Hanahan D, Weinberg RA: The hallmarks of cancer. Cell. 2000, 100: 57-70. 10.1016/S0092-8674(00)81683-9.
Article
CAS
PubMed
Google Scholar
Ray LB, Sturgill TW: Characterization of insulin-stimulated microtubule-associated protein kinase. Rapid isolation and stabilization of a novel serine/threonine kinase from 3T3-L1 cells. J Biol Chem. 1988, 263: 12721-12727.
CAS
PubMed
Google Scholar
Raman M, Chen W, Cobb MH: Differential regulation and properties of MAPKs. Oncogene. 2007, 26: 3100-3112. 10.1038/sj.onc.1210392.
Article
CAS
PubMed
Google Scholar
Yoon S, Seger R: The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors. 2006, 24: 21-44. 10.1080/02699050500284218.
Article
CAS
PubMed
Google Scholar
Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH: Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001, 22: 153-183. 10.1210/er.22.2.153.
CAS
PubMed
Google Scholar
Brancho D, Tanaka N, Jaeschke A, Ventura JJ, Kelkar N, Tanaka Y, Kyuuma M, Takeshita T, Flavell RA, Davis RJ: Mechanism of p38 MAP kinase activation in vivo. Genes Dev. 2003, 17: 1969-1978. 10.1101/gad.1107303.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ganiatsas S, Kwee L, Fujiwara Y, Perkins A, Ikeda T, Labow MA, Zon LI: SEK1 deficiency reveals mitogen-activated protein kinase cascade crossregulation and leads to abnormal hepatogenesis. Proc Natl Acad Sci USA. 1998, 95: 6881-6886. 10.1073/pnas.95.12.6881.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fukuda M, Gotoh I, Gotoh Y, Nishida E: Cytoplasmic localization of mitogen-activated protein kinase kinase directed by its NH2-terminal, leucine-rich short amino acid sequence, which acts as a nuclear export signal. J Biol Chem. 1996, 271: 20024-20028. 10.1074/jbc.271.33.20024.
Article
CAS
PubMed
Google Scholar
Burgermeister E, Chuderland D, Hanoch T, Meyer M, Liscovitch M, Seger R: Interaction with MEK causes nuclear export and downregulation of peroxisome proliferator-activated receptor gamma. Mol Cell Biol. 2007, 27: 803-817. 10.1128/MCB.00601-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Eblen ST, Slack JK, Weber MJ, Catling AD: Rac-PAK signaling stimulates extracellular signal-regulated kinase (ERK) activation by regulating formation of MEK1-ERK complexes. Mol Cell Biol. 2002, 22: 6023-6033. 10.1128/MCB.22.17.6023-6033.2002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wu X, Noh SJ, Zhou G, Dixon JE, Guan KL: Selective activation of MEK1 but not MEK2 by A-Raf from epidermal growth factor-stimulated Hela cells. J Biol Chem. 1996, 271: 3265-3271. 10.1074/jbc.271.6.3265.
Article
CAS
PubMed
Google Scholar
Xu S, Khoo S, Dang A, Witt S, Do V, Zhen E, Schaefer EM, Cobb MH: Differential regulation of mitogen-activated protein/ERK kinase (MEK)1 and MEK2 and activation by a Ras-independent mechanism. Mol Endocrinol. 1997, 11: 1618-1625. 10.1210/me.11.11.1618.
Article
CAS
PubMed
Google Scholar
Catalanotti F, Reyes G, Jesenberger V, Galabova-Kovacs G, de Matos Simoes R, Carugo O, Baccarini M: A Mek1-Mek2 heterodimer determines the strength and duration of the Erk signal. Nat Struct Mol Biol. 2009, 16: 294-303. 10.1038/nsmb.1564.
Article
CAS
PubMed
Google Scholar
Scholl FA, Dumesic PA, Khavari PA: Mek1 alters epidermal growth and differentiation. Cancer Res. 2004, 64: 6035-6040. 10.1158/0008-5472.CAN-04-0017.
Article
CAS
PubMed
Google Scholar
Voisin L, Julien C, Duhamel S, Gopalbhai K, Claveau I, Saba-El-Leil MK, Rodrigue-Gervais IG, Gaboury L, Lamarre D, Basik M: Activation of MEK1 or MEK2 isoform is sufficient to fully transform intestinal epithelial cells and induce the formation of metastatic tumors. BMC Cancer. 2008, 8: 337-10.1186/1471-2407-8-337.
