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Abstract 

Mitochondria are essential for tumor growth and progression. However, the heavy demand for mitochondrial activity 
in cancer leads to increased production of mitochondrial reactive oxygen species (mtROS), accumulation of muta-
tions in mitochondrial DNA, and development of mitochondrial dysfunction. If left unchecked, excessive mtROS can 
damage and unfold proteins in the mitochondria to an extent that becomes lethal to the tumor. Cellular systems have 
evolved to combat mtROS and alleviate mitochondrial stress through a quality control mechanism called the mito-
chondrial unfolded protein response (UPRmt). The UPRmt system is composed of chaperones and proteases, which 
promote protein folding or eliminate mitochondrial proteins damaged by mtROS, respectively. UPRmt is conserved 
and activated in cancer in response to mitochondrial stress to maintain mitochondrial integrity and support tumor 
growth. In this review, we discuss how mitochondria become dysfunctional in cancer and highlight the tumor-pro-
moting functions of key components of the UPRmt.
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Introduction
As cancer cells undergo uncontrolled proliferation, these 
cells develop a number of vulnerabilities that require pro-
tection by key support systems [1, 2]. Mitochondria, in 
particular, contribute to growth and survival throughout 
the various stages of cancer [3]. However, mitochondria 
also undergo genetic alterations resulting in a dysfunc-
tional electron transport chain, which generate excessive 
levels of mitochondrial reactive oxygen species (mtROS) 
(Fig.  1) [4–6]. Under physiological conditions and dur-
ing the early stages of disease, mitochondria produce 
moderate levels of mtROS that are beneficial to cellular 
growth and survival. However, as mitochondrial dysfunc-
tion worsens, levels of mtROS can exceed the tolerable 

threshold and become lethal to tumor cells [7–9]. The 
mtROS promote unfolding and aggregation of mitochon-
drial proteins, leaving mitochondria in an increasingly 
fragile and dysfunctional state [4–6].

The mitochondrial unfolded protein response (UPRmt), 
a mitochondrial stress response observed in C. elegans 
and mammalian system [10, 11], serves as an important 
support system in cancer by maintaining mitochondrial 
integrity and promoting tumor growth [12, 13]. UPRmt 
activates a series of chaperones and proteases that allevi-
ate the damaging effects of mtROS. Increasing evidence 
suggests that the UPRmt is conserved between C. elegans 
and mammals [14].

The current review elaborates the development of 
mitochondrial dysfunction in cancer and discusses how 
mitochondrial dysfunction and elevated mtROS benefit 
tumor growth. We discuss the ability of UPRmt to prevent 
functional decline of mitochondria in supporting tumor 
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growth and progression (Figs. 1 and 2). In examining how 
UPRmt preserves mitochondrial health, we discuss the 
individual functions of UPRmt components, their associa-
tions with clinical outcomes, and their tumor-promoting 
roles.

Non‑oncogene addiction
Targeting of oncogenes has always been an enticing 
approach in cancer therapy [15]. Oncogenes such as 
rat sarcoma virus (RAS) [16], myelocytomatosis (MYC) 
[17], and epidermal growth factor receptor (EGFR) [18] 
serve as key drivers of tumor initiation and growth [19, 
20]. However, we often overlook the importance of sup-
port systems that maintain the tumorigenic state. As 
cancer cells undergo rapid proliferation, cancer cells bear 
genetic alterations that produce multiple stress pheno-
types including DNA damage stress, mitotic stress, meta-
bolic stress, oxidative stress, and proteotoxic stress [1, 2]. 
These vulnerabilities, if left unchecked, can be lethal to 
tumor viability. In order to overcome these challenges, 

stress response pathways are recruited to alleviate stress, 
allow cell survival, and promote tumor progression. The 
genes associated with stress response may not neces-
sarily have the classical features of oncogenes, such as 
activating mutations or overexpression that can directly 
induce carcinogenesis, and are therefore referred to as 
non-oncogenes [21]. Nonetheless, these non-oncogenes 
are fundamental to tumor maintenance and the increased 
reliance of cancer cells upon these non-oncogenes is 
referred to as “non-oncogene addiction” [21].

The current review focuses on the vulnerability of 
mitochondria in cancer cells. Extensive ROS produc-
tion by mitochondria along with other events such as 
alterations in the antioxidant system leads to oxida-
tive stress in cancer cells [22]. Reactive oxygen spe-
cies (ROS) then induce the unfolding/misfolding and 
aggregation of proteins within the mitochondrion 
to propagate proteotoxic stress [23, 24]. Genes of a 
mitochondria-specific stress response, known as the 
UPRmt, relieve the constant oxidative and proteotoxic 

Fig. 1  Mitochondrial dysfunction develops in aging cells and cancer cells. Increased mitochondrial activity in cancer cells leads to an increased 
production of mtROS. Over time, mtROS damage mtDNA and cause the accumulation of mutations in mtDNA. This leads to further increases in 
mtROS, which eventually give way to mitochondrial dysfunction. Thereafter, a vicious cycle occurs in which mitochondrial dysfunction increases 
mtROS and leads to a deeper state of mitochondrial dysfunction. Cancer cells can utilize dysfunctional mitochondria to promote tumor growth and 
progression
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stress present in mitochondria. In doing so, activa-
tion of UPRmt functions as a form of non-oncogene 
addiction in cancer. The following section describes 

how mitochondria become dysfunctional in cancer, 
yet continue to contribute to cancer progression, and 

Fig. 2  Mitochondrial unfolded protein response (UPRmt) is proposed to mediate mitochondrial maintenance in cancer. Cancer cells develop 
mitochondrial dysfunction due to increased accumulation of mtDNA and mtROS relative to non-malignant cells. Although mtROS can be beneficial 
to cell growth, excess mtROS can damage proteins and further propagate oxidative and proteotoxic stress in the mitochondria. The UPRmt system 
refolds proteins so that they return to their proper conformation or cleaves such proteins. This preserves mitochondrial integrity and prevents 
mitochondrial apoptosis
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highlights the specific vulnerabilities that pressure 
mitochondria to increasingly rely upon UPRmt.

Mitochondrial dysfunction and cancer
Mitochondria are key organelles critical for fulfilling the 
bioenergetic and biosynthetic needs of the cellular sys-
tem [25]. Mitochondria contain their own genome, which 
encodes for 13 proteins, 22 tRNAs, and 2 rRNAs [26]. All 
13 mitochondrial gene-encoded proteins are part of the 
oxidative phosphorylation (OXPHOS) Complexes in the 
electron transport chain (ETC) that facilitate ATP pro-
duction [27]. Mitochondria are highly dynamic networks 
that perform fusion and fission to: allow communication 
and distribution of resources between mitochondrial 
compartments, preserve genomic integrity, and maintain 
mitochondrial homeostasis [28, 29]. The mitochondrial 
metabolism also generates oncometabolites such as (R)-
2-hydroxyglutarate (2-HG) via isocitrate dehydrogenase 
(IDH) mutation in acute myeloid leukemia (AML), suc-
cinate via mutation succinate dehydrogenase (SDH), and 
fumarate via mutation in fumarate hydratase (FH), which 
promote tumor growth and progression [3, 30, 31]. The 
following sections will elaborate on how the accumu-
lation of mutations in mitochondrial DNA (mtDNA) 
and increases in mitochondrial reactive oxygen species 
(mtROS) contribute to the development of mitochondrial 
dysfunction in cancer [23], and how mitochondrial dys-
function propagates the growth and survival of cancer 
cells (Figs. 1 and 2).

