Oldham RK, Dillman RO: Monoclonal antibodies in cancer therapy: 25 years of progress. J Cli Oncol Offic J Am Soc Clin Oncol. 2008, 26 (11): 1774-1777. 10.1200/JCO.2007.15.7438.
Article
Google Scholar
Nissim A, Chernajovsky Y: Historical development of monoclonal antibody therapeutics. Handb Exp Pharmacol. 2008, (181): 3-18. 10.1007/978-3-540-73259-4_1.
Article
CAS
PubMed
Google Scholar
Yamada T: Therapeutic monoclonal antibodies. Keio J Med. 2011, 60 (2): 37-46. 10.2302/kjm.60.37. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21720199
Article
CAS
PubMed
Google Scholar
Scott AM, Wolchok JD, Old LJ: Antibody therapy of cancer. Nat Rev Cancer. 2012, 12 (4): 278-287. 10.1038/nrc3236.
Article
CAS
PubMed
Google Scholar
Gellerman G, Firer MA: Targeted dendrimers in cancer drug delivery systems. Targeted Drug Delivery in Cancer Therapeutics. Edited by: Firer MA. 2010, Transworld Research Network, Kerala, 185-209.
Google Scholar
Tazi I, Nafil H, Mahmal L: Monoclonal antibodies in hematological malignancies: past, present and future. J Cancer Res Ther. 2011, 7 (4): 399-407. 10.4103/0973-1482.91999.
Article
CAS
PubMed
Google Scholar
Yoon S, Kim Y-S, Shim H, Chung J: Current perspectives on therapeutic antibodies. Biotechnol Bioprocess Eng. 2010, 15 (5): 709-715. 10.1007/s12257-009-3113-1.
Article
CAS
Google Scholar
Robak T, Robak P, Smolewski P: The evaluation and optimal use of rituximab in lymphoid malignancies. Blood Lym Can Targets Ther. 2012, 2: 1-16.
Article
CAS
Google Scholar
Nadler LM, Stashenko P, Hardy R, Kaplan WD, Button LN, Kufe DW, Antman KH: Serotherapy of a patient with a monoclonal antibody directed against a human lymphoma-associated antigen. Cancer Res. 1980, 40 (9): 3147-3154. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7427932
CAS
PubMed
Google Scholar
Reichert JM, Dhimolea E: The future of antibodies as cancer drugs. Drug Discov Today. 2012, 00 (00): doi:10.1016/j.drudis.2012.04.006.
Trarbach T, Moehler M, Heinemann V, Köhne C-H, Przyborek M, Schulz C, Sneller V: Phase II trial of mapatumumab, a fully human agonistic monoclonal antibody that targets and activates the tumour necrosis factor apoptosis-inducing ligand receptor-1 (TRAIL-R1), in patients with refractory colorectal cancer. Br J Cancer. 2010, 102 (3): 506-512. 10.1038/sj.bjc.6605507. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2822942&tool=pmcentrez&rendertype=abstract
Article
PubMed Central
CAS
PubMed
Google Scholar
Kubota T, Niwa R, Satoh M, Akinaga S, Shitara K, Hanai N: Engineered therapeutic antibodies with improved effector functions. Cancer Sci. 2009, 100 (9): 1566-1572. 10.1111/j.1349-7006.2009.01222.x.
Article
CAS
PubMed
Google Scholar
Schenerman MA, Hope JN, Kletke C, Singh JK, Kimura R, Tsao EI, Folena-Wasserman G: Comparability testing of a humanized monoclonal antibody (Synagis) to support cell line stability, process validation, and scale-up for manufacturing. Biol J Int Assoc Biol Stand. 1999, 27 (3): 203-215. 10.1006/biol.1999.0179.
CAS
Google Scholar
Li F, Vijayasankaran N, Shen A, Kiss R, Amanullah A: Cell culture processes for monoclonal antibody production. MAbs. 2010, 2 (5): 466-479. 10.4161/mabs.2.5.12720.
Article
PubMed Central
PubMed
Google Scholar
Maloney DG, Grillo-López AJ, White CA, Bodkin D, Schilder RJ, Neidhart JA, Janakiraman N: IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood. 1997, 90 (6): 2188-2195. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9310469
CAS
PubMed
Google Scholar
Beers SA, Chan CHT, French RR, Cragg MS, Glennie MJ: CD20 as a target for therapeutic type I and II monoclonal antibodies. Semin Hematol. 2010, 47 (2): 107-114. 10.1053/j.seminhematol.2010.01.001.
