiotherapy can 
reduce the expression of PD-L1 and Treg and promote 
the maturation of dendritic cells in the TME. This shows 
that combined therapy can enhance the activity of T cells 
and promote anti-tumor immunity [216]. In a study of 
C57BL/6 xenotransplantation mouse model of lung can-
cer, although radiotherapy alone increased the infiltration 
of Treg and cytotoxic T cells, the combination of radio-
therapy and PD-1 inhibitor immunotherapy can effec-
tively inhibit tumor progression, increase CD8+ T cells, 
and reduce MDSC and iTreg [217]. The experimental 
results of an in situ tumor-bearing mouse model showed 
that after PD-1 inhibitor therapy combined with radio-
therapy, the ratio of CD4+/CD8+ T cells, neutrophils, 
IFN-γ, TNF, and IL-5 in the lung tissue of the mouse 
model increased, and inflammatory reactions increased 

[218]. In the mouse HCC model, the survival rate of PD-1 
inhibitor immunotherapy combined with radiotherapy 
was significantly improved, which greatly inhibited the 
growth of tumor, increased CD8+ T cells, and restored 
their function [219]. Cytokines and chemokines are sol-
uble proteins produced by a variety of cells, which have 
a wide range of regulating functions and influence can-
cer immunotherapy. Reactive CCL4 through inhibiting 
epigenetic regulators such as HDAC8/SIRT7 with com-
bination of PD-L1 inhibitor therapy may enhance tumor 
killing in HCC [54, 55]. Interferon-α (IFN-α) could pro-
mote tumor apoptosis and inhibit tumor cell prolifera-
tion. Interleukin-15 is produced primarily by activated 
bone marrow cells. Compared with PD-1 inhibitor alone, 
combined application of PD-1 and LAG-3 inhibitors may 
improve the anti-tumor function of CD8+ T cells [220]. 
The overactivation of TGF-β1 signal resists the PD-L1 
inhibitor therapy in the TIME and STIE [221]. Targeting 
PD-L1 and TGF-β1 may improve the resistance condition 
[151]. The first human clinical trial of IL-15 showed that 
NK and CD8+ T cells were amplified in STIE (peripheral 
blood) of patients with advanced melanoma and patients 
with renal cell carcinoma (RCC), but with severe adverse 
reactions [222]. ALT-803 is another variant of IL-15, 
among 21 patients with NSCLC, 29% achieved objective 
response and showed elevated levels of circulating NK 
and CD8+ T cells through subcutaneous co-administra-
tion of PD-1 inhibitor therapy [223]. TNF-α is mainly 
produced by monocytes, macrophages, and DCs. It acts 
as a mediator of anti-tumor immune response in tumor 

Table 4  Reshaping STIE and TIME with chemotherapy, target therapy, or combined therapy

T T cells, CSC cancer stem cell, NK natural killer, DC dendritic cell, AFP alpha-fetoprotein, ALC absolute lymphocyte count, TIL tumor-infiltrating immune cell 
(e.g., lymphocyte, APC antigen-presenting cells); CK-19 cytokeratin-19, S-LDH serum lactic dehydrogenase, ctDNA circulating tumor DNA; ↑, Upregulation; ↓, 
Downregulation; -, symbol: No significant change in the cited literature studies; ↑, ↓ and - reflected the changes in tumor tissue or cancer patients compared with 
adjacent normal tissue or non-cancer donors; REF reference

Cancer type STIE TIME REF

Cell Immune regulator Cell Immune regulator

NSCLC ↑: CD8+ T, Th1 cell
-: PD-1+CD8+ T, PD-
1+CD4+ T
↓: CD3+CD8+ T, Treg, Th2 
cell, Th17 cell, NK

↑: IFN-γ
↓: ctDNA, IL-4, IL-17

↑: T cell, CD8+ T, Senes‑
cent CD28−CD57+ T,
Highly differentiated 
CD8+CD28− T, DC
-: CD8+ TIL density in 
tumors with a high PD-L1 
expression level
↓: CD8+ and FOXP3+ TIL 
densities