Mitochondrial ROS production and mitochondrial 
mutagenesis
Mitochondria are a major source of ROS, due to the 
activity of protein complexes of the ETC [4, 32]. Within 
the ETC, the transfer of electrons between complexes is 
coupled with the movement of protons across the inner 
mitochondrial membrane to generate an electrochemical 
proton gradient that drives ATP synthesis [33]. During 
this process, electrons can leak from the ETC complexes 
and interact with oxygen to form mtROS such as super-
oxide, hydrogen peroxide, and hydroxyl radicals [4, 5]. In 
addition, enzymes of the tricarboxylic acid (TCA) cycle 
located in the mitochondrial matrix also contribute to 
mtROS production. For example, 2-oxoglutarate dehy-
drogenase, branched-chain 2-oxoacid dehydrogenase, 
pyruvate dehydrogenase complexes, glycerol-3-phos-
phate dehydrogenase (mGPDH), electron-transferring 
flavoprotein–ubiquinone oxidoreductase (ETF-QOR), 
dihydroorotate dehydrogenase (DHODH), and p66shc/
cytochrome c system produce superoxide and hydrogen 
peroxide [34, 35]. These highly reactive species can pro-
mote oxidative damage to surrounding proteins, lipids, 

and DNA [36], but are rapidly quenched by antioxidant 
enzymes under most circumstances [37].

As an organism ages, mtDNA suffers extensive oxida-
tive damage due to the proximity of mtDNA to mtROS 
production [38]. The lack of protection by histones and 
deficiency in DNA repair mechanisms relative to nuclear 
DNA further lead to the vulnerability of mtDNA [39]. As 
a result, mtDNA undergoes a greater rate of mutations 
compared to nuclear DNA. The accumulation of muta-
tions, including point mutations, insertions, deletions, 
and alterations in mtDNA copy number [40], further 
exacerbates mtROS generation, leading to a self-enforc-
ing cycle of mtDNA damage and mtROS production 
[41]. These ongoing activities ultimately result in a state 
of mitochondrial dysfunction in which various functions 
of the mitochondria, including electron transfer by the 
ETC and ATP production, are impaired during the aging 
process [6, 42]. Cancer cells develop mitochondrial dys-
function in a similar fashion (Fig.  1) [6]. The increased 
mitochondrial activity required by cancer cells leads to 
increased production of mtROS. This results in elevated 
levels of oxidative damage and mtDNA mutations, lead-
ing to mitochondrial dysfunction. A vicious cycle devel-
ops in which mitochondrial dysfunction aggravates 
mtROS generation, leading to further mitochondrial 
dysfunction (Fig.  1). However, as we will discuss in the 
following sections, cancer cells use the mitochondrial 
dysfunction to their advantage throughout the progres-
sion of cancer [43].

The role of mitochondria in tumorigenesis
Although the link between mitochondrial dysfunc-
tion and tumorigenesis is not fully clear, some evidence 
points to the role of mitochondrial dysfunction and oxi-
dative stress in malignant transformation. Severe muta-
tions in the tRNALys gene of mtDNA (m.8363G > A) that 
critically disrupt the ETC do not support tumorigenesis, 
but mutations in the MT-ND1 (m.3460G > A), MT-ND4 
(m.11778G > A) and MT-ND6 (m.14484 T > C) of mtDNA 
that mildly impair the ETC promote mild mitochondrial 
dysfunction and support tumorigenesis [44]. Mutations 
in the ATP synthase subunit 6 gene (ATP6) in mtDNA 
can increase superoxide production from Complexes I, 
II, and III to provide an advantage in early tumor growth 
[45]. The T8993G mutation in ATP6 specifically favors 
tumorigenicity in prostate cancer (PCa) [46]. A hetero-
plasmic mutation in the NADH dehydrogenase subunit 5 
gene (ND5), identified in colorectal tumors [47], disrupts 
the synthesis of the ND5 subunit of Complex I and sub-
sequently hinders the proper assembly of Complex I. This 
causes an increase in mtROS levels and enhanced tumo-
rigenicity [48]. Furthermore, increases in mtROS due to 
the Kirsten rat sarcoma virus (KRAS) drive the formation 
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of pancreatic precancerous lesions [49]. Overall, key fea-
tures of mitochondrial dysfunction, mutations in mtDNA 
and increases in mtROS, appear to support tumor devel-
opment as early as the tumor initiation stage.

Mitochondrial ROS and cellular signaling
Mitochondrial ROS show beneficial effects in cancer cells 
via direct induction of multiple signaling events for cell 
growth. For example, hydrogen peroxide can inactivate 
the tumor suppressor phosphatase and tensin homolog 
(PTEN) by oxidizing its essential cysteine residue in vari-
ous types of cells [50, 51]. This leads to the accumulation 
of phosphatidylinositol 3,4,5-trisphosphate (PIP3) fol-
lowed by signaling through the Ak strain transforming 
(AKT) pathway that promotes the growth and survival of 
cancer cells [50, 52, 53]. Hydrogen peroxide also drives 
tumorigenesis via the AMP-activated protein kinase 
(AMPK) pathway [54] and can inactivate Cdk1-opposing 
phosphatases to allow cyclin-dependent kinase 1 (Cdk1)-
mediated mitotic progression [55]. Production of mtROS 
from Complex III of the ETC is essential for KRAS-
mediated mitogen-activated protein kinase (MAPK)/
extracellular signal-regulated kinase (ERK) signaling 
for cell proliferation and tumorigenicity [56]. Addi-
tionally, mtROS can trigger protein kinase D1 (PKD1), 
thereby activating transcription factors nuclear factor 
kappa B1 (NF-κB1) and NF-κB2 to upregulate EGFR 
signaling [49]. These direct roles of mtROS in activating 
proliferative pathways highlight the tumor-promoting 
role of increased mtROS production by dysfunctional 
mitochondria.

Metabolite formation and tumor growth
Mitochondrial dysfunction increases levels of high-
mobility group box 1 (HMGB1) [57]. HMGB1 is upregu-
lated in cancer and is released into the extracellular space 
to allow interaction with the receptor for advanced glyca-
tion end products (RAGE) [58]. This induces a signaling 
pathway in which RAGE phosphorylates Complex I to 
enhance ATP production [59]. Moderate mitochondrial 
defects due to mtDNA mutations promote integration of 
glutamine into the TCA cycle by conversion of glutamine 
to glutamate, thereby fueling the TCA cycle for the pro-
duction of ATP [60]. During inflammation-associated 
pancreatic tumor development, an increase in mitochon-
drial fatty acid β-oxidation occurs [61]. Elevated fatty acid 
β-oxidation activity has been observed in tumor spheres 
and is associated with increased NADH and FADH2 [62]. 
Therefore, increased fatty acid β-oxidation-mediated 
generation of ROS and altered energy metabolism in 
mitochondria promote tumor growth and progression. 
Overall, dysfunctional mitochondria can increase the 

production of ATP-generating metabolites to meet the 
increased metabolic demands of tumor growth.