Article
PubMed Central
PubMed
CAS
Google Scholar
Scholl FA, Dumesic PA, Barragan DI, Charron J, Khavari PA: Mek1/2 gene dosage determines tissue response to oncogenic Ras signaling in the skin. Oncogene. 2009, 28: 1485-1495. 10.1038/onc.2008.459.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mody N, Leitch J, Armstrong C, Dixon J, Cohen P: Effects of MAP kinase cascade inhibitors on the MKK5/ERK5 pathway. FEBS Lett. 2001, 502: 21-24. 10.1016/S0014-5793(01)02651-5.
Article
CAS
PubMed
Google Scholar
Kamakura S, Moriguchi T, Nishida E: Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a signaling pathway to the nucleus. J Biol Chem. 1999, 274: 26563-26571. 10.1074/jbc.274.37.26563.
Article
CAS
PubMed
Google Scholar
Ohren JF, Chen H, Pavlovsky A, Whitehead C, Zhang E, Kuffa P, Yan C, McConnell P, Spessard C, Banotai C: Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat Struct Mol Biol. 2004, 11: 1192-1197. 10.1038/nsmb859.
Article
CAS
PubMed
Google Scholar
Meloche S, Pouyssegur J: The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene. 2007, 26: 3227-3239. 10.1038/sj.onc.1210414.
Article
CAS
PubMed
Google Scholar
Meloche S, Seuwen K, Pages G, Pouyssegur J: Biphasic and synergistic activation of p44mapk (ERK1) by growth factors: correlation between late phase activation and mitogenicity. Mol Endocrinol. 1992, 6: 845-854. 10.1210/me.6.5.845.
CAS
PubMed
Google Scholar
Jones SM, Kazlauskas A: Growth-factor-dependent mitogenesis requires two distinct phases of signalling. Nat Cell Biol. 2001, 3: 165-172. 10.1038/35055073.
Article
CAS
PubMed
Google Scholar
Yamamoto T, Ebisuya M, Ashida F, Okamoto K, Yonehara S, Nishida E: Continuous ERK activation downregulates antiproliferative genes throughout G1 phase to allow cell-cycle progression. Curr Biol. 2006, 16: 1171-1182. 10.1016/j.cub.2006.04.044.
Article
CAS
PubMed
Google Scholar
Pages G, Lenormand P, L'Allemain G, Chambard JC, Meloche S, Pouyssegur J: Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci USA. 1993, 90: 8319-8323. 10.1073/pnas.90.18.8319.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu X, Yan S, Zhou T, Terada Y, Erikson RL: The MAP kinase pathway is required for entry into mitosis and cell survival. Oncogene. 2004, 23: 763-776. 10.1038/sj.onc.1207188.
Article
CAS
PubMed
Google Scholar
Fremin C, Ezan F, Boisselier P, Bessard A, Pages G, Pouyssegur J, Baffet G: ERK2 but not ERK1 plays a key role in hepatocyte replication: An RNAi-mediated ERK2 knockdown approach in wild-type and ERK1 null hepatocytes. Hepatology. 2007, 45: 1035-1045. 10.1002/hep.21551.
Article
CAS
PubMed
Google Scholar
Lefloch R, Pouyssegur J, Lenormand P: Single and combined ERK1/ERK2 silencing reveals their positive contribution to growth signaling depending on their expression levels. Mol Cell Biol. 2007
Google Scholar
Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR: A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA. 1995, 92: 7686-7689. 10.1073/pnas.92.17.7686.
Article
PubMed Central
CAS
PubMed
Google Scholar
DeSilva DR, Jones EA, Favata MF, Jaffee BD, Magolda RL, Trzaskos JM, Scherle PA: Inhibition of mitogen-activated protein kinase kinase blocks T cell proliferation but does not induce or prevent anergy. J Immunol. 1998, 160: 4175-4181.
CAS
PubMed
Google Scholar
Sebolt-Leopold JS, Dudley DT, Herrera R, Van Becelaere K, Wiland A, Gowan RC, Tecle H, Barrett SD, Bridges A, Przybranowski S: Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med. 1999, 5: 810-816. 10.1038/10533.
Article
CAS
PubMed
Google Scholar
Brunet A, Pages G, Pouyssegur J: Constitutively active mutants of MAP kinase kinase (MEK1) induce growth factor-relaxation and oncogenicity when expressed in fibroblasts. Oncogene. 1994, 9: 3379-3387.
