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CORRESPONDENCE
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Abstract 

Hemophagocytic lymphohistiocytosis (HLH), particularly primary HLH (pHLH), is a rare, life-threatening disease. 
Germline genetic deficiency of 12 known HLH genes impairs cytotoxic degranulation in natural killer (NK) cells or 
cytotoxic T lymphocytes (CTLs) and contributes to pHLH development. However, no pathogenic mutations in these 
HLH genes are found in nearly 10% of HLH patients, despite a strong suspicion of pHLH, suggesting that the under‑
lying genetic basis of HLH is still unclear. To discover novel susceptibility genes, we first selected 13 children with 
ppHLH (presumed primary HLH patients in the absence of detectable known HLH gene variants) and their parents 
for initial screening. Whole-genome sequencing (WGS) in one trio and whole-exome sequencing (WES) in twelve 
trios revealed that two ppHLH patients carried biallelic NBAS variants, a gene that is involved in Golgi-to-endoplasmic 
reticulum (ER) retrograde transport upstream of the degranulation pathway. Additionally, two candidate genes, RAB9B 
and KLC3, showed a direct relationship with known HLH genes in protein-protein interaction (PPI) network analysis. 
We analyzed NBAS, RAB9B, KLC3 and known HLH genes in an independent validation cohort of 224 pediatric HLH 
patients. Only biallelic NBAS variants were identified in three patients who harbored no pathogenic variants in any 
of the known HLH genes. Functionally, impaired NK-cell cytotoxicity and degranulation were revealed in both NBAS 
biallelic variant patients and in an NBAS-deficient NK-cell line. Knockdown of NBAS in an NK-cell line (IMC-1) using 
short hairpin RNA (shRNA) resulted in loss of lytic granule polarization and a decreased number of cytotoxic vesicles 
near the Golgi apparatus. According to our findings, NBAS is the second most frequently mutated gene (2.11%) in our 
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To the Editor,

Hemophagocytic lymphohistiocytosis is a rare syndrome 
characterized by systemic inflammation, hypercytokine-
mia and multiorgan failure [1]. Primary HLH typically 
occurs in early childhood and is caused by pathogenic 
variants in 12 known HLH genes [1, 2]. Allogeneic 
hematopoietic stem cell transplantation (HSCT) remains 
the only definitive curative therapy for pHLH [3, 4]. 
According to the HLH-2004 protocol, variants in HLH 
genes serve as independent diagnostic criteria for pHLH 
and a guide to help select treatment options [5]. However, 
in nearly ten percent of patients clinically strongly sug-
gested to have pHLH, no pathogenic variants in known 
HLH genes are present [6, 7].

In this study, we performed WES (n = 12) or WGS 
(n = 1) in 13 ppHLH parent-child trios (strongly sus-
pected pHLH cases despite lacking a confirmed genetic 
diagnosis). A total of 6,717,749 variants were successfully 
called across the 13 ppHLH patients (Fig.  1a). After fil-
tering, we identified 58 genotypes that may contribute to 
HLH (Additional file 1: Methods and Fig. S1, Additional 
file 2: Table S1). The majority of the genes annotated by 
these variants appeared to be patient specific, except for 
TMEM236 and NBAS. In PPI network analysis, three 
genes (RAB9B, KLC3 and AP3D1) showed molecular 
relationships with known HLH genes (Additional file  1: 
Fig. S2). Finally, only the recurrently mutated gene NBAS 
and two genes (RAB9B and KLC3) from the PPI net-
work remained after Sanger confirmation and pedigree 

HLH cohort after PRF1. NBAS deficiency may contribute to the development of HLH via a dysregulated lytic vesicle 
transport pathway.

Keywords:  Hemophagocytic lymphohistiocytosis, Germline variants, Trios, NBAS, NK-cell

Fig. 1  Identification and bioinformatic characterization of NBAS biallelic variants. a Schematic representation of gene prioritization and validation 
strategies applied in this study. NBAS genotypes of two ppHLH families in the discovery stage (b) and three families in the replication stage (c). 
Closed symbols indicate affected patients, and open symbols indicate unaffected family members. d Schematic diagrams of the genomic location 
of NBAS. e Distribution of NBAS variants identified in this study (top) and the evolutionary conservation of mutated amino acids in the NBAS protein 
among different species (bottom). All 52 exons of the NBAS gene (reference sequence NM_015909) and two known protein domains of the NBAS 
protein are represented. ppHLH, presumed primary HLH; WES, whole-exome sequencing; WGS, whole-genome sequencing
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segregation analysis (Fig.  1b and Additional file  1: Fig. 
S3).

To examine whether variants in the three candidate 
genes are present in other HLH patients, we extended 
our genetic study to a validation cohort of 224 pediatric 
HLH patients (Additional file 2: Tables S2 and S3). Vari-
ants in only NBAS were found in three additional HLH 
children, with confirmation by Sanger sequencing in a 
family setting (Fig. 1c). Collectively, a total of five patients 
in our study carried NBAS biallelic variants (Fig.  1d–e 
and Additional file 2: Table S4). The estimated frequency 
of NBAS variants among the pediatric HLH patients was 
2.11%, which is lower than that of PRF1 but higher than 
that of the other 11 known pHLH genes (Additional file 2: 
Tables S5 and S6). The main clinical characteristics at 
baseline of all pHLH patients, including the 5 with NBAS 
variants, are summarized in Additional file 2: Table S7.