Tumor microenvironment and inflammation
Tumor cells in the tumor microenvironment (TME) 
recruit non-malignant cells to promote tumor growth 
and further propagate mitochondrial dysfunction [63, 
64]. Among the non-malignant cells of the TME, inflam-
matory immune cells contribute to mitochondrial dys-
function by directly releasing ROS into the TME [65, 66] 
or secreting pro-inflammatory cytokines [67]. For exam-
ple, macrophages and neutrophils can release various 
forms of ROS to damage the DNA of neighboring cells 
[68]. Likewise, immune cells can secrete factors such as 
tumor necrosis factor alpha (TNF-α), interleukin 1 beta 
(IL-1β), and interferon-gamma (IFN-γ) to alter mito-
chondrial membrane potential, inhibit the ETC, increase 
proton leak, and ultimately stimulate the production of 
mtROS [69–73]. This underscores the idea that mito-
chondrial dysfunction does not always occur due to the 
activity of tumor cells alone, but may involve non-tumor 
cells within the TME.

Adaptation to hypoxia
As tumors grow, the demand for oxygen and nutri-
tion exceeds the availability of sufficient vasculature 
for supporting tumor proliferation. This leads to a state 
of hypoxia in various malignancies [74]. In response, 
hypoxia-inducible factor-1α (HIF-1α) signaling is acti-
vated to continue the growth and survival of the tumor 
[75]. Normally, HIF-1α is destabilized by prolyl hydrox-
ylases (PHDs) in the presence of oxygen [76]. However, 
as oxygen levels decline during hypoxia, PHD activity is 
inhibited and HIF-1α is stabilized [74]. During hypoxic 
conditions, mitochondria generate excess mtROS from 
Complex III of the ETC, promoting the stabilization of 
HIF-1α. [77, 78]. Even respiration incompetent cancer 
cells, due to defects in Complex III, can still produce 
increased mtROS to stabilize HIF-1α during hypoxia 
[79]. Altogether, this indicates that dysfunctional mito-
chondria, despite impairments in ETC, assist in HIF-1α 
stabilization through the production of mtROS.

Mitochondrial DNA mutations and resistance to cell death
Mitochondrial dysfunction also contributes to deficits in 
the cell death pathways. Various mutations in mtDNA 
modulate the apoptotic response. For example, partial 
deletions in mtDNA offer protection against mitochon-
dria-initiated cell death [80]. The previously mentioned 
mutations in ATP6 and ND5 raise the apoptotic thresh-
old of tumor-forming cells, allowing resistance against 
oxidative stress-induced cell death [45, 48]. In  vivo, a 
combination of mtDNA mutations in ND4, ATP6, and 
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16S rRNA genes or in the COI and ND3 genes confers 
resistance to 5-fluorouracil- and cisplatin-induced apop-
tosis [81]. In ovarian cancer, mutations in ND4 lead to 
acquired chemoresistance against paclitaxel and carbopl-
atin [82]. Gefitinib-mediated mitochondrial dysfunction 
in non-small cell lung cancer (NSCLC) cells is proposed 
to aid in the development of drug resistance [83, 84]. 
The G10398A substitution in ND3 produces apoptotic 
resistance to etoposide [85]. Although counterintuitive, 
numerous mutations in the mitochondrial genome actu-
ally enhance the survival of cancer cells [86, 87].

Mitochondrial DNA mutations, mtROS, and metastasis
Metastasis is a process observed in late-stage disease in 
which tumor cells disseminate to secondary sites. Metas-
tasis is the leading cause of mortality in patients [88, 
89]. Mutations in mtDNA, particularly in the ND genes, 
enhance the metastatic activity of cancer cells. In breast 
cancer, the G10398A substitution in ND3 increases 
the number of metastatic foci in the lungs of mice [85]. 
Similarly, missense mutations in breast cancer such as 
C12084T in the ND4 gene and A13966G in the ND5 gene 
are associated with defects in mitochondrial respira-
tion and augmented metastatic potential independent of 
ROS overproduction [90]. Highly metastatic breast can-
cer cells exhibit downregulation of mitochondrial trans-
membrane protein 126A (TMEM126A), which results 
in mitochondrial dysfunction, as shown by altered mito-
chondrial membrane potential and increased mtROS 
[91]. This decrease in TMEM126A has been shown to 
promote epithelial–mesenchymal transition (EMT), 
extracellular matrix (ECM) remodeling, cell adhesion, 
and increased lung metastasis [91]. In lung cancer, the 
G13289A mutation in ND5 increases invasive activ-
ity [92]. G13997A and 13885insC mutations in ND6 
produce defects in Complex I of the ETC, leading to an 
overproduction of mtROS and an increase in the meta-
static potential of lung carcinoma cells [93]. Likewise, 
ND6 nonsense and missense mutations are associated 
with higher rates of lymph node metastases in human 
lung cancer by promoting migratory and invasive activi-
ties [94]. The 13885insC mutation in ND6 is associated 
with the overexpression of metastasis-related genes and 
promotes metastasis in various cancers [95]. In addition, 
a study of cancer stem cells demonstrates that a subset of 
these cells maintain elevated mtROS, which serve to acti-
vate MAPK and promote EMT in order to increase meta-
static potential [62]. Even as tumors approach late-stage 
disease, dysfunctional mitochondria are able to assist in 
tumor development at secondary sites.

Overall, mitochondria contribute to various stages of 
cancer development and progression despite their dys-
functional state [3]. Moreover, cancer cells are able to 

take advantage of the mtDNA mutations and elevated 
mtROS levels associated with mitochondrial dysfunc-
tion to promote growth and survival. However, as cancer 
cells continue to propagate in a highly proliferative man-
ner, mitochondrial dysfunction can worsen and become 
lethal (Figs.  1 and 2) [6]. The resulting increases in oxi-
dative stress due to mtROS lead to further proteotoxic 
stress, which is marked by oxidative damage, protein 
unfolding, and protein aggregation [36, 96]. This leaves 
mitochondria in a fragile state and pushes cells to the 
brink of cell death. To adjust to elevated mtROS, cancer 
cells maintain oxidative status at a level that benefits, but 
does not become toxic to cancer cells [7–9].

Relieving mitochondrial stress 
through antioxidants
Mitochondria rely upon antioxidants to quench mtROS. 
Antioxidant enzymes such as superoxide dismutase 
(SOD), catalase, and glutathione peroxidase scavenge 
excess mtROS [37]. SODs allow the dismutation of 
superoxide radicals into hydrogen peroxide and oxygen. 
Catalases and peroxidases further process hydrogen per-
oxide into water [37]. An enhanced antioxidant response 
is commonly observed in cancer [97]. However, levels 
of individual antioxidants can vary and are, at times, 
lower in tumors compared to normal tissue [98–103]. As 
mtROS levels exceed the capacity of the antioxidant sys-
tem due to mitochondrial dysfunction, another mecha-
nism must be at play in order to preserve mitochondrial 
health.