CAS
PubMed
Google Scholar
Cowley S, Paterson H, Kemp P, Marshall CJ: Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell. 1994, 77: 841-852. 10.1016/0092-8674(94)90133-3.
Article
CAS
PubMed
Google Scholar
Seger R, Seger D, Reszka AA, Munar ES, Eldar-Finkelman H, Dobrowolska G, Jensen AM, Campbell JS, Fischer EH, Krebs EG: Overexpression of mitogen-activated protein kinase kinase (MAPKK) and its mutants in NIH 3T3 cells. Evidence that MAPKK involvement in cellular proliferation is regulated by phosphorylation of serine residues in its kinase subdomains VII and VIII. J Biol Chem. 1994, 269: 25699-25709.
CAS
PubMed
Google Scholar
Pages G, Guerin S, Grall D, Bonino F, Smith A, Anjuere F, Auberger P, Pouyssegur J: Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science. 1999, 286: 1374-1377. 10.1126/science.286.5443.1374.
Article
CAS
PubMed
Google Scholar
Saba-El-Leil MK, Vella FD, Vernay B, Voisin L, Chen L, Labrecque N, Ang SL, Meloche S: An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO Rep. 2003, 4: 964-968. 10.1038/sj.embor.embor939.
Article
PubMed Central
CAS
PubMed
Google Scholar
Samuels IS, Karlo JC, Faruzzi AN, Pickering K, Herrup K, Sweatt JD, Saitta SC, Landreth GE: Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function. J Neurosci. 2008, 28: 6983-6995. 10.1523/JNEUROSCI.0679-08.2008.
Article
PubMed Central
CAS
PubMed
Google Scholar
D'Souza WN, Chang CF, Fischer AM, Li M, Hedrick SM: The Erk2 MAPK regulates CD8 T cell proliferation and survival. J Immunol. 2008, 181: 7617-7629.
Article
PubMed Central
PubMed
Google Scholar
Roovers K, Assoian RK: Integrating the MAP kinase signal into the G1 phase cell cycle machinery. Bioessays. 2000, 22: 818-826. 10.1002/1521-1878(200009)22:9<818::AID-BIES7>3.0.CO;2-6.
Article
CAS
PubMed
Google Scholar
Lavoie JN, L'Allemain G, Brunet A, Muller R, Pouyssegur J: Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem. 1996, 271: 20608-20616. 10.1074/jbc.271.34.20608.
Article
CAS
PubMed
Google Scholar
Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR: Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 2000, 14: 2501-2514. 10.1101/gad.836800.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang JY, Zong CS, Xia W, Yamaguchi H, Ding Q, Xie X, Lang JY, Lai CC, Chang CJ, Huang WC: ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol. 2008, 10: 138-148. 10.1038/ncb1676.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hwang CY, Lee C, Kwon KS: Extracellular signal-regulated kinase 2-dependent phosphorylation induces cytoplasmic localization and degradation of p21Cip1. Mol Cell Biol. 2009, 29: 3379-3389. 10.1128/MCB.01758-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chambard JC, Lefloch R, Pouyssegur J, Lenormand P: ERK implication in cell cycle regulation. Biochim Biophys Acta. 2007, 1773: 1299-1310. 10.1016/j.bbamcr.2006.11.010.
Article
CAS
PubMed
Google Scholar
Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J: Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci USA. 2004, 101: 13489-13494. 10.1073/pnas.0405659101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP: Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell. 2005, 121: 179-193. 10.1016/j.cell.2005.02.031.
Article
CAS
PubMed
Google Scholar
Ballif BA, Blenis J: Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ. 2001, 12: 397-408.
CAS
PubMed
Google Scholar
Balmanno K, Cook SJ: Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ. 2009, 16: 368-377. 10.1038/cdd.2008.148.
Article
CAS
PubMed
Google Scholar
Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME: Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995, 270: 1326-1331. 10.1126/science.270.5240.1326.
Article
CAS
PubMed
Google Scholar
Parrizas M, Saltiel AR, LeRoith D: Insulin-like growth factor 1 inhibits apoptosis using the phosphatidylinositol 3'-kinase and mitogen-activated protein kinase pathways. J Biol Chem. 1997, 272: 154-161. 10.1074/jbc.272.1.154.