↑: PD-1, PD-L1, IL-2, 
CD73, CXCL10
↓: FOXP3, CTLA4, LAG3, 
TNFRSF18, CD80

[198, 215, 226–228] [216, 
217, 229–231]

HCC ↑: CD14+ Monocyte, 
CD56+ NK
↓: CD4+CD25+Foxp+ 
regulatory T

↑: ST6GAL1, Fas/FasL, MIR
30A/15B/107/122/125B/2
00A/320/374B/645

↑: T cell proliferation and 
tumor infiltration, CD8+ 
T, CSC
↓: Numbers of tumor ves‑
sels and pericytes

↑: IL-1β, CXCL5, HIF-
1α/2α
↓: NF‐kB, FGFR4, LIF/
JAK1/STAT3, PD-L1/
METTL3 on cancer

[211, 228, 232–239] [240, 
241]

NPC ↓: CD3+ T, CD4+ T, CD8+ 
T

↑: CK-19, S-LDH ↑: T cell proliferation, 
tumor infiltration, CD8+ T,
NK, PD-1+ NK

↑: PD-1, PD-L1, NF-κB, 
IL-2, CEBPA, miR-3188/
PD-L1 on cancer

[228, 242–248]
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immunotherapy. The results of an experiment in a mouse 
model showed that TNF-α blockade could overcome 
resistance to PD-1 inhibitor immunotherapy [224]. Over-
all, blockade of inhibitory receptors, costimulatory recep-
tors, cytokines, immune checkpoints, and combined 
use of PD-1 inhibitor with more traditional tumor treat-
ments, such as radiotherapy, chemotherapy, and targeted 
therapy, have all shown good anti-tumor efficacy, likely 
through reshaping the TIME and STIE [225].

Single‑cell and spatial transcriptomics in TIME 
and STIE research
The technique of next-generation sequencing (NGS) 
has enhanced our understanding of the genomic effects 
on malignant tumor cells, but cannot accurately dissect 
individual effects of each TIME cellular components, 
which worked together to promote the carcinogenesis. 
Single-cell multi-omics may better analyze the relation-
ship between spatial cell distribution characteristics and 
gene transcription expression in cancer patients TIME, 
and their dynamic changes during immunotherapy [249]. 
Single-cell RNA sequencing (scRNA-Seq) can character-
ize the transcriptome of each individual single cell and 
reveal the subpopulations of cells within a given speci-
men (tumor tissue for TIME or blood sample for STIE) 
[250]. However, in the necessary tissue dissociation step 
of scRNA-Seq, the separation of individual cells destroys 
their spatial positioning in original tissues and their 
close information to each other. Given that the func-
tion of proximal and paracrine signals ranges from 0 to 
200  μm, this type of spatial information is essential for 
understanding the cell-to-cell communication between 
normal tissues and diseased tissues [250]. Spatial tran-
scriptomics measures all gene activities in tissue samples 
and maps the locations where the activities occur, which 
can help us better understand the relationships between 
gene expression and cell positioning within the tumor tis-
sues, providing the knowledge that single-cell genomics 
missed. Therefore, strategies combining single-cell tran-
scriptome with spatial transcriptome have a potential to 
define the TIME and their responses to cancer therapy 
more precisely [251, 252]. More importantly, the com-
bination of these two technologies may even recover the 
location of new cell groups in the TIME. Further studies 
of many cancer patients are needed to examine in-depth 
understanding of the heterogeneity STIE and TIME as 
well as dynamic changes after treatment, both of which 
help to promote precision combination immunotherapy 
to improve treatment outcome [253–256].