Relieving mitochondrial stress 
through the mitochondrial unfolded protein 
response (UPRmt)
As mentioned, chronic oxidative stress due to inherent 
mitochondrial dysfunction leads to proteotoxic stress: 
unfolding, misfolding, and aggregation of mitochondrial 
proteins. If left unresolved, the accumulation of protein 
aggregates can further increase oxidative stress, leading 
to a feedback loop that propagates mitochondrial dys-
function [104]. For example, disruption of proteins in 
the ETC enhances the leakage of electrons and leads to 
increased mtROS [105]. The following section will dis-
cuss a mitochondrial stress response, consisting of chap-
erones and proteases, which halts this harmful feedback 
loop by directly targeting proteotoxicity in mitochondria 
(Fig. 2).

Early signs of a mitochondrial stress response
Signs of a mitochondrial stress response involving chap-
erones and proteases emerged as early as 1996, when 
Martinus et  al. discovered that generating mitochon-
dria-specific stress, by depletion of mtDNA, induces the 
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transcriptional activation of mitochondrial chaperones’ 
heat shock protein 60 (HSP60) and heat shock protein 10 
(HSP10) in rat hepatoma cells [11]. Further evidence of 
this mitochondrial stress response was shown by a study 
in which the accumulation of protein aggregates in the 
mitochondrial matrix induced the transcriptional upreg-
ulation of mitochondria-specific genes that code for 
chaperones HSP60 and HSP10, as well as the protease, 
caseinolytic protease (ClpP) [106]. Altogether, these 
chaperones and proteases were shown to reduce mito-
chondrial protein aggregation (Fig. 3) [106].

Various proteins involved in the mitochondrial stress 
response are encoded by the nuclear DNA [11, 106] 
and must be imported into the mitochondria [107, 108]. 
Therefore, mitochondria-to-nucleus communication 
during mitochondrial stress plays a critical role in main-
taining mitochondrial homeostasis or functions. This 
process is known as mitochondrial retrograde signaling, 
in which mitochondria send a signal to the nucleus in 
order to regulate nuclear gene expression and allow mito-
chondrial homeostasis (Fig. 3) [109, 110].

C. elegans  as a model to study UPRmt

The C. elegans model has been integral in understanding 
this mitochondria-specific retrograde stress response, 

now known as the UPRmt. During UPRmt, defective pro-
tein folding in mitochondria transactivates hsp-60 and 
hsp-6, which encode chaperones HSP60 and mitochon-
drial HSP70 (mtHSP70), respectively [111], as well as 
clpp-1, which encodes ClpP. [112]. Using C. elegans, 
Nargund et  al. demonstrated that the transcription fac-
tor ATFS-1 is key to activating the UPRmt response [113]. 
ATFS-1 contains both a nuclear localization sequence 
(NLS) and mitochondrial targeting sequence (MTS). 
Under non-stress conditions, ATFS-1 is imported into 
the mitochondria and is rapidly degraded by the pro-
tease, Lon peptidase 1 (LONP1). However, during mito-
chondrial stress, proteotoxicity impairs protein import 
into the mitochondria and, consequently, ATFS-1 accu-
mulates in the nuclei to induce the expression of a broad 
variety of genes involved in mitochondrial stress, includ-
ing hsp-60 [113].

Another study by Nargund et  al. used ChIP-Seq to 
identify 381 genes induced by ATFS-1 during mitochon-
drial stress [114]. Of these genes, ATFS-1 interacts with 
70 of their corresponding promoters. Notably, ATFS-1 
binds and suppresses mtDNA-encoded OXPHOS genes 
in both the nuclear and mitochondrial genomes. Concur-
rently, ATFS-1 binds promoters of NADH ubiquinone 
oxidoreductase assembly factors to aid in ETC complex. 

Fig. 3  Hypothetical model of the mitochondrial unfolded protein response (UPRmt) signaling in cancer. Mitochondrial dysfunction increases mtROS 
(oxidative stress), which damages proteins in the mitochondria and cause the unfolding and aggregation of mitochondrial proteins (proteotoxic 
stress). In response, the transcription factor ATF5 induces the upregulation of mitochondrial components to ease proteotoxic stress. Chaperones 
HSP60, HSP10, and mtHSP70 mediate the refolding of proteins into their proper conformation. Proteases LONP1 and ClpP cleave and dispose of 
any additional damaged proteins that did not undergo processing by HSPs. Together, this system maintains mitochondrial integrity in the face of 
continuous oxidative and proteotoxic stress in cancer
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This indicates that ATFS-1 limits further transcription of 
OXPHOS genes while maintaining OXPHOS complexes 
already present, in order to optimize respiratory activity 
during mitochondrial stress [114]. Protein synthesis in 
the cytoplasm is also reduced during UPRmt [115], pre-
sumably to reduce cell stress. Speculations remained as 
to whether mammalian cells similarly utilize a regulated 
UPRmt system. The individual works of Nargund, Wu, 
Schulz, and Fiorese et al. began to fill this gap in knowl-
edge [10, 14, 113, 116].

Transcription factor ATF5 and the mammalian model of 
UPRmt

Transcriptomic and proteomic analysis later revealed 
strong conservation in the UPRmt response between C. 
elegans, mice, and humans. Genes encoding chaperones 
(Hspd1, Hspe1, Hspa9) and proteases (Clpp, Lonp1) in 
C. elegans also associate with UPRmt homologs in mam-
mals [14]. Over 400 genes were found to be activated in 
the mammalian UPRmt response [14, 113], which can be 
categorized by various functions including mitochondrial 
biogenesis, metabolism, protein folding quality control, 
and ROS detoxification [116]. Recently, Fiorese et  al. 
identified activating transcription factor 5 (ATF5) as the 
mammalian homolog of ATFS-1 [10]. When ATF5 was 
expressed in worms lacking ATFS-1, it induced hsp-60 
during mitochondrial stress but not during endoplasmic 
reticulum (ER) stress, indicating organelle specificity. In 
HEK293T cells, elevated mtROS activated ATF5-medi-
ated transcription of the genes for HSP60, mtHSP70, 
and LONP1. Again, ER chaperones were not induced by 
ATF5 under these conditions. Similar to ATFS-1, ATF5 
contains both an NLS and MTS, allowing ATF5 to shut-
tle between the mitochondria and nucleus during UPRmt. 
Knockdown of ATF5 in HEK293T reduced prolifera-
tion, mitochondrial respiration, and induction of HSP60, 
mtHSP70, and LONP1. Overall, this study highlights 
ATF5 as the transcription factor that specifically medi-
ates mammalian UPRmt and is independent of the ER 
stress response [10].

Other transcription factors in UPRmt

In addition to ATF5, other transcription factors have 
been implicated in the UPRmt. Transcription factor ATF4 
induces the expression of another transcription factor 
CCAAT/enhancer-binding protein (C/EBP) homolo-
gous protein (CHOP) [117, 118]. CHOP, in turn, dimer-
izes with transcription factor C/EBPβ to function as a 
regulator of the mitochondrial stress response [106]. In 
breast cancer, misfolded proteins in the mitochondria 
activate estrogen receptor alpha (ERα), which increases 
the transcription of the intermembrane space protease 
OMI and increases the activities of the proteasome [119]. 