Article
CAS
PubMed
Google Scholar
Dillman RO: Immunophenotyping of chronic lymphoid leukemias. J Clin Oncol Offic J Am Soc Clin Oncol. 2008, 26 (8): 1193-1194. 10.1200/JCO.2007.14.1424.
Article
Google Scholar
Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE, Raab R, Newman RA: Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994, 83 (2): 435-445. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7506951
CAS
PubMed
Google Scholar
Vogel WH: Infusion reactions: diagnosis, assessment, and management. Clin J Oncol Nurs. 2010, 14 (2): E10-E21. 10.1188/10.CJON.E10-E21.
Article
PubMed
Google Scholar
Witzig TE, Flinn IW, Gordon LI, Emmanouilides C, Czuczman MS, Saleh MN, Cripe L: Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin’s lymphoma. J Clin Oncol Offic J Am Soc Clin Oncol. 2002, 20 (15): 3262-3269. 10.1200/JCO.2002.11.017. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12149300
Article
CAS
Google Scholar
Iagaru A, Mittra ES, Ganjoo K, Knox SJ, Goris ML: 131I-Tositumomab (Bexxar) vs. 90Y-Ibritumomab (Zevalin) therapy of low-grade refractory/relapsed non-Hodgkin lymphoma. Mol Imag Biol MIB Offic Publ Acad Mol Imag. 2010, 12 (2): 198-203. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19543946
Article
Google Scholar
Sjogreen-Gleisner K, Dewaraja YK, Tennvall J, Linden O, Strand S-E, Ljungberg M: Dosimetry in patients with B-cell lymphoma treated with [Y-90]ibritumomab tiuxetan or [I-131]tositumomab. Q J Nucl Med Mol Imag. 2011, 55 (2): 126-154. Retrieved from http://apps.webofknowledge.com.mgs-ariel.macam.ac.il/full_record.do?product=WOS&search_mode=GeneralSearch&qid=2&SID=W2eHGF91In1PP1mp6kk&page=1&doc=4&cacheurlFromRightClick=no
CAS
Google Scholar
Skarbnik AP, Smith MR: Radioimmunotherapy in mantle cell lymphoma. Best practice & research. Clin Haematol. 2012, 25 (2): 201-210. Retrieved from http://apps.webofknowledge.com.mgs-ariel.macam.ac.il/full_record.do?product=WOS&search_mode=GeneralSearch&qid=2&SID=W2eHGF91In1PP1mp6kk&page=1&doc=1&cacheurlFromRightClick=no
Google Scholar
McLaughlin P, Grillo-López AJ, Link BK, Levy R, Czuczman MS, Williams ME, Heyman MR: Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol Offic J Am Soc Clin Oncol. 1998, 16 (8): 2825-2833. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9704735
CAS
Google Scholar
Itälä M, Geisler CH, Kimby E, Juvonen E, Tjonnfjord G, Karlsson K, Remes K: Standard-dose anti-CD20 antibody rituximab has efficacy in chronic lymphocytic leukaemia: results from a Nordic multicentre study. Eur J Haematol. 2002, 69 (3): 129-134. 10.1034/j.1600-0609.2002.02786.x. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12406005
Article
PubMed
Google Scholar
Beers SA, French RR, Chan HTC, Lim SH, Jarrett TC, Vidal RM, Wijayaweera SS: Antigenic modulation limits the efficacy of anti-CD20 antibodies: implications for antibody selection. Blood. 2010, 115 (25): 5191-5201. 10.1182/blood-2010-01-263533.
Article
CAS
PubMed
Google Scholar
Manshouri T, Do K, Wang X, Giles FJ, O’Brien SM, Saffer H, Thomas D: Circulating CD20 is detectable in the plasma of patients with chronic lymphocytic leukemia and is of prognostic significance. Blood. 2003, 101 (7): 2507-2513. 10.1182/blood-2002-06-1639.
Article
CAS
PubMed
Google Scholar
Smith MR: Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene. 2003, 22 (47): 7359-7368. 10.1038/sj.onc.1206939.
Article
CAS
PubMed
Google Scholar
Du J, Wang H, Zhong C, Peng B, Zhang M, Li B, Huo S: Structural basis for recognition of CD20 by therapeutic antibody Rituximab. J Biol Chem. 2007, 282 (20): 15073-15080. 10.1074/jbc.M701654200.