In a recent study of scRNA-Seq analysis in 47 tumors 
from 36 NSCLC patients, the PD-1 inhibitor immuno-
therapy-responsive group had significantly increased 
numbers of precursor exhausted CD8+ T cells (Texp), 

featured by the low expression of co-suppressor mol-
ecules and high expression of GZMK [257]. Meanwhile, 
a study of 29 stage IV NSCLC patients found positive 
association between the early increase in PD-1+ CD8+ T 
cells in the blood and clinical response to the PD-1 inhib-
itor treatment [258]. Using single-cell transcriptomic 
sequencing of the primary tumor specimens, a study 12 
NSCLC patients treated with immunotherapy combined 
with EGFR-TKI treatment characterized 15 main cell 
types (including fibroblasts, endothelial cells, tumor cells, 
macrophages, T cells, B cells, mast cells, neutrophils, 
dendritic cells, and ciliated cells). There were high pro-
portion of CD8+ T cells and low proportion of the M2/
M1 macrophages in the good PFS group [259]. In a study 
of 7 lung cancer patients undergoing neoadjuvant immu-
notherapy, single-cell sequencing revealed a higher pro-
portion of tumor-infiltrating T cells in general and lower 
myeloid cells compared to the group without neoadju-
vant therapy. These patients had distinct different expres-
sion profiles in terms of leukocyte cell adhesion and cell 
cycle arrest [260], suggesting the importance of monitor-
ing the TIME in immunotherapy. Another small clinical 
study of lung cancer samples before and after PD-1 inhib-
itor treatment found that the CD8+ tumor-infiltrating 
lymphocytes related to cytotoxic function (PRF1, GZMB, 
and GZMH) and activation (CD38) increased in post-
treatment patients [261]. The tumor-associated CD4+ T 
cell clones in STIE peripheral blood have higher cytotoxic 
activity than the CD8+ T cell clones, but post-progressive 
CD8+ T cells can be observed in patients with disease 
progression. Moreover, T cell abundance decreased sig-
nificantly, and the proportion of PD-1+ T cells decreased 
[262].

Single-cell sequencing analysis also found that the 
gene expression profiles were different between the PD-1 
high and PD-1 low subpopulations of CD8+ T cells in 
NSCLC, and that the transcription factor TOX can effec-
tively predict the overall survival and PD-1 inhibitor effi-
cacy in NSCLC [263]. Single-cell sequencing of 7 liver 
cancer patients before and after immunotherapy found 
that paired tumor biopsies between malignant cells and 
between tumors of different patients have similar genome 
specificities, and the expression of SPP1 was significantly 
increased after treatment. Moreover, the proportion of 
CD4+ memory T cells in the treatment response group 
was higher [264]. The above data confirmed the utility of 
single-cell sequencing technology in the in-depth explo-
ration of treatment response, disease progression, and 
biomarkers during immunotherapy for liver cancer and 
lung cancer.

Spatial transcriptomics (ST) will overcome the loss 
in the spatial pattern of transcriptomics of the single-
cell sequencing technology. A study applied the ST 
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technology in the tumor tissues with 4 LUAD and 8 
LUSC from 12 NSCLC patients, tracked the subclone of 
the specific sate of tumors through spatial pseudo time, 
and further described the process of epithelial–mesen-
chymal transition in detail [265]. Besides, the ST tech-
nology of 21 primary tumor tissues from 7 HCC patients 
found that the fibroblasts and endothelial cells can form 
a barrier-like capsules to prevent immune cell infiltration 
which may hinder immunotherapy [266]. In NPC, the 
efficacy of PD-1 inhibitor treatment can be improved by 
combination therapy, plus systemic therapy in first-line 
therapy [267] or radiotherapy [268]. However, due to the 
difficulty of obtaining samples before and after treatment, 

the evidence on TIME effect remains limited. Changes in 
specific immune cell subtype, abundance, time, and spa-
tial correlation in immunotherapy are still obscure and 
need to be further strengthened. With advances in single-
cell technology, studies on STIE and STIE modulating 
factors may enlighten this field of research quickly.