To explore the functional relevance of NBAS variants 
in HLH, we focused on patient P007, who presented 
with recurrent HLH as soon as therapy was discontin-
ued after complete remission (Fig.  2a). Prompted by a 
suspicion of pHLH, functional investigations were per-
formed after her second relapse. For both NK cells and 
CTLs from P007, cytotoxic function and degranulation 
were defective compared with those of her healthy par-
ents (heterozygous carriers of NBAS); however, pro-
gressive recovery in these functions occurred after she 
received haploidentical HSCT from her father (Fig.  2b). 
This is consistent with the notion that HLH gene variants 
reported to date are generally loss-of-function. There-
fore, we performed RNA interference of NBAS by using 
two different shRNAs in the NK-cell line IMC-1, and the 
NBAS shRNA-targeted (shNBAS) cells showed impaired 
cytotoxicity and degranulation (Fig. 2c–f and Additional 

file 1: Figs. S4 and S5), consistent with the abnormalities 
in the cells from patients.

Considering that NBAS is known to be essential for 
NK-cell cytolytic function and Golgi-to-ER retrograde 
transport [8–11], NBAS may function upstream of 
the lymphocyte degranulation process. As shown in 
Fig. 2g–h, knockdown of NBAS decreased the number 
of cytotoxic vesicles, particularly near the Golgi appa-
ratus. Furthermore, shNBAS IMC-1 cells exhibited sig-
nificantly decreased expression of AP3B1, an important 
protein upstream of the known degranulation pathway 
involved in the transport of cytotoxic vesicles from 
the Golgi (Fig. 2i and Additional file 1: Fig. S6). Taken 
together, these findings suggest that NBAS defects dis-
rupt the transport and recycling of proteins or vesi-
cles between the ER and Golgi apparatus and then 
impact the downstream cytotoxic vesicle transport and 
degranulation cascades involved in HLH (Fig. 2j).

Biallelic mutations in NBAS have been related to a 
wide spectrum of symptoms, whereas mutations occur-
ring at Sec39 domain and C-terminus mainly asso-
ciated with liver failure and multisystemic features, 
respectively [12]. NBAS mutated HLH in this study 
was not associated with these clinical manifestations, 
and 90% of mutations identified clustered within the 
latter region of the Sec39 and C-terminal domains. It 
remains to be determined whether differences in muta-
tion spectrum contribute to differential phenotypic 
manifestations. Collectively, our data provide compel-
ling evidence that the recurrent mutated gene NBAS, 
known for being involved in transport between the 
Golgi and ER, is an HLH-predisposing gene that may 
play a role upstream of the known degranulation path-
way in NK cells.

(See figure on next page.)
Fig. 2  NBAS is required for cytotoxic granulation in the NK-cell line. a Plot showing the HLH time course, therapeutic approaches and response 
status in patient P007 with presumed primary HLH. b Functional investigations of cytotoxic lymphocytes. NK-cell cytotoxicity (upper row) and 
NK (middle row) and T-cell degranulation (bottom row) were defective in P007 compared with her healthy parents but gradually recovered after 
HSCT. NBAS mRNA (c) and protein (d) levels in an NK-cell line (IMC-1) after NBAS knockdown (n = 3). e Histograms showing the cytotoxic activity of 
scramble or shNBAS-targeting IMC-1 cells analyzed by FACS after coculture with K562-GFP target cells (n = 3). K562-GFP was used as the negative 
control, and K562-GFP cocultured with wide-type IMC-1 (without transfection of any shRNA) was used as the positive control. f Histograms 
show surface CD107a expression, indicating the degranulation ability of scramble or shNBAS-targeting IMC-1 cells in the presence of K562-GFP 
target cells. g Representative electron microscopic images of sorted scramble or shNBAS IMC-1 cells stimulated with K562-GFP cells for 4 h. LG, 
lytic (cytotoxic) granule; N, nucleus; M, mitochondria; GA, Golgi apparatus. Scale bars = 500 nm. h The relative number of lytic granules per field 
was quantified (n = 3). i Representative images showing decreased expression of AP3B1 (magenta; indicated by white arrows) and CD107a (red; 
indicated by yellow arrows) stimulated by K562-GFP (green) cells for 4 h. Nuclei were stained with DAPI (blue). Scale bar: 10 μm. n = 3. j Schematic 
depicting the process by which cytotoxic cells kill target cells through the granule-mediated degranulation pathway (left panel). The pop-up panel 
shows a cartoon of NBAS, along with RINT and ZW10, as part of the syntaxin 18 complex between the endoplasmic reticulum (ER) and Golgi. Data 
were presented as means ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant
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Fig. 2  (See legend on previous page.)



Page 5 of 5Bi et al. Journal of Hematology & Oncology          (2022) 15:101 	

Abbreviations
CTLs: Cytotoxic T lymphocytes; ER: Endoplasmic reticulum; HSCT: Hematopoi‑
etic stem cell transplantation; HLH: Hemophagocytic lymphohistiocytosis; NK: 
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