Article
CAS
PubMed
Google Scholar
Hatjiharissi E, Xu L, Santos DD, Hunter ZR, Ciccarelli BT, Verselis S, Modica M: Increased natural killer cell expression of CD16, augmented binding and ADCC activity to rituximab among individuals expressing the Fc{gamma}RIIIa-158 V/V and V/F polymorphism. Blood. 2007, 110 (7): 2561-2564. 10.1182/blood-2007-01-070656.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hammadi M, Pers J-O, Berthou C, Youinou P, Bordron A: A new approach to comparing anti-CD20 antibodies: importance of the lipid rafts in their lytic efficiency. OncoTargets Therap. 2010, 3: 99-109. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2895776&tool=pmcentrez&rendertype=abstract
CAS
Google Scholar
Griggs J, Zinkewich-Peotti K: The state of the art: immune-mediated mechanisms of monoclonal antibodies in cancer therapy. Br J Cancer. 2009, 101 (11): 1807-1812. 10.1038/sj.bjc.6605349.
Article
PubMed Central
CAS
PubMed
Google Scholar
Desjarlais JR, Lazar GA: Modulation of antibody effector function. Exp Cell Res. 2011, 317 (9): 1278-1285. 10.1016/j.yexcr.2011.03.018.
Article
CAS
PubMed
Google Scholar
Parekh BS, Berger E, Sibley S, Cahya S, Xiao L, LaCerte MA, Vaillancourt P: Development and validation of an antibody-dependent cell-mediated cytotoxicity-reporter gene assay. MAbs. 2012, 4 (3): 310-309. 10.4161/mabs.19873
Article
PubMed Central
PubMed
Google Scholar
Levy E, Roberti M, Mordoh J: Natural Killer Cells in Human Cancer: From Biological Functions to Clinical Applications. J Biomed Biotechnol. 2011, 1-11. 10.1155/2011/676198.
Google Scholar
Shiao SL, Ganesan AP, Rugo HS, Coussens LM: Immune microenvironments in solid tumors: new targets for therapy. Genes Dev. 2011, 25 (24): 2559-2572. 10.1101/gad.169029.111. Retrieved from http://genesdev.cshlp.org/cgi/content/abstract/25/24/2559
Article
PubMed Central
CAS
PubMed
Google Scholar
Mishima Y, Terui Y, Mishima Y, Kuniyoshi R, Matsusaka S, Mikuniya M, Kojima K: High reproducible ADCC analysis revealed a competitive relation between ADCC and CDC and differences between FcγRllla polymorphism. Int Immunol. 2012, 24 (8): 477-483. 10.1093/intimm/dxs048.
Article
CAS
PubMed
Google Scholar
Teeling JL, Mackus WJM, Wiegman LJJM, van den Brakel JHN, Beers SA, French RR, van Meerten T: The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol. 2006, 177 (1): 362-371. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16785532
Article
CAS
PubMed
Google Scholar
Haskova Z, Whitacre MN, Dede KA, Lee JM, Trulli SH, Ciucci M, Toso JF: Combination therapy with ofatumumab and bendamustine in xenograft model of chronic lymphocytic leukaemia. Br J Haematol. 2012, 156 (3): 402-404. 10.1111/j.1365-2141.2011.08829.x.
Article
PubMed
CAS
Google Scholar
Reagan JL, Castillo JJ: Ofatumumab for newly diagnosed and relapsed/refractory chronic lymphocytic leukemia. Expert Rev Anticancer Ther. 2011, 11 (2): 151-160. 10.1586/era.10.223.
Article
CAS
PubMed
Google Scholar
Goldenberg DM, Rossi EA, Stein R, Cardillo TM, Czuczman MS, Hernandez-Ilizaliturri FJ, Hansen HJ: Properties and structure-function relationships of veltuzumab (hA20), a humanized anti-CD20 monoclonal antibody. Blood. 2009, 113 (5): 1062-1070. 10.1182/blood-2008-07-168146.
Article
PubMed Central
CAS
PubMed
Google Scholar
Negrea GO, Elstrom R, Allen SL, Rai KR, Abbasi RM, Farber CM, Teoh N: Subcutaneous injections of low-dose veltuzumab (humanized anti-CD20 antibody) are safe and active in patients with indolent non-Hodgkin’s lymphoma. Haematologica. 2011, 96 (4): 567-573. 10.3324/haematol.2010.037390.
Article
PubMed Central
CAS
PubMed
Google Scholar
Robak T, Robak E: New anti-CD20 monoclonal antibodies for the treatment of B-cell lymphoid malignancies. BioDrugs Clin Immunotherap Biopharm Gene Therap. 2011, 25 (1): 13-25. 10.2165/11539590-000000000-00000.
Article
CAS
Google Scholar
Morschhauser F, Marlton P, Vitolo U, Lindén O, Seymour JF, Crump M, Coiffier B: Results of a phase I/II study of ocrelizumab, a fully humanized anti-CD20 mAb, in patients with relapsed/refractory follicular lymphoma. Ann Oncol Offic J Eur Soc Med Oncol / ESMO. 2010, 21 (9): 1870-1876. 10.1093/annonc/mdq027.