Conclusions
In summary, PD-1 inhibitor immunotherapy faces bot-
tlenecks such as overall low response rate, hyperprogres-
sive disease, limited understanding in brain metastasis, 
and serious irAE. Single-cell transcriptomic and spa-
tial transcriptomic techniques can be used to study the 

Fig. 6  Reshape STIE and TIME to prevent metastasis. This figure shows potential reshaping/targeting points to prevent systemic tumor progression, 
i.e., metastasis, starting from killing/removing tumors in situ in the primary site through radiotherapy/surgery. Upon the cancer metastasis, 
systemic therapy such as chemotherapy and immunotherapy are the mainstay treatment for these patients. Radiotherapy is frequently needed for 
either palliation or consolidation local therapy for good responder and palliation for symptoms for patients with disease progression. Single-cell 
transcriptomics and spatial transcriptomic techniques are useful to detect these therapeutic effects to uncover the underlying mechanism directly 
in patients. The red and green pipelines are representing blood vessels and lymphatic vessels which establish the connection between Tumor 
Immune Microenvironment (TIME) and Systemic Tumor Immune Environment (STIE)
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Fig. 7  A proposed study schema of STIE and TIME. The pipeline describes a proposed process of studying STIE and TIME including the different 
treatment strategies and clinical outcomes. The cross-validation of clinical patients and animal models will clearly reveal the STIE and TIME 
regulation in the RT and PD-1 inhibitor immunotherapy. As the massive data produced by STIE and TIME study, AI model will assist the analysis of 
data from an in-house or public research
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Table 5  Ongoing randomized clinical trial of testing combined therapy with PD-1/PD-L1

NCT number Conditions Experimental arms Control arm Phases Enrollment Primary 
outcome 
measures

NCT03924869 NSCLC
(Stage I/II)

SBRT + Pembrolizumab (Anti-
PD-1)

SBRT + Placebo Phase 3 530 EFS, OS

NCT03774732 NSCLC
(Stage IIIB/IIIC/IV)

3D-CRT/SABR + Pembroli‑
zumab (Anti-PD-1) + Chemo‑
therapy

Pembrolizumab (Anti-
PD-1) + Chemotherapy

Phase 3 460 OS

NCT05298423 NSCLC
(Stage III)

Pembrolizumab (Anti-PD-1)/
Vibostolimab Coformula‑
tion + Chemotherapy + Tho‑
racic Radiotherapy

Chemotherapy + Thoracic 
Radiotherapy + Durvalumab 
(Anti-PD-L1)

Phase 3 784 PFS, OS

NCT03288870 NSCLC
(Stage IIIB/TNM Stage 4)

BCD-100 (Anti-PD-1) mono‑
therapy

Docetaxel monotherapy Phase 2
Phase 3

218 OS

NCT03150875 NSCLC
(Advanced/Metastatic)

IBI308 (Anti-PD-1) Docetaxel Phase 3 290 OS

NCT03922997 NSCLC
(Advanced/Metastatic)

Atezolizumab (Anti-PD-L1) / Phase 3 101 SAER

NCT02504372 NSCLC
(Stage IB/II-IIIA)

Pembrolizumab (Anti-PD-1) Placebo Phase 3 1177 DFS

NCT03285763 NSCLC
(Advanced/Metastatic)

Atezolizumab (Anti-PD-L1) / Phase 4 619 PAEs

NCT03949231 HCC
(Advanced)

PD1/PDL1 inhibitor hepatic 
artery infusion

PD1/PDL1 inhibitor vein 
infusion

Phase 3 200 OS

NCT04738487 NSCLC Pembrolizumab (Anti-
PD-1) + Vibostolimab (Anti-
PD-1)

Pembrolizumab (Anti-PD-1) Phase 3 1246 OS, PFS

NCT04331626 NSCLC
(Metastatic)

Nivolumab (Anti-PD-1) + Low-
dose Gemcitabine

/ Phase 4 50 ORR

NCT04205812 NSCLC
(Metastatic)

Retifanlimab (Anti-
PD-1) + Chemotherapy

Placebo + Chemotherapy Phase 3 530 PFS, OS

NCT03594747 NSCLC
(Advanced)

Tislelizumab (Anti-
PD-1) + Carboplatin + Pacli‑
taxel
Tislelizumab (Anti-
PD-1) + Carboplatin + Nab-
Paclitaxel

Carboplatin + Paclitaxel Phase 3 360 PFS

NCT03663205 NSCLC
(Advanced)