Article
CAS
PubMed
Google Scholar
Erhardt P, Schremser EJ, Cooper GM: B-Raf inhibits programmed cell death downstream of cytochrome c release from mitochondria by activating the MEK/Erk pathway. Mol Cell Biol. 1999, 19: 5308-5315.
Article
PubMed Central
CAS
PubMed
Google Scholar
Le Gall M, Chambard JC, Breittmayer JP, Grall D, Pouyssegur J, Van Obberghen-Schilling E: The p42/p44 MAP kinase pathway prevents apoptosis induced by anchorage and serum removal. Mol Biol Cell. 2000, 11: 1103-1112.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lips DJ, Bueno OF, Wilkins BJ, Purcell NH, Kaiser RA, Lorenz JN, Voisin L, Saba-El-Leil MK, Meloche S, Pouyssegur J: MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation. 2004, 109: 1938-1941. 10.1161/01.CIR.0000127126.73759.23.
Article
CAS
PubMed
Google Scholar
Scholl FA, Dumesic PA, Barragan DI, Harada K, Bissonauth V, Charron J, Khavari PA: Mek1/2 MAPK kinases are essential for Mammalian development, homeostasis, and Raf-induced hyperplasia. Dev Cell. 2007, 12: 615-629. 10.1016/j.devcel.2007.03.009.
Article
CAS
PubMed
Google Scholar
Grandis JR, Sok JC: Signaling through the epidermal growth factor receptor during the development of malignancy. Pharmacol Ther. 2004, 102: 37-46. 10.1016/j.pharmthera.2004.01.002.
Article
CAS
PubMed
Google Scholar
Hynes NE, Lane HA: ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005, 5: 341-354. 10.1038/nrc1609.
Article
CAS
PubMed
Google Scholar
Schubbert S, Shannon K, Bollag G: Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer. 2007, 7: 295-308. 10.1038/nrc2109.
Article
CAS
PubMed
Google Scholar
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W: Mutations of the BRAF gene in human cancer. Nature. 2002, 417: 949-954. 10.1038/nature00766.
Article
CAS
PubMed
Google Scholar
Garnett MJ, Marais R: Guilty as charged: B-RAF is a human oncogene. Cancer Cell. 2004, 6: 313-319. 10.1016/j.ccr.2004.09.022.
Article
CAS
PubMed
Google Scholar
Marks JL, Gong Y, Chitale D, Golas B, McLellan MD, Kasai Y, Ding L, Mardis ER, Wilson RK, Solit D: Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma. Cancer Res. 2008, 68: 5524-5528. 10.1158/0008-5472.CAN-08-0099.
Article
PubMed Central
CAS
PubMed
Google Scholar
Murugan AK, Dong J, Xie J, Xing M: MEK1 mutations, but not ERK2 mutations, occur in melanomas and colon carcinomas, but none in thyroid carcinomas. Cell Cycle. 2009, 8: 2122-2124.
Article
CAS
PubMed
Google Scholar
Hoshino R, Chatani Y, Yamori T, Tsuruo T, Oka H, Yoshida O, Shimada Y, Ari-i S, Wada H, Fujimoto J: Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene. 1999, 18: 813-822. 10.1038/sj.onc.1202367.
Article
CAS
PubMed
Google Scholar
Sebolt-Leopold JS, Herrera R: Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer. 2004, 4: 937-947. 10.1038/nrc1503.
Article
CAS
PubMed
Google Scholar
Mansour SJ, Matten WT, Hermann AS, Candia JM, Rong S, Fukasawa K, Woude Vande GF, Ahn NG: Transformation of mammalian cells by constitutively active MAP kinase kinase. Science. 1994, 265: 966-970. 10.1126/science.8052857.
Article
CAS
PubMed
Google Scholar
Pinkas J, Leder P: MEK1 signaling mediates transformation and metastasis of EpH4 mammary epithelial cells independent of an epithelial to mesenchymal transition. Cancer Res. 2002, 62: 4781-4790.
CAS
PubMed
Google Scholar
Leicht DT, Balan V, Kaplun A, Singh-Gupta V, Kaplun L, Dobson M, Tzivion G: Raf kinases: function, regulation and role in human cancer. Biochim Biophys Acta. 2007, 1773: 1196-1212. 10.1016/j.bbamcr.2007.05.001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hobbs RM, Silva-Vargas V, Groves R, Watt FM: Expression of activated MEK1 in differentiating epidermal cells is sufficient to generate hyperproliferative and inflammatory skin lesions. J Invest Dermatol. 2004, 123: 503-515. 10.1111/j.0022-202X.2004.23225.x.