Article
CAS
Google Scholar
Kausar F, Mustafa K, Sweis G, Sawaqed R, Alawneh K, Salloum R, Badaracco M: Ocrelizumab: a step forward in the evolution of B-cell therapy. Expert Opin Biol Ther. 2009, 9 (7): 889-895. 10.1517/14712590903018837.
Article
CAS
PubMed
Google Scholar
Mössner E, Brünker P, Moser S, Püntener U, Schmidt C, Herter S, Grau R: Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood. 2010, 115 (22): 4393-4402. 10.1182/blood-2009-06-225979.
Article
PubMed Central
PubMed
CAS
Google Scholar
Illidge TM: Obinutuzumab (GA101)–a different anti-CD20 antibody with great expectations. Expert Opin Biol Ther. 2012, 12 (5): 543-545. 10.1517/14712598.2012.668881.
Article
CAS
PubMed
Google Scholar
Treumann A, Lifely MR, Schneider P, Ferguson MA: Primary structure of CD52. J Biol Chem. 1995, 270 (11): 6088-6099. 10.1074/jbc.270.11.6088. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7890742
Article
CAS
PubMed
Google Scholar
Golay J, Manganini M, Rambaldi A, Introna M: Effect of alemtuzumab on neoplastic B cells. Haematologica. 2004, 89 (12): 1476-1483. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15590398
CAS
PubMed
Google Scholar
Alinari L, Yu B, Christian BA, Yan F, Shin J, Lapalombella R, Hertlein E: Combination anti-CD74 (milatuzumab) and anti-CD20 (rituximab) monoclonal antibody therapy has in vitro and in vivo activity in mantle cell lymphoma. Blood. 2011, 117 (17): 4530-4541. 10.1182/blood-2010-08-303354.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lambert JM: Drug-conjugated monoclonal antibodies for the treatment of cancer. Curr Opin Pharmacol. 2005, 5 (5): 543-549. 10.1016/j.coph.2005.04.017.
Article
CAS
PubMed
Google Scholar
Lobo ED, Hansen RJ, Balthasar JP: Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci. 2004, 93 (11): 2645-2668. 10.1002/jps.20178.
Article
CAS
PubMed
Google Scholar
Alley SC, Okeley NM, Senter PD: Antibody-drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol. 2010, 14 (4): 529-537. 10.1016/j.cbpa.2010.06.170.
Article
CAS
PubMed
Google Scholar
Govindan SV, Goldenberg DM: Designing immunoconjugates for cancer therapy. Expert Opin Biol Ther. 2012, 12 (7): 873-890. 10.1517/14712598.2012.685153.
Article
CAS
PubMed
Google Scholar
Bross PF, Beitz J, Chen G, Chen XH, Duffy E, Kieffer L, Roy S: Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Canc Res Offic J Am Assoc Canc Res. 2001, 7 (6): 1490-1496. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11410481
CAS
Google Scholar
Giles FJ, Kantarjian HM, Kornblau SM, Thomas DA, Garcia-Manero G, Waddelow TA, David CL: Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer. 2001, 92 (2): 406-413. 10.1002/1097-0142(20010715)92:2<406::AID-CNCR1336>3.0.CO;2-U. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11466696
Article
CAS
PubMed
Google Scholar
Wadleigh M, Richardson PG, Zahrieh D, Lee SJ, Cutler C, Ho V, Alyea EP: Prior gemtuzumab ozogamicin exposure significantly increases the risk of veno-occlusive disease in patients who undergo myeloablative allogeneic stem cell transplantation. Blood. 2003, 102 (5): 1578-1582. 10.1182/blood-2003-01-0255.
Article
CAS
PubMed
Google Scholar
Foyil KV, Bartlett NL: Brentuximab vedotin for the treatment of CD30+ lymphomas. Immunotherapy. 2011, 3 (4): 475-485. 10.2217/imt.11.15.
Article
CAS
PubMed
Google Scholar
Gualberto A: Brentuximab Vedotin (SGN-35), an antibody-drug conjugate for the treatment of CD30-positive malignancies. Expert Opin Investig Drugs. 2012, 21 (2): 205-216. 10.1517/13543784.2011.641532.
Article
CAS
PubMed
Google Scholar
Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, Blättler WA: Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008, 68 (22): 9280-9290. 10.1158/0008-5472.CAN-08-1776.
Article
CAS
PubMed
Google Scholar
Burris HA, Rugo HS, Vukelja SJ, Vogel CL, Borson RA, Limentani S, Tan-Chiu E: Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol Offic J Am Soc Clin Oncol. 2011, 29 (4): 398-405. 10.1200/JCO.2010.29.5865.