ERα-negative breast cancer cells respond to mitochon-
drial stress by increasing the expression of sirtuin dea-
cetylase 3 (SIRT3), leading to the deacetylation of the 
transcription factor FOXO3a [120]. Forkhead box protein 
O3a (FOXO3a) then translocates to the nucleus to pro-
mote the transcription of antioxidants superoxide dis-
mutase 2 (SOD2) and catalase [120]. Sirtuin deacetylase 
7 (SIRT7) can alleviate protein folding stress in hemat-
opoietic stem cells, partly by inducing the expression of 
canonical UPRmt components including HSP60, HSP10, 
and ClpP [121]. Another transcription factor, heat shock 
factor 1 (HSF1), has been shown to induce the expression 
of UPRmt chaperones in mammalian cells in response to 
mitochondria-specific stress [122].

Altogether, these other arms of UPRmt act in tandem 
to maintain the integrity of the mitochondria. However, 
the transcription factors ATF4, CHOP, C/EBPβ, ERα, 
and HSF1 are also activated during ER stress to pro-
mote endoplasmic reticulum unfolded protein response 
(UPRer) [117, 118, 123–129]. While overlap in the func-
tions of ATF5 between UPRmt and UPRer is expected due 
to the known regulation of ATF5 by CHOP [130] and 
ATF5 having been shown to increase in expression due to 
ER stress [131, 132], studies continue to demonstrate the 
inability of ATF5 to induce chaperones during ER stress 
[10, 133]. Therefore, ATF5 remains to be the only mito-
chondria-specific transcription factor during mitochon-
drial stress and is viewed as the main regulator of UPRmt 
(Fig. 3).

Mitochondrial dysfunction is known to induce ATF5 
transcripts [10, 134, 135] and transactivate UPRmt targets 
downstream of ATF5, due to the various stressors asso-
ciated with mitochondrial dysfunction: mtDNA deple-
tion [11, 111], accumulation of unfolded proteins in the 
mitochondria [106, 119], inhibition of ETC activity [10, 
113, 136], and deficient expression of ETC components 
[111]. ATF5 has been evidenced to transactivate HSP60, 
mtHSP70, and LONP1 [10] and likely induces HSP10 
and ClpP [137] during activation of mammalian UPRmt. 
Mitochondrial chaperones HSP60, mtHSP70, and HSP10 
assist in protein folding and are particularly essential to 
reducing the aggregation of unfolded proteins during 
stress conditions [138]. Mitochondrial proteases LONP1 
and ClpP degrade damaged proteins during this response 
[139, 140]. Digested peptides can then be transported 
by HAF-1, a mitochondrial inner-membrane-localized 
ABC transporter, from the mitochondrial matrix to the 
intermembrane space where they are believed to diffuse 
into the cytoplasm [141]. Between the mitochondrial 
chaperone and protease systems, it is believed that cells 
prefer to utilize chaperones before resorting to proteases 
in order to manage unfolded proteins in the mitochon-
dria [142]. In light of this, we believe that mitochondrial 
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dysfunction in cancer produces a state of chronic mito-
chondrial stress, which then constitutively activates 
ATF5 and upregulates the expression of the UPRmt com-
ponents (Fig. 3).

Roles of the UPRmt components in cancer
UPRmt signaling plays a critical role in cancer [143] 
and requires further investigation to clearly indicate its 
impact on tumor growth and progression. While many 
studies, primarily utilizing C. elegans and sometimes 
mammalian kidney cells, have confirmed the presence 
and function of UPRmt during mitochondrial stress, the 
study of the UPRmt as a whole system has been lacking 
in cancer. However, individual components of UPRmt 
have displayed roles in tumor growth and survival. This is 
unsurprising due to the prevalence of mitochondrial dys-
function and oxidative stress throughout cancer develop-
ment and progression. The following sections will discuss 
the known cancer-specific roles of ATF5 and key UPRmt 
proteins downstream of ATF5: HSP60, HSP10, mtHSP70, 
LONP1, and ClpP.

Activating transcription factor 5 (ATF5)
ATF5, part of the bZip family of transcription factors, 
contains a leucine zipper that allows dimerization with 
ATF5 and other transcription factors, and contains a 
basic N-terminal portion involved in DNA binding [144–
146]. The structure also includes an MTS, nuclear export 
sequence (NES), and NLS. This allows ATF5 to translo-
cate between different cell compartments [10]. ATF5 
must homodimerize or form heterodimers with other 
transcription factors in order to function [146]. Binding 
partners of ATF5 include other ATF5 proteins, as well as 
C/EBPβ [147, 148].

ATF5 is upregulated in glioblastoma [149] as well as 
cancers of the breast [150], pancreas [151], rectum [152], 
and ovaries [153]. High ATF5 expression correlates with 
reduced survival in glioma [154] and lung cancer patients 
[155]. ATF5 expression can be induced by various forms 
of stress: heat shock [156], amino acid depletion [157], 
increases in ROS [10, 131, 158], inhibition of the protea-
some [131], endoplasmic reticulum stress [131, 132], and 
radiation [155].

As a transcription factor, ATF5 regulates the expres-
sion of various anti-apoptotic genes in cancer. For exam-
ple, ATF5 regulates Egr-1 expression in glioma and breast 
cancer cells to mediate proliferation and survival [159]. 
ATF5 transactivates BCL-2 in glioma and breast cancer 
cells to promote survival [160]. In glioblastoma, non-
small cell lung cancer, and pancreatic cancer, ATF5 reg-
ulates the protein expression of deubiquitinase USP9X, 
which, in turn, stabilizes B cell lymphoma 2 (BCL-2) and 
myeloid leukemia 1 (MCL1) [161]. In addition, ATF5 

regulates B cell lymphoma-extra large (Bcl-xL) expres-
sion in glioblastoma cells [161]. Although highly prob-
able, studies have not yet shown the ability of ATF5 to 
regulate the expression of UPRmt components in cancer. 
In the following sections, the pro-tumor functions of 
downstream targets of ATF5 will be examined.

Heat shock protein 60 (HSP60)
Monomers of HSP60 arrange into stacked heptameric 
rings that form a complex with HSP10 and ATP to cre-
ate a classical theorized “football-shaped” structure that 
can envelop misfolded or unfolded proteins and assemble 
them into their proper conformation [162–164]. This is 
particularly essential for mitochondrial proteins, as most 
of these proteins are produced outside of the mitochon-
dria and must be imported into the mitochondria in an 
unfolded state [107, 108]. Interestingly, during the chap-
eronin reaction cycle active single- (half-football) and 
double-ring (football) complexes coexist for the proper 
folding of proteins [164]. The HSP60–HSP10 complex 
is crucial during high oxidative stress, as ROS can also 
directly oxidize mitochondrial proteins to promote pro-
tein aggregation [104, 165]. Indeed, protein aggregation 
has been shown to cause the accumulation of HSP60 in 
the mitochondria [166]. In addition, HSP60 can play a 
role in posttranslational modifications [167].