Tislelizumab (Anti-
PD-1) + Platinum + Pem‑
etrexed

Cisplatin/Carboplatin + Pem‑
etrexed

Phase 3 334 PFS

NCT04702009 NSCLC
(Advanced)

Anti-PD-1/PD-L1 Anti‑
body + Chemother‑
apy + Bronchoscopy-assisted 
Interventional Therapy

Anti-PD-1/PD-L1 Monoclonal 
Antibody + Chemotherapy

Phase 2
Phase 3

80 ORR

NCT03178552 NSCLC
(Unresectable/Advanced/
Metastatic)

Cohort A: Alectinib 600 Mil‑
ligrams (mg)
Cohort B: Dose Finding Phase 
(DFP) Alectinib
Cohort B: Dose Expansion 
Phase (DEP) Alectinib
Cohort C: Atezolizumab (Anti-
PD-1)1200 mg
Cohort D: Entrectinib 600 Mil‑
ligrams (mg)
Cohort E: Atezolizumab 
(Anti-PD-1), Vemurafenib, and 
Cobimetinib
Cohort F: Atezolizumab (Anti-
PD-1), Bevacizumab, Carbopl‑
atin, and Pemetrexed

Cohort C: Pemetrexed, Cispl‑
atin or Carboplatin
Cohort C: Gemcitabine, Cispl‑
atin or Carboplatin

Phase 2
Phase 3

700 PFS, TIR, ORR
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Table 5  (continued)

NCT number Conditions Experimental arms Control arm Phases Enrollment Primary 
outcome 
measures

NCT03976375 NSCLC
(Metastatic)

Pembrolizumab (Anti-
PD-1) + Lenvatinib (Anti-VEGF, 
Anti-FGFR, Anti-PDGFRα)
Lenvatinib (Anti-VEGF, 
Anti-FGFR, Anti-PDGFRα) 
Monotherapy

Docetaxel Phase 3 405 OS, PFS

NCT04921358 NSCLC
(Advanced/Metastatic)

Tislelizumab (Anti-
PD-1) + Sitravatinib (Anti-AXL, 
Anti-MER, Anti-VEGFR2, 
Anti-tPDGFR, Anti-KIT, Anti-
RET, Anti-MET, Anti-DDR2, 
Anti-TRKA)

Docetaxel Phase 3 420 OS, PFS

NCT03906071 NSCLC
(Advanced/Metastatic)

Nivolumab (Anti-PD-1) + Sitra‑
vatinib (Anti-AXL, Anti-MER, 
Anti-VEGFR2, Anti-tPDGFR, 
Anti-KIT, Anti-RET, Anti-MET, 
Anti-DDR2, Anti-TRKA)

Docetaxel Phase 3 532 OS

NCT03829332 NSCLC
(Metastatic)

Pembrolizumab (Anti-
PD-1) + Lenvatinib (Anti-VEGF, 
Anti-FGFR, Anti-PDGFRα)

Pembrolizumab (Anti-
PD-1) + Placebo

Phase 3 623 OS, PFS

NCT04157985 NSCLC
HCC
(Advanced)

Discontinue Treatment with 
PD-1/PD-L1-1 inhibitor

Continue Treatment with 
PD-1/PD-L1 inhibitor

Phase 3 578 PFS

NCT04229355 HCC
(Unresectable/Advanced)

DEB-TACE + Sorafenib
DEB-TACE + Lenvatinib 
(Anti-VEGF, Anti-FGFR, Anti-
PDGFRα)

DEB-TACE + PD-1 inhibitor Phase 3 90 PFS

NCT03062358 HCC (Advanced) Pembrolizumab (Anti-
PD-1) + BSC

Placebo + BSC Phase 3 454 OS

NCT05307926 HCC
(Recurrent)

PD-1 inhibitor TACE Phase 2
Phase 3

655 DFS, TEAEs

NCT03867084 HCC Pembrolizumab (Anti-PD-1) Placebo Phase 3 950 RFS, OS

NCT04167293 HCC
(Early)

SBRT + Sintilimab (Anti-PD-1) SBRT Phase 2
Phase 3

116 PFS

NCT04709380 HCC (Advanced) Radiotherapy + Toripalimab 
(Anti-PD-1)