Article
CAS
Google Scholar
Blackwell KM, Miles D, Gianni L, Krop IE, Welslau M, Baselga J: Primary results from EMILIA, a phase III study of trastuzumab emtansine (T-DMI) versus capecitabine (X) and lapatinib (L) in HER2-positive locally advanced with trastuzumab (T) and a taxane. J Clin Oncol. 2012, 30 (Suppl): Abstract LBA1
Google Scholar
de Vries JF, Zwaan CM, De Bie M, Voerman JSA, den Boer ML, van Dongen JJM, van der Velden VHJ: The novel calicheamicin-conjugated CD22 antibody inotuzumab ozogamicin (CMC-544) effectively kills primary pediatric acute lymphoblastic leukemia cells. Leuk Offic J Leuk Soc Am Leuk Res Fund UK. 2012, 26 (2): 255-264. 10.1038/leu.2011.206.
Article
CAS
Google Scholar
Ogura M, Tobinai K, Hatake K, Uchida T, Kasai M, Oyama T, Suzuki T: Phase I study of inotuzumab ozogamicin (CMC-544) in Japanese patients with follicular lymphoma pretreated with rituximab-based therapy. Cancer Sci. 2010, 101 (8): 1840-1845. 10.1111/j.1349-7006.2010.01601.x.
Article
CAS
PubMed
Google Scholar
Blanc V, Bousseau A, Caron A, Carrez C, Lutz RJ, Lambert JM: SAR3419: an anti-CD19-Maytansinoid Immunoconjugate for the treatment of B-cell malignancies. Clin Canc Res Offic J Am Assoc Canc Res. 2011, 17 (20): 6448-6458. 10.1158/1078-0432.CCR-11-0485.
Article
CAS
Google Scholar
Polson AG, Ho WY, Ramakrishnan V: Investigational antibody-drug conjugates for hematological malignancies. Expert Opin Investig Drugs. 2011, 20 (1): 75-85. 10.1517/13543784.2011.539557.
Article
CAS
PubMed
Google Scholar
Litvak-Greenfeld D, Benhar I: Risks and untoward toxicities of antibody-based immunoconjugates. Adv Drug Deliv Rev. 2012, 10.1016/j.addr.2012.05.013.
Google Scholar
Sharkey RM, Govindan SV, Cardillo TM, Goldenberg DM: Epratuzumab-SN-38: a new antibody-drug conjugate for the therapy of hematologic malignancies. Mol Cancer Ther. 2012, 11 (1): 224-234. 10.1158/1535-7163.MCT-11-0632.
Article
CAS
PubMed
Google Scholar
Gatenby RA, Gillies RJ: Why do cancers have high aerobic glycolysis? Nature reviews. Cancer. 2004, 4 (11): 891-899. Retrieved from http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=Refine&qid=3&SID=X2M@g31ED4CMOad4fJb&page=1&doc=2&cacheurlFromRightClick=no
CAS
PubMed
Google Scholar
Kroemer G, Pouyssegur J: Tumor cell metabolism: cancer’s Achilles' heel. Cancer Cell. 2008, 13 (6): 472-482. 10.1016/j.ccr.2008.05.005. Retrieved from http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=Refine&qid=3&SID=X2M@g31ED4CMOad4fJb&page=2&doc=13&cacheurlFromRightClick=no
Article
CAS
PubMed
Google Scholar
Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, Kafri R: Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science. 2012, 336 (6084): 1040-1044. 10.1126/science.1218595.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schietinger A, Philip M, Schreiber H: Specificity in cancer immunotherapy. Semin Immunol. 2008, 20 (5): 276-285. 10.1016/j.smim.2008.07.001. Retrieved from http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=Refine&qid=15&SID=X2M@g31ED4CMOad4fJb&page=1&doc=7&cacheurlFromRightClick=no
Article
PubMed Central
CAS
PubMed
Google Scholar
Gunawardana CG, Diamandis EP: High throughput proteomic strategies for identifying tumour-associated antigens. Cancer Lett. 2007, 249 (1): 110-119. 10.1016/j.canlet.2007.01.002. Retrieved from http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=Refine&qid=15&SID=X2M@g31ED4CMOad4fJb&page=1&doc=2&cacheurlFromRightClick=no
Article
CAS
PubMed
Google Scholar
Mou Z, He Y, Wu Y: Immunoproteomics to identify tumor-associated antigens eliciting humoral response. Cancer Lett. 2009, 278 (2): 123-129. 10.1016/j.canlet.2008.09.009. Retrieved from http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=Refine&qid=15&SID=X2M@g31ED4CMOad4fJb&page=2&doc=11&cacheurlFromRightClick=no
Article
CAS
PubMed
Google Scholar
Frosch M: NZB Mouse System for Production of Monoclonal Antibodies to Weak Bacterial Antigens: Isolation of an IgG Antibody to the Polysaccharide Capsules of Escherichia coli K1 and Group B Meningococci. Proc Natl Acad Sci. 1985, 82 (4): 1194-1198. 10.1073/pnas.82.4.1194.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee S-Y, Jeoung D: The reverse proteomics for identification of tumor antigens. J Microbiol Biotechnol. 2007, 17 (6): 879-890. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18050904
CAS
PubMed
Google Scholar
Miller RA, Maloney DG, Warnke R, Levy R: Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N Eng J Med. 1982, 306 (9): 517-522. 10.1056/NEJM198203043060906.