HSP60 is overexpressed in various cancers. Specifi-
cally, HSP60 is upregulated early in prostate carcino-
genesis [168] and large bowel carcinoma [169], increases 
during the progression of hepatocarcinogenesis [170], 
and indicates a greater risk for progression of urothelial 
tumors of the bladder [171]. High HSP60 levels corre-
late with advanced tumor grade in PCa [172], pancreatic 
cancer [173], and large bowel carcinoma [174]. HSP60 is 
increased in the serum of patients with metastatic colo-
rectal cancer [175], is associated with the presence of 
lymph node metastases in large bowel carcinoma [174], 
and correlates with deep invasion and lymph node 
metastasis in gastric cancer [176]. Furthermore, elevated 
HSP60 levels indicate reduced survival in patients with 
PCa [172], gastric cancer [176], and neuroblastoma [177].

Knockdown of HSP60 decreases cell proliferation in 
pancreatic cancer [173], ovarian cancer [178], breast 
cancer [179], and glioblastoma [180, 181]. And HSP60 
knockdown inhibits tumor growth in xenograft mod-
els of pancreatic cancer [173] and glioblastoma [181]. 
HSP60 knockdown leads to severe deficiencies in mito-
chondrial functions, which hinder cell growth and sur-
vival. For example, in glioblastoma, reduction in HSP60 
increases ROS, which in turn activates the AMPK path-
way to inhibit protein translation and slow cell prolif-
eration [180]. In ovarian cancer, knockdown of HSP60 
suppresses pathways related to OXPHOS and alters 
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metabolic pathways to allow accumulation of adenine, 
which activates the adenine-AMPK pathway, suppresses 
the mammalian target of rapamycin (mTOR) pathway, 
and inhibits cancer progression [178]. In pancreatic can-
cer, HSP60 knockdown reduces the expression of subu-
nits in OXPHOS Complexes I, III, IV, and V, disrupts 
the formation of Complexes I and III, and blocks mito-
chondrial respiration and ATP production [173]. Conse-
quently, diminished ATP deters the phosphorylation of 
Erk1/2 and promotes apoptotic activity [173]. As shown 
in various cancer types, HSP60 associates with cyclophi-
lin D to inhibit cyclophilin D-mediated mitochondrial 
permeability transition [181]. As such, HSP60 knock-
down triggers mitochondrial permeability transition, 
cytochrome c release, and loss of mitochondrial mem-
brane potential [181]. In addition to direct mitochondrial 
functions, HSP60 regulates the expression and release 
of IL-8 in prostate and colon cancers, possibly via trans-
forming growth factor-beta (TGF-β), to enhance cell sur-
vival [182].

Overexpression of HSP60 enhances the migratory and 
invasive abilities of FADU cells and promotes the devel-
opment of metastatic nodules in the lung [183]. The 
increased β-catenin levels and transcriptional activity 
due to HSP60 overexpression are believed to underlie 
this metastatic phenotype. HSP60 directly interacts with 
β-catenin [183]. The transcription factor c‐MYC induces 
overexpression of HSP60, which causes the transforma-
tion of Rat1a cells [184].

HSP60 interacts with various cellular proteins to exert 
biological functions. HSP60 complexes inhibit clusterin 
to promote cell survival in neuroblastoma [185]. HSP60 
can also form a complex with cell cycle and apoptosis 
regulator protein 2 (CCAR2) and bind the anti-apop-
totic protein survivin to promote cell survival [177, 186]. 
HSP60 is involved in hepatocyte growth factor (HGF)-
induced ERK activation to promote cell migration in 
hepatocellular carcinoma [187].

Although HSP60 is best known as a mitochondrial 
chaperone and is predominantly located in the mitochon-
dria in non-malignant cells, non-chaperone activity of 
HSP60 has been reported to be present in the cytoplasm, 
plasma membrane, and extracellular space of cancer cells 
[188–190]. HSP60 accumulates in the cytoplasm dur-
ing apoptosis [188]. Depending on the apoptotic stimuli, 
this can occur with or without mitochondrial release and 
HSP60 can display either pro-apoptotic or pro-survival 
properties, respectively [188]. As a pro-apoptotic protein, 
HSP60 localized in the cytoplasm assists in the cleav-
age and activation of procaspase 3 [188, 191]. As a pro-
survival protein, cytoplasmic HSP60 is known to bind 
and restrain p53 to inhibit p53-dependent upregulation 
of pro-apoptotic Bax [192]. Additionally, cytoplasmic 

HSP60 can directly bind Bax/Bak to block their trans-
location to the mitochondria, and thus, interferes with 
apoptosis [193, 194]. Furthermore, cytoplasmic HSP60 
plays a role in TNF-induced expression of SOD1 and 
Bfl-1/A1, and activation of IKK/NF-κB [195].

Various studies have observed HSP60 on the surface of 
cancer cells [190, 196–198]. HSP60 proteins localized in 
the cell membrane are suggested to play a role in the met-
astatic process [198]. For example, HSP60 can activate 
α3β1 integrin [199], a transmembrane receptor that pro-
motes adhesion of breast cancer cells to metastatic sites 
[200, 201]. HSP60 at the cell surface can also be actively 
exported into the extracellular space by exosomes. 
Exosomes are nanometer-sized membrane vesicles con-
taining protein, lipids, and DNA, which are released into 
the circulation and then taken up by cells in neighboring 
or distant areas as a means of cell–cell communication 
[202, 203]. A study by Campanella et  al. demonstrated 
that HSP60 is present on the cell membrane and exoso-
mal membrane and in the Golgi apparatus of cancer cells 
[189]. They propose a process by which HSP60 present at 
the cell membrane is internalized by lipid rafts and pack-
aged into multivesicular bodies (MVB) for secretion via 
exosomes. The Golgi apparatus can assist in transferring 
cytoplasmic HSP60 into MVB or releasing them from the 
cell as free, soluble HSP60 [189]. HSP60 can be modi-
fied by glycosylation in the endoplasmic reticulum before 
release, presumably affecting the immunological prop-
erties of HSP60 [204]. Overall, exosomal release allows 
proximate and distant circulation of HSP60.

Interestingly, HSP60 is not overexpressed in all cancers 
and does not necessarily associate with a poor progno-
sis in patients. For example, HSP60 is downregulated in 
bronchial cancer [205], colorectal cancer [206], clear cell 
renal cell carcinoma [207], and hepatocellular carcinoma 
[208]. Interestingly, patients with esophageal squamous 
cell carcinoma [209], clear cell renal cell carcinoma [210], 
and hepatocellular carcinoma [208] experience better 
survival rates when their tumors display elevated expres-
sion of HSP60. Furthermore, overexpression of HSP60 
suppresses cell proliferation in clear cell renal cell carci-
noma [207] and inhibits invasive activity in hepatocel-
lular carcinoma [208]. This highlights the multimodal 
functions of HSP60 across various cancers.

Heat shock protein 10 (HSP10)
Compared to HSP60, less is known about the HSP60 
binding partner HSP10. HSP10 is overexpressed in astro-
cytoma [211], oral squamous cell carcinoma [212], naso-
pharyngeal carcinoma [213], large bowel carcinoma [169, 
174]. HSP10 is upregulated early during prostate tumo-
rigenesis [168], and levels of HSP10 have been shown 
to increase throughout the progression of large bowel 
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carcinoma [169]. HSP10 correlates with pathological 
grade in oral squamous cell carcinoma [212] and naso-
pharyngeal carcinoma [213], lymph node metastasis in 
oral squamous cell carcinoma [212], nasopharyngeal 
carcinoma [213], and large bowel carcinoma [174], and 
recurrence in astrocytoma [211]. High HSP10 is associ-
ated with reduced overall survival in astrocytoma [211], 
oral squamous cell carcinoma [212], and nasopharyngeal 
carcinoma [213].