Article
CAS
PubMed
Google Scholar
Goel VK, Ibrahim N, Jiang G, Singhal M, Fee S, Flotte T, Westmoreland S, Haluska FS, Hinds PW, Haluska FG: Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice. Oncogene. 2009, 28: 2289-2298. 10.1038/onc.2009.95.
Article
PubMed Central
CAS
PubMed
Google Scholar
Knauf JA, Ma X, Smith EP, Zhang L, Mitsutake N, Liao XH, Refetoff S, Nikiforov YE, Fagin JA: Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res. 2005, 65: 4238-4245. 10.1158/0008-5472.CAN-05-0047.
Article
CAS
PubMed
Google Scholar
Jeong JH, Wang Z, Guimaraes AS, Ouyang X, Figueiredo JL, Ding Z, Jiang S, Guney I, Kang GH, Shin E: BRAF activation initiates but does not maintain invasive prostate adenocarcinoma. PLoS One. 2008, 3: e3949-10.1371/journal.pone.0003949.
Article
PubMed Central
PubMed
CAS
Google Scholar
Ji H, Wang Z, Perera SA, Li D, Liang MC, Zaghlul S, McNamara K, Chen L, Albert M, Sun Y: Mutations in BRAF and KRAS converge on activation of the mitogen-activated protein kinase pathway in lung cancer mouse models. Cancer Res. 2007, 67: 4933-4939. 10.1158/0008-5472.CAN-06-4592.
Article
CAS
PubMed
Google Scholar
Milella M, Kornblau SM, Estrov Z, Carter BZ, Lapillonne H, Harris D, Konopleva M, Zhao S, Estey E, Andreeff M: Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. J Clin Invest. 2001, 108: 851-859.
Article
PubMed Central
CAS
PubMed
Google Scholar
Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A, Ye Q, Lobo JM, She Y, Osman I: BRAF mutation predicts sensitivity to MEK inhibition. Nature. 2006, 439: 358-362. 10.1038/nature04304.
Article
PubMed Central
CAS
PubMed
Google Scholar
Collisson EA, De A, Suzuki H, Gambhir SS, Kolodney MS: Treatment of metastatic melanoma with an orally available inhibitor of the Ras-Raf-MAPK cascade. Cancer Res. 2003, 63: 5669-5673.
CAS
PubMed
Google Scholar
Kramer BW, Gotz R, Rapp UR: Use of mitogenic cascade blockers for treatment of C-Raf induced lung adenoma in vivo: CI-1040 strongly reduces growth and improves lung structure. BMC Cancer. 2004, 4: 24-10.1186/1471-2407-4-24.
Article
PubMed Central
PubMed
Google Scholar
Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR: PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem. 1995, 270: 27489-27494. 10.1074/jbc.270.46.27489.
Article
CAS
PubMed
Google Scholar
Servant MJ, Giasson E, Meloche S: Inhibition of growth factor-induced protein synthesis by a selective MEK inhibitor in aortic smooth muscle cells. J Biol Chem. 1996, 271: 16047-16052. 10.1074/jbc.271.27.16047.
Article
CAS
PubMed
Google Scholar
Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F: Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem. 1998, 273: 18623-18632. 10.1074/jbc.273.29.18623.
Article
CAS
PubMed
Google Scholar
Williams DH, Wilkinson SE, Purton T, Lamont A, Flotow H, Murray EJ: Ro 09-2210 exhibits potent anti-proliferative effects on activated T cells by selectively blocking MKK activity. Biochemistry. 1998, 37: 9579-9585. 10.1021/bi972914c.
Article
CAS
PubMed
Google Scholar
Lorusso PM, Adjei AA, Varterasian M, Gadgeel S, Reid J, Mitchell DY, Hanson L, DeLuca P, Bruzek L, Piens J: Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. J Clin Oncol. 2005, 23: 5281-5293. 10.1200/JCO.2005.14.415.
Article
CAS
PubMed
Google Scholar
Rinehart J, Adjei AA, Lorusso PM, Waterhouse D, Hecht JR, Natale RB, Hamid O, Varterasian M, Asbury P, Kaldjian EP: Multicenter phase II study of the oral MEK inhibitor, CI- in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol. 1040, 22: 4456-4462. 10.1200/JCO.2004.01.185.