Article
CAS
Google Scholar
Trepel M, Martens V, Doll C, Rahlff J, Gösch B, Loges S, Binder M: Phenotypic detection of clonotypic B cells in multiple myeloma by specific immunoglobulin ligands reveals their rarity in multiple myeloma. PLoS One. 2012, 7 (2): e31998-10.1371/journal.pone.0031998. Retrieved from http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=13&SID=Y1hGL3aBo2aHPf77I4n&page=1&doc=1&cacheurlFromRightClick=no
Article
PubMed Central
CAS
PubMed
Google Scholar
Carter P, Smith L, Ryan M: Identification and validation of cell surface antigens for antibody targeting in oncology. Endocr Relat Cancer. 2004, 11 (4): 659-687. 10.1677/erc.1.00766. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15613445
Article
CAS
PubMed
Google Scholar
Loo DT, Mather JP: Antibody-based identification of cell surface antigens: targets for cancer therapy. Curr Opin Pharmacol. 2008, 8 (5): 627-631. 10.1016/j.coph.2008.08.011. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18804182
Article
CAS
PubMed
Google Scholar
Cohen S, Cahan R, Ben-Dov E, Nisnevitch M, Zaritsky A, Firer MA: Specific targeting to murine myeloma cells of Cyt1Aa toxin from Bacillus thuringiensis subspecies israelensis. J Biol Chem. 2007, 282 (39): 28301-28308. 10.1074/jbc.M703567200. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17626007
Article
CAS
PubMed
Google Scholar
Teicher BA: Antibody-drug conjugate targets. Curr Cancer Drug Targets. 2009, 9 (8): 982-1004. 10.2174/156800909790192365. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20025606
Article
CAS
PubMed
Google Scholar
Gerber HP, Kung-Sutherland M, Stone I, Morris-Tilden C, Miyamoto J, McCormick R, Alley SC: Potent antitumor activity of the anti-CD19 auristatin antibody drug conjugate hBU12-vcMMAE against rituximab-sensitive and -resistant lymphomas. Blood. 2009, 113 (18): 4352-4361. 10.1182/blood-2008-09-179143. Retrieved from http://bloodjournal.hematologylibrary.org/cgi/content/abstract/113/18/4352
Article
CAS
PubMed
Google Scholar
Ingle GS, Chan P, Elliott JM, Chang WS, Koeppen H, Stephan J-P, Scales SJ: High CD21 expression inhibits internalization of anti-CD19 antibodies and cytotoxicity of an anti-CD19-drug conjugate. Br J Haematol. 2008, 140 (1): 46-58. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2228374&tool=pmcentrez&rendertype=abstract
PubMed Central
CAS
PubMed
Google Scholar
Sapra P, Allen TM: Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Res. 2002, 62 (24): 7190-7194. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12499256
CAS
PubMed
Google Scholar
Rudnick SI, Lou J, Shaller CC, Tang Y, Klein-Szanto AJP, Weiner LM, Marks JD: Influence of affinity and antigen internalization on the uptake and penetration of Anti-HER2 antibodies in solid tumors. Cancer Res. 2011, 71 (6): 2250-2259. 10.1158/0008-5472.CAN-10-2277. Retrieved from http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=6&SID=Z1ejIAcoO4b6EHJ7I3I&page=1&doc=2&cacheurlFromRightClick=no
Article
PubMed Central
CAS
PubMed
Google Scholar
Mould DR, Sweeney KRD: The pharmacokinetics and pharmacodynamics of monoclonal antibodies--mechanistic modeling applied to drug development. Curr Opin Drug Discov Devel. 2007, 10 (1): 84-96. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17265746
CAS
PubMed
Google Scholar
Levêque D, Wisniewski S, Jehl F: Pharmacokinetics of therapeutic monoclonal antibodies used in oncology. Anticancer Res. 2005, 25 (3c): 2327-2343. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16080460
PubMed
Google Scholar
Keizer RJ, Huitema ADR, Schellens JHM, Beijnen JH: Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010, 49 (8): 493-507. 10.2165/11531280-000000000-00000. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20608753
Article
CAS
PubMed
Google Scholar
Casi G, Neri D: Antibody-drug conjugates: Basic concepts, examples and future perspectives. J Contr Release Offic J Contr Release Soc. 2012, 161 (2): 422-428. 10.1016/j.jconrel.2012.01.026.