Mitochondrial heat shock protein 70 (mtHSP70)
Mitochondrial heat shock protein 70 (mtHSP70) is a 
member of the HSP70 chaperone family and is predomi-
nantly located in the mitochondria [214]. It contains 
a nucleotide-binding domain and a substrate-binding 
domain [215]. Similar to HSP60, mtHSP70 holds a role 
in housekeeping and mediates the refolding of unfolded 
proteins [216]. Multiple studies highlight the protective 
effect of mtHSP70 on cancer cells and thereby increasing 
malignancy in cancer.

The chaperone mtHSP70 is upregulated in melanoma 
[217] as well as cancers of the liver, kidney, thyroid, 
breast, brain, ovary, lung, and colon [218–223]. Expres-
sion levels of mtHSP70 correlate with various clinical 
features. For example, increased expression of mtHSP70 
in breast cancer indicates higher histological grade 
and decreased survival [224]. Furthermore, mtHSP70 
is increased in invasive ductal carcinoma relative to 
ductal carcinoma in situ and correlates with lymph node 
metastasis [224]. Similarly, in both hepatocellular carci-
noma and non-small cell lung cancer, elevated levels of 
mtHSP70 are associated with advanced tumor stage, 
metastasis, and reduced overall survival [220, 223, 225].

Knockdown of mtHSP70 inhibits proliferation, migra-
tion, and invasion of various cancer lines [218, 222, 225]. 
Notably, studies in neuroblastoma indicate that reduction 
in mtHSP70 is associated with Drp-1-dependent mito-
chondrial fragmentation [226]. Furthermore, mtHSP70 
knockdown leads to diminished levels of p‐ERK1/2, p‐c‐
Raf [222], the receptor tyrosine kinase RET (rearranged 
during transfection), and anti-apoptotic proteins, Bcl-2, 
Bcl-xL, and Mcl-1 [218].

Overexpression of mtHSP70 induces malignant trans-
formation of fibroblasts, enhancing proliferation and 
tumor formation in mice [227]. In breast cancer, aug-
menting mtHSP70 increases the levels of stemness mark-
ers such as ATP-binding cassette transporter G2 protein 
(ABCG2), octamer-binding transcription factor 4 (OCT-
4), CD133 and enhances resistance to chemotherapy 
[228]. In addition, overexpression of mtHSP70 supports 
EMT transition and metastatic activity in breast cancer.

Elevated mtHSP70 downregulates epithelial mark-
ers, upregulates mesenchymal markers, and increases 

the migratory and invasive abilities of breast cancer cells 
[221, 228, 229].

Mitochondrial HSP70 can bind various proteins to pro-
duce an anti-apoptotic response. For example, mtHSP70 
interacts with p53 in response to stressors such as cispl-
atin [230]. During stress, mtHSP70 binds and prevents 
nuclear accumulation of tumor suppressor p53, thereby 
suppressing the transactivation of pro-apoptotic gene 
targets [231–233]. In response to mtHSP70 knockdown, 
hepatocellular carcinoma cells undergo p53-mediated 
apoptosis [230]. On the other hand, in HepG2, a cell line 
that lacks mtHSP70-p53 interactions, interference with 
mtHSP70 expression has no effect on cell viability [230].

ERK phosphorylates HIF-1α to increase nuclear trans-
location and promote its transcriptional activity [234]. 
During hypoxia, if ERK is inactive and unable to phos-
phorylate HIF-1α, mtHSP70 binds and localizes HIF-1α 
to the outer membrane of the mitochondria [235]. HIF-
1α then associates with voltage-dependent anion-selec-
tive channel 1 (VDAC1) and hexokinase-II (HK-II) to 
prevent apoptosis and promote survival. This mechanism 
has been shown to protect HeLa cells from etoposide- 
and doxorubicin-induced death [235].

Interactions between mtHSP70 and other protein tar-
gets have also been reported in cells with BRAF muta-
tions. In this setting, deregulated MEK-ERK signaling 
increases interactions between adenine nucleotide trans-
locase 3 (ANT3) and peptidyl-prolyl isomerase cyclo-
philin D, greatly increasing mitochondrial permeability 
and promoting mitochondria-mediated cell death [236]. 
However, mtHSP70 directly interacts with ANT3 to 
inhibit ANT3–cyclophilin D interactions and secure cell 
survival [236]. In addition, mtHSP70 can help overcome 
v-raf murine sarcoma viral oncogene homolog (BRAF) 
mutation-induced growth arrest signaling by inhibiting 
Raf-induced MEK/ERK activity through inhibition of 
MEK1/2 protein expression and ERK1/2 phosphorylation 
[217].

Interestingly, mtHSP70 has also been reported to form 
complexes with HSP60 [237], although the function of 
this complex remains to be fully elucidated. However, it is 
possible that this study has detected a transient interac-
tion in which HSP60 is mediating the folding of mtHSP70 
that has been recently imported into the mitochondria.

Lon peptidase (LONP1)
As mitochondrial proteins undergo folding, they are 
prone to aggregation. This is especially true in the pres-
ence of oxidative stress [238–240]. LONP1, which is 
composed of a hexagonal cylinder with a large, unfolding, 
and degradation chamber [241], acts as a protease that 
cleaves aggregates into short peptides that are cleared 
from the mitochondria. In doing so, LONP1 maintains 
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mitochondrial proteostasis [142]. LONP1 does not 
appear to degrade folding intermediates of mitochondrial 
matrix proteins, indicating that mitochondria preferen-
tially utilize chaperones to prevent aggregates and restore 
protein functions. Proteolytic actions are taken only as a 
final measure.

LONP1 is upregulated in melanoma [242], prostate 
cancer [243], pancreatic cancer [244], and colorectal 
cancer [242]. Notably, LONP1 increases during colorec-
tal cancer progression and is particularly increased in 
colorectal samples with mutated p53 or β-catenin [245]. 
Additionally, hypoxia increases LONP1 expression in 
PCa [243]. High expression of LONP1 correlates with 
reduced overall survival in neuroblastoma, breast cancer, 
colorectal cancer, renal cell carcinoma [243], and meta-
static cohorts of melanoma [242].

Knockdown of LONP1 leads to reduced proliferation 
in melanoma [242], colorectal cancer [242], pancreatic 
cancer [244], and PCa cells [243]. In vivo, LONP1 knock-
down inhibits the growth of prostate [243] and colorec-
tal tumors [242] and inhibits the formation of metastatic 
lesions from primary prostate [243] and melanoma 
tumors [242]. A deficiency in LONP1 expression in mice 
inhibits the formation and growth of azoxymethane- and 
dextran sulfate-induced colorectal tumors [242]. Simi-
larly, these animals are also resistant to 12-dimethylben-
zanthracene and tetradecanoylphorbol acetate (DMBA/
TPA)-induced skin papilloma [242]. In addition, sev-
eral have implicated LONP1 in gastric carcinogenesis. 
In response to H. pylori infection, LONP1 expression 
increases in gastric cancer cells [246], and LONP1 is nec-
essary for H. pylori-induced gastric cell proliferation and 
promotes H. pylori-induced metabolic switch to glycoly-
sis. [246].