Article
CAS
Google Scholar
Barrett SD, Bridges AJ, Dudley DT, Saltiel AR, Fergus JH, Flamme CM, Delaney AM, Kaufman M, LePage S, Leopold WR: The discovery of the benzhydroxamate MEK inhibitors CI-1040 and PD 0325901. Bioorg Med Chem Lett. 2008, 18: 6501-6504. 10.1016/j.bmcl.2008.10.054.
Article
CAS
PubMed
Google Scholar
Lorusso P, Krishnamurthi S, Rinehart JR, Nabell L, Croghan G, Varterasian M, Sadis SS, Menon SS, Leopold J, Meyer MB: A phase 1-2 clinical study of a second generation oral MEK inhibitor, PD 0325901 in patients with advanced cancer. J Clin Oncol (abstract). 2005, 23: 3011-
Google Scholar
Menon SS, Whitfield LR, Sadis S, Meyer MB, Leopold J, Lorusso PM, Krishnamurthi S, Rinehart JR, Nabell L, Croghan G: Pharmacokinetics (PK) and pharmacodynamics (PD) of PD0325901, a second generation MEK inhibitor after multiple oral doses of PD0325901 to advanced cancer patients. J Clin Oncol (abstract). 2005, 23: 3066-
Google Scholar
Wang D, Boerner SA, Winkler JD, LoRusso PM: Clinical experience of MEK inhibitors in cancer therapy. Biochim Biophys Acta. 2007, 1773: 1248-1255. 10.1016/j.bbamcr.2006.11.009.
Article
CAS
PubMed
Google Scholar
Lorusso P, Krishnamurthi S, Rinehart J, Nabell L, Croghan G, Chapman P, Selaru P, Kim S, Ricart A, Wliner K: Clinical aspects of a phase I study of PD032 a selective oral MEK inhibitor, in patients with advanced cancer. Mol Cancer Ther (abstract B113). 5901, 6: 3646s-
Google Scholar
Yeh TC, Marsh V, Bernat BA, Ballard J, Colwell H, Evans RJ, Parry J, Smith D, Brandhuber BJ, Gross S: Biological Characterization of ARRY-142886 (AZD6244), a Potent, Highly Selective Mitogen-Activated Protein Kinase Kinase 1/2 Inhibitor. Clin Cancer Res. 2007, 13: 1576-1583. 10.1158/1078-0432.CCR-06-1150.
Article
CAS
PubMed
Google Scholar
Davies BR, Logie A, McKay JS, Martin P, Steele S, Jenkins R, Cockerill M, Cartlidge S, Smith PD: AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models. Mol Cancer Ther. 2007, 6: 2209-2219. 10.1158/1535-7163.MCT-07-0231.
Article
CAS
PubMed
Google Scholar
Huynh H, Soo KC, Chow PK, Tran E: Targeted inhibition of the extracellular signal-regulated kinase kinase pathway with AZD6244 (ARRY-142886) in the treatment of hepatocellular carcinoma. Mol Cancer Ther. 2007, 6: 138-146. 10.1158/1535-7163.MCT-06-0436.
Article
CAS
PubMed
Google Scholar
Haass NK, Sproesser K, Nguyen TK, Contractor R, Medina CA, Nathanson KL, Herlyn M, Smalley KS: The mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor AZD6244 (ARRY-142886) induces growth arrest in melanoma cells and tumor regression when combined with docetaxel. Clin Cancer Res. 2008, 14: 230-239. 10.1158/1078-0432.CCR-07-1440.
Article
CAS
PubMed
Google Scholar
Adjei AA, Cohen RB, Franklin W, Morris C, Wilson D, Molina JR, Hanson LJ, Gore L, Chow L, Leong S: Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol. 2008, 26: 2139-2146. 10.1200/JCO.2007.14.4956.