Article
CAS
Google Scholar
Sun MMC, Beam KS, Cerveny CG, Hamblett KJ, Blackmore RS, Torgov MY, Handley FGM: Reduction-alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjug Chem. 2005, 16 (5): 1282-1290. 10.1021/bc050201y. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2539111&tool=pmcentrez&rendertype=abstract
Article
PubMed Central
CAS
PubMed
Google Scholar
Ducry L, Stump B: Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug Chem. 2010, 21 (1): 5-13. 10.1021/bc9002019. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19769391
Article
CAS
PubMed
Google Scholar
McDonagh CF, Turcott E, Westendorf L, Webster JB, Alley SC, Kim K, Andreyka J: Engineered antibody-drug conjugates with defined sites and stoichiometries of drug attachment. Protein Eng Des Sel. 2006, 19 (7): 299-307. 10.1093/protein/gzl013. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16644914
Article
CAS
PubMed
Google Scholar
Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S, Chen Y: Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol. 2008, 26 (8): 925-932. 10.1038/nbt.1480. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18641636
Article
CAS
PubMed
Google Scholar
Hamblett KJ, Senter PD, Chace DF, Sun MMC, Lenox J, Cerveny CG, Kissler KM: Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Canc Res Offic J Am Assoc Canc Res. 2004, 10 (20): 7063-7070. 10.1158/1078-0432.CCR-04-0789. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15501986
Article
CAS
Google Scholar
Ackerman ME, Pawlowski D, Wittrup KD: Effect of antigen turnover rate and expression level on antibody penetration into tumor spheroids. Mol Cancer Ther. 2008, 7 (7): 2233-2240. 10.1158/1535-7163.MCT-08-0067. Retrieved from http://mct.aacrjournals.org/cgi/content/abstract/7/7/2233
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee CM, Tannock IF: The distribution of the therapeutic monoclonal antibodies cetuximab and trastuzumab within solid tumors. BMC Cancer. 2010, 10 (1): 255-10.1186/1471-2407-10-255.
Article
PubMed Central
PubMed
CAS
Google Scholar
Tabrizi M, Bornstein GG, Suria H: Biodistribution mechanisms of therapeutic monoclonal antibodies in health and disease. AAPS J. 2010, 12 (1): 33-43. 10.1208/s12248-009-9157-5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK, Marks JD: High Affinity Restricts the Localization and Tumor Penetration of Single-Chain Fv Antibody Molecules. Cancer Res. 2001, 61 (12): 4750-4755.
CAS
PubMed
Google Scholar
Vázquez-Rey M, Lang DA: Aggregates in monoclonal antibody manufacturing processes. Biotechnol Bioeng. 2011, 108 (7): 1494-1508. 10.1002/bit.23155. Retrieved from http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=9&SID=U1PO5IFOM9B@bA1EA5L&page=1&doc=4&cacheurlFromRightClick=no
Article
PubMed
CAS
Google Scholar
Raju TS, Jordan RE: Galactosylation variations in marketed therapeutic antibodies. MAbs. 2012, 4 (3): Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22531450
Google Scholar
Samaranayake H, Wirth T, Schenkwein D, Räty JK, Ylä-Herttuala S: Challenges in monoclonal antibody-based therapies. Ann Med. 2009, 41 (5): 322-331. 10.1080/07853890802698842. Retrieved from http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=9&SID=U1PO5IFOM9B@bA1EA5L&page=2&doc=15&cacheurlFromRightClick=no
Article
CAS
PubMed
Google Scholar
Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR: Making antibodies by phage display technology. Annu Rev Immunol. 1994, 12: 433-455. 10.1146/annurev.iy.12.040194.002245. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8011287
Article
CAS
PubMed
Google Scholar
Thie H, Meyer T, Schirrmann T, Hust M, Dübel S: Phage display derived therapeutic antibodies. Curr Pharm Biotechnol. 2008, 9 (6): 439-446. 10.2174/138920108786786349. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19075684
Article
CAS
PubMed
Google Scholar
Molek P, Strukelj B, Bratkovic T: Peptide phage display as a tool for drug discovery: targeting membrane receptors. Mol (Basel, Switzerland). 2011, 16 (1): 857-887. 10.3390/molecules16010857.