Sorafenib Phase 3 85 TPP

NCT03605706 HCC (Advanced) SHR-1210(Anti-PD-1) + FOL‑
FOX4

SHR-1210(Anti-PD-1) + Pla‑
cebo

Phase 3 396 OS

NCT03713593 HCC
(Advanced)

Lenvatinib (Anti-VEGF, Anti-
FGFR, Anti-PDGFRα) + Pem‑
brolizumab (Anti-PD-1)

Lenvatinib (Anti-VEGF, Anti-
FGFR, Anti-PDGFRα) + Pla‑
cebo

Phase 3 750 PFS, OS

NCT03764293 HCC
(Unresectable/Advanced/
Metastatic)

SHR-1210 (Anti-PD-1) + Apat‑
inib (Anti-VEGFR2)

Sorafenib Phase 3 543 OS, PFS

NCT05313282 HCC
(Advanced)

Hepatic Arterial Infusion 
combined with Apatinib 
(Anti-VEGFR-2) and Camreli‑
zumab (Anti-PD-1)

Apatinib (Anti-
VEGFR-2) + Camrelizumab 
(Anti-PD-1)

Phase 3 140 PFS

NCT03427827 NPC
(Advanced)

Camrelizumab (Anti-PD-1) BSC Phase 3 442 FFS

NCT04376866 NPC
(Recurrent)

CCRT + Toripalimab (Anti-
PD-1)

CCRT​ Phase 3 204 OS

NCT04778956 NPC
(Resectable/Recurrent)

Toripalimab (Anti-PD-1) + Sal‑
vage Surgery

Salvage Surgery Phase 3 218 DFS

NCT04453813 NPC
(Recurrent)

Toripalimab (Anti-
PD-1) + Concurrent Chemora‑
diotherapy

Concurrent Chemoradio‑
therapy

Phase 3 226 PFS
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heterogeneities and orchestration between STIE and 
TIME, before and after treatment with PD-1 inhibitors, 
the impacts of metabolic neural pathways on TIME, their 
overall influences on the immune microenvironment, 
and individual effect of traditional cancer treatment like 
immune modulating radiotherapy. Studying the TIME 
of tumor in situ and metastatic sites, along with STIE in 
blood, is opening a big door for the mechanism of tumor 
progression and overall cancer treatment. Looking for 
the key factors in STIE and TIME may identify pathway 
to improve the treatment efficiency of PD-1 inhibitors. 
As more clinical trials continue, effective combination of 
radiotherapy and immunotherapy will continue to make 
great breakthroughs. More trial evidence with STIE cor-
relative studies is needed to determine the sequence and 
timing of treatment for maximal clinical benefits.

Questions and future directions
Although new technologies single-cell multi-omics 
may solve many problems, cancer immunotherapy still 
faces many challenges. (1) When to use single-cell tran-
scriptomic and spatial transcriptomic techniques to 
evaluate therapeutic effects of radiotherapy, surgery, 

chemotherapy, and immunotherapy as Fig. 6 shown? (2) 
Does PD-1 inhibitor immunotherapy alone or combined 
with other therapy could reshape STIE and TIME in the 
same direction? Do TIME and STIE reshape similarly 
in all cancer patients, and under all various conditions? 
(3) How to design inhibitors against the key targets in 
STIE and TIME to improve the treatment efficiency of 
PD-1 inhibitors? As the STIE and TIME may have oppo-
site directions in anti-tumor therapy as Fig.  1 shown, 
biomarker-guided precision strategies should be consid-
ered. (4) For brain metastases which is associated with 
large-scope of STIE and TIME plus the blood–brain bar-
rier, how to apply single-cell transcriptomic and spatial 
transcriptomic techniques to evaluate the key changes 
of nerve-related genes for improving tumor immuno-
therapy? In response to these problems, strategies of 
collecting full spectrum of data in STIE and TIME with 
inclusion of clinical patient and treatment details as 
illustrated in Fig.  7 will maximize the learning. As the 
expensive application of the single-cell transcriptomic 
and spatial transcriptomic techniques, mounts of inte-
grated data from different centers are commonly used in 
one study to verify new findings. What’s more, single-cell 