The pro-tumor effects of LONP1 can be partially 
attributed to LONP1-mediated regulation of Bcl-2 in 
melanoma [242], cyclin D1 in pancreatic cancer [244], 
and β-catenin in colorectal cancer [245]. LONP1 also 
appears to have a role in EMT. As shown in pancreatic 
cancer cells, LONP1 knockdown increases the expres-
sion of the epithelial marker claudin-1 and decreases 
the mesenchymal marker vimentin as well as transcrip-
tion factors snail and slug [244]. In addition, decreases in 
matrix metalloproteinase (MMP2), MMP9, and p-JNK 
are observed after LONP1 knockdown. Overall, these 
features are believed to contribute to a resulting decrease 
in migratory and invasive abilities of LONP1 knockdown 
cells [244].

Alterations in LONP1 expression lead to various dys-
functions of the mitochondria. In PCa, knockdown of 
LONP1 associates with an accumulation of misfolded 
subunits of OXPHOS Complex II and V, reduced assem-
bly of OXPHOS Complexes I, III, IV, and V, as well as 

inhibition of activities of OXPHOS Complexes I, II, and V 
[243]. Consequently, mitochondrial respiration and ATP 
production are decreased. [243]. Studies in gastric cancer 
demonstrate that LONP1 knockdown reduces mitochon-
drial respiration [246]. In melanoma, LONP1 knockdown 
inhibits the formation of OXPHOS Complexes I and III 
and reduces the activities of OXPHOS Complexes I, II, 
and III [242]. Consequently, cells experience an increase 
in mitochondrial fragmentation and ROS levels as well as 
a decrease in mitochondrial respiration and ATP.

Interestingly, overexpression of LONP1 also leads to 
deleterious effects. LONP1 overexpression in cancer cells 
lowers the activities of Complexes I, II, III, and IV in con-
junction with reduced mitochondrial respiration [242]. A 
study in squamous cell carcinoma further demonstrates 
that while LONP1 overexpression induces mtROS pro-
duction through Complex I, mtROS can activate Ras and 
MAPK signaling and promote the survival of these cells 
[247]. Additionally, LONP1 binds and stabilizes Hsp60–
mtHsp70 complexes, particularly under oxidative stress 
conditions [248]. This interaction is proposed to inhibit 
apoptosis. However, knockdown of LONP1 has no 
effect on the individual expression levels of HSP60 and 
mtHSP70 [248].

Caseinolytic protease (ClpP)
CIpP forms a tetradecameric cylinder, similar to LONP1, 
which accepts protein substrates for degradation [249]. 
Notably, various adaptors can bind to ClpP to influence 
substrate selectivity [250]. In addition, accessory proteins 
deliver protein substrates to ClpP for degradation.

ClpP is upregulated in breast cancer, PCa, and acute 
myeloid leukemia [251–253]. High ClpP expression 
correlates with poor recurrence-free survival in breast 
cancer [251]. Elevated ClpP levels promote cisplatin 
resistance in cervical cancer cells by inhibiting the accu-
mulation of cisplatin in these cells, and partly through 
increasing the expression of copper efflux pump ATP7A 
[254].

Knockdown of ClpP is associated with reduced prolif-
eration, migration, and invasion of various cancer cells 
[251–253]. Xenograft studies demonstrate that ClpP 
knockdown suppresses the growth of PCa-derived liver 
metastases [252]. These characteristics are likely due to 
the observed reductions in the expression levels of cyc-
lin A, cyclin B1, cyclin D1, and MMP7 [251, 252], as well 
as the inhibition of PI3K and AKT activation after ClpP 
knockdown [251]. Conversely, overexpression of ClpP 
increases migratory and invasive activity in breast can-
cer [251]. Interference with ClpP expression perturbs 
mitochondrial function, as evidenced by an increase 
in mtROS, accumulation of misfolded mitochondrial 
Complex II subunits, hyperoxidation of mitochondrial 
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peroxiredoxin III, reduced Complex II activity but 
increased Complex V activity, and overall diminished 
mitochondrial respiration [252, 253].

Concluding remarks
Although mitochondria contribute to uncontrolled pro-
liferation throughout the various stages of cancer [3], 
mitochondria are also highly vulnerable in cancer cells. 
Tumors generate increased levels of oxidative stress and 
proteotoxic stress that leave mitochondria in a fragile, 
dysfunctional state [4–6]. Overall, the literature supports 
the idea that UPRmt, a mitochondrial stress response 
observed in C. elegans [10], serves as an important sup-
port system in cancer to maintain mitochondrial health 
and promote tumor growth (Figs. 1, 2, 3).

Multiple questions regarding the regulation of UPRmt 
in the cancer setting remain. Specifically, the mecha-
nism by which ATF5 regulates UPRmt in cancer must be 
further addressed. Under non-stress conditions in the 
C. elegans model, ATFS-1, the homolog of ATF5, accu-
mulates in the mitochondria and is degraded by LONP1 
[113]. When mitochondrial stress is present, mitochon-
drial import of ATFS-1 into the mitochondria is reduced. 
Instead, ATFS-1 accumulates in the nucleus where it can 
function as a transcription factor and upregulate com-
ponents of UPRmt to alleviate mitochondrial stress. It is 
unknown if ATF5 similarly translocates from mitochon-
dria to the nucleus in mammals. In addition, no study 
has investigated if ATF5 has a direct transcriptional 
role in the mitochondria, where it could bind mtDNA 
and directly regulate the expression of mitochondrial-
encoded proteins.

Furthermore, it is important to recognize that ATF5 is 
likely not the sole transcription factor responsible for the 
activation of UPRmt in cancer. Although ATF5 appears to 
be the only mitochondria-specific mediator of UPRmt, it 
remains likely that ATF5 functions in parallel with other 
key transcription factors that contribute to both forms 
of UPR in the mitochondria and endoplasmic reticulum. 
This suggests cross talk between UPRmt and UPRer. The 
extent to which established transcription factors of UPRer 
can induce UPRmt relative to the mitochondria-specific 
ATF5 is unknown. As we continue to understand the 
specific roles of ATF5 and other members of UPRmt in 
cancer, we become better equipped to develop pharma-
cological agents that can target UPRmt as a novel form of 
cancer therapy.

Current findings clearly suggest that cancer cells are 
highly reliant on the UPRmt for growth and progression, 
and therefore, aggressive and resistant cancers such 
as PCa possess robust activation of UPRmt [255, 256], 
which could be targeted for developing novel therapies 

to cure cancer. Recently, we have identified an inhibi-
tor of UPRmt,  a promising new anticancer agent for 
cancer such as PCa. This unique UPRmt inhibitor does 
not rely on androgen receptor-mediated signaling and, 
thus, will establish a foundation for the development of 
novel therapies to cure resistant PCa irrespective of AR 
status. Therefore, targeting this longevity promoting 
function of mitochondria, the UPRmt, will be an attrac-
tive and feasible target for aggressive and metastatic 
cancers.
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