Article
PubMed Central
CAS
PubMed
Google Scholar
Drummer R, Robert C, Chapman P, Sosman J, Middleton M, Bastholt L, Kemsley K, Cantarini M, Morris C, Kirkwood J: AZD6244 (ARRY-142886) vs Temozolomide in Patients With Advanced Melanoma: an Open-Label, Randomized, Multicenter, Phase II Study. J Clin Oncol (abstract). 2008, 26: 9033-
Google Scholar
Tzekova V, Cebotaru C, Ciuleanu TE, Damjanov D, Ganchev V, Kanarev V, Stella PJ, Sanders N, Pover G, Hainsworth JD: Efficacy and safety of AZD6244 (ARRY-142886) as second/third-line treatment of patients (pts) with advanced non-small cell lung cancer (NSCLC). J Clin Oncol (abstract). 2008, 26: 8029-
Google Scholar
Lang I, Adenis A, Boer K, Escudero P, Kim T, Valladares M, Sanders N, Pover G, Douillard JY: AZD6244 (ARRY-142886) Versus Capecitabine in Patients With Metastatic Colorectal Cancer Who Have Failed Prior Chemotherapy. J Clin Oncol (abstract). 2008, 26: 4114-
Google Scholar
O'Neil BH, Williams-Goff LW, Kauh J, Bekaii-Saab T, Strosberg JR, Lee R, Deal AM, Sullivan D, Sebti SM: A phase II study of AZD6244 in advanced or metastatic hepatocellular carcinoma. J Clin Oncol (abstract). 2009, 27: 15574-
Google Scholar
Johnston S: XL518, a potent, selective orally bioavailable MEK1 inhibitor, down-regulates the Ras/Raf/MEK/ERK pathway in vivo, resulting in tumor growth inhibition and regression in preclinical models. 19th AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics. 2007, Abstract C209
Google Scholar
Rosen LS, Galatin P, Fehling JM, Laux I, Dinolfo M, Frye J, Laird D, Sikic BI: A phase 1 dose-escalation study of XL518, a potent MEK inhibitor administered orally daily to subjects with solid tumors. J Clin Oncol (abstract). 2008, 26: 14585-
Google Scholar
Iverson C, Larson G, Lai C, Yeh LT, Dadson C, Weingarten P, Appleby T, Vo T, Maderna A, Vernier JM: RDEA119/BAY 869766: a potent, selective, allosteric inhibitor of MEK1/2 for the treatment of cancer. Cancer Res. 2009, 69: 6839-6847. 10.1158/0008-5472.CAN-09-0679.
Article
CAS
PubMed
Google Scholar
Thompson D, Flaherty K, Messersmith W, Harlacker K, Nallapareddy S, Vincent C, DeMarini D, Cox D, O'Neill V, Burris H: A three-part, phase I, dose-escalation study of GSK1120212, a potent MEK inhibitor, administred orally with solid tumors or lymphoma. J Clin Oncol (abstract). 2009, 27: e14584-
Google Scholar
Daouti S, Higgins B, Kolinsky K, Packman K, Wang H, Rizzo C, Moliterni J, Huby N, Fotouhi N, Liu M: Preclinical in vivo evaluation of efficacy, pharmacokinetics, and pharmacodynamics of a novel MEK1/2 kinase inhibitor RO5068760 in multiple tumor models. Mol Cancer Ther. 2010, 9: 134-144. 10.1158/1535-7163.MCT-09-0601.
Article
CAS
PubMed
Google Scholar
Daouti S, Wang H, Li WH, Higgins B, Kolinsky K, Packman K, Specian A, Kong N, Huby N, Wen Y: Characterization of a novel mitogen-activated protein kinase kinase 1/2 inhibitor with a unique mechanism of action for cancer therapy. Cancer Res. 2009, 69: 1924-1932. 10.1158/0008-5472.CAN-08-2627.
Article
CAS
PubMed
Google Scholar
Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA, Schwartz B, Simantov R, Kelley S: Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov. 2006, 5: 835-844. 10.1038/nrd2130.
Article
CAS
PubMed
Google Scholar
Wee S, Jagani Z, Xiang KX, Loo A, Dorsch M, Yao YM, Sellers WR, Lengauer C, Stegmeier F: PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res. 2009, 69: 4286-4293. 10.1158/0008-5472.CAN-08-4765.
Article
CAS
PubMed
Google Scholar
Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R, Maira M, McNamara K, Perera SA, Song Y: Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med. 2008, 14: 1351-1356. 10.1038/nm.1890.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nature Journal. [http://www.nature.com/news/2009/090602/full/news.2009.536.html]
Emery CM, Vijayendran KG, Zipser MC, Sawyer AM, Niu L, Kim JJ, Hatton C, Chopra R, Oberholzer PA, Karpova MB: MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc Natl Acad Sci USA. 2009, 106: 20411-20416. 10.1073/pnas.0905833106.
Article
PubMed Central
CAS
PubMed
Google Scholar