Table 5  (continued)

NCT number Conditions Experimental arms Control arm Phases Enrollment Primary 
outcome 
measures

NCT03907826 NPC
(Recurrent)

PD-1 antibody + Chemoradio‑
therapy (IMRT + GP)

Chemoradiotherapy 
(IMRT + GP)

Phase 3 212 OS

NCT04907370 NPC
(Advanced)

Toripalimab (Anti-
PD-1) + Induction Chemo‑
therapy + IMRT

Toripalimab (Anti-
PD-1) + Induction Chemo‑
therapy + CCRT​

Phase 3 520 FFS

NCT04557020 NPC
(Advanced)

PD-1 antibody + Chemo‑
therapy + IMRT

Chemotherapy + IMRT Phase 3 200 PFS

NCT03700476 NPC
(Advanced)

Sintilimab (Anti-
PD-1) + Chemother‑
apy + IMRT

Chemotherapy + IMRT Phase 3 425 FFS

NCT05097209 NPC
(Advanced)

Camrelizumab (Anti-
PD-1) + Chemother‑
apy + IMRT

Chemotherapy + IMRT Phase 3 458 PFS

NCT05340491 NPC
(Recurrent)

Chemotherapy + IMRT Chemotherapy + IMRT Phase 3 212 OS

NCT04453826 NPC
(Stage IVa, Stage II-III)

Camrelizumab (Anti-
PD-1) + chemoradiotherapy 
arm

Chemoradiotherapy alone Phase 3 388 PFS

NCT04890522 NPC
(Metastatic)

Triprilimab (Anti-PD-1) + Cis‑
platin + 5-Fluorouracil

Triprilimab (Anti-PD-1) + Cis‑
platin + Gemcitabine

Phase 2
Phase 3

622 OS, PFS

NCT05342792 NPC
(T4N + or TanyN2-3M0)

PD-1 antibody + Metronomic 
Capecitabine (Chemotherapy)

Metronomic Capecitabine 
(Chemotherapy)

Phase 3 556 FFS

NCT02611960 NPC
(Recurrent/Metastatic)

Pembrolizumab (Anti-PD-1) Capecitabine + Gemcit‑
abine + Docetaxel (Chemo‑
therapy)

Phase 3 233 OS

BSC best supportive car, DFS disease-free survival, EFS event-free survival, ORR objective response rate, OS overall survival, PAEs percentage of participants with 
adverse events, PFS progression-free survival, RFS recurrence-free survival, TEAEs incidence of treatment-emergent adverse events, TIR time in response, TTP time to 
progression, SAER serious adverse event incidence rates, SBRT stereotactic body radiotherapy, 3D-CRT​ three-dimensional conformal radiation therapy, IMRT intensity-
modulated radiation therapy, CCRT​ concurrent chemoradiotherapy
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experiments suffer from “drop out” events due to the ran-
domness of gene expression and the failure of RNA cap-
ture or amplification during the sequencing process. It is 
necessary to use methods such as “Harmony,” “LIGER,” 
and “Seurat 3” to eliminate batch effects [269]. In addi-
tion, mining the informative single-cell transcriptomic 
and spatial transcriptomic data is a big challenge for 
researchers; new analysis tools such as artificial intelli-
gence (AI) technology such as deep learning are needed. 
Nevertheless, we believe that reshaping the STIE and 
TIME in advanced solid tumors provides a promising 
approach to enhance efficacy of the immunotherapy. It is 
encouraging to note that there are a significant number 
of clinical trials of anti-PD-1/PD-L1 ongoing, with exam-
ple lists of phase III–IV trials in lung cancer, hepatocel-
lular carcinoma, and nasopharyngeal carcinoma shown 
in Table  5. With all of these, plus collaborations among 
multidisciplinary investigators from clinical bedside to 
the basic benchside, and researchers crossing fields from 
computer science, biologist, dosimetrist, and physics, we 
will advance the field to a new horizon of success.
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