Article
CAS
Google Scholar
Dantas-Barbosa C, de Macedo Brigido M, Maranhao AQ: Antibody phage display libraries: contributions to oncology. Int J Mol Sci. 2012, 13 (5): 5420-5440. 10.3390/ijms13055420. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3382779&tool=pmcentrez&rendertype=abstract
Article
PubMed Central
CAS
PubMed
Google Scholar
Miersch S, Sidhu SS: Synthetic antibodies: Concepts, potential and practical considerations. Meth (San Diego, Calif). 2012, Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22750306
Google Scholar
Zhou Y, Marks JD: Discovery of internalizing antibodies to tumor antigens from phage libraries. Methods Enzymol. 2012, 502: 43-66. Retrieved from http://apps.webofknowledge.com.mgs-ariel.macam.ac.il/full_record.do?product=WOS&search_mode=Refine&qid=3&SID=Y2nn6f41cK8j6d4n7i3&page=1&doc=2&cacheurlFromRightClick=no
Article
PubMed Central
CAS
PubMed
Google Scholar
Aina OH, Liu R, Sutcliffe JL, Marik J, Pan C, Lam KS: Reviews From Combinatorial Chemistry to Cancer-Targeting. Mol Pharm. 2007, 4 (5): 631-651. 10.1021/mp700073y.
Article
CAS
PubMed
Google Scholar
Denholt CL, Hansen PR, Pedersen N, Poulsen HS, Gillings N, Kjaer A: Identification of novel peptide ligands for the cancer-specific receptor mutation EFGRvIII using a mixture-based synthetic combinatorial library. Biopolymers. 2009, 91 (3): 201-206. 10.1002/bip.21117. Retrieved from http://apps.webofknowledge.com.mgs-ariel.macam.ac.il/full_record.do?product=WOS&search_mode=GeneralSearch&qid=9&SID=Y2nn6f41cK8j6d4n7i3&page=1&doc=3&cacheurlFromRightClick=no
Article
CAS
PubMed
Google Scholar
Kim M, Shin D-S, Kim J, Lee YS: Substrate screening of protein kinases: detection methods and combinatorial peptide libraries. Biopolymers. 2010, 94 (6): 753-762. 10.1002/bip.21506. Retrieved from http://apps.webofknowledge.com.mgs-ariel.macam.ac.il/full_record.do?product=WOS&search_mode=GeneralSearch&qid=9&SID=Y2nn6f41cK8j6d4n7i3&page=1&doc=6&cacheurlFromRightClick=no
Article
CAS
PubMed
Google Scholar
Li J, Tan S, Chen X, Zhang CY, Zhang Y: Peptide aptamers with biological and therapeutic applications. Curr Med Chem. 2011, 18 (27): 4215-4222. 10.2174/092986711797189583. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21838684
Article
CAS
PubMed
Google Scholar
Pirogova E, Istivan T, Gan E, Cosic I: Advances in methods for therapeutic peptide discovery, design and development. Curr Pharm Biotechnol. 2011, 12 (8): 1117-1127. 10.2174/138920111796117436. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21470146
Article
CAS
PubMed
Google Scholar
Bellmann-Sickert K, Beck-Sickinger AG: Peptide drugs to target G protein-coupled receptors. Trends Pharmacol Sci. 2010, 31 (9): 434-441. 10.1016/j.tips.2010.06.003.
Article
CAS
PubMed
Google Scholar
Kurzrock R, Gabrail N, Chandhasin C, Moulder S, Smith C, Brenner A, Sankhala K: Safety, pharmacokinetics, and activity of GRN1005, a novel conjugate of angiopep-2, a peptide facilitating brain penetration, and paclitaxel, in patients with advanced solid tumors. Mol Canc Ther. 2012, 11 (2): 308-316. 10.1158/1535-7163.MCT-11-0566. Retrieved from http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=9&SID=T2gMNeDBgeK5kmJmOL5&page=1&doc=1&cacheurlFromRightClick=no
Article
CAS
Google Scholar
Dhar S, Kolishetti N, Lippard SJ, Farokhzad OC: Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc Natl Acad Sci USA. 2011, 108 (5): 1850-1855. 10.1073/pnas.1011379108. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3033286&tool=pmcentrez&rendertype=abstract
Article
PubMed Central
CAS
PubMed
Google Scholar
Tai W, Shukla RS, Qin B, Li B, Cheng K: Development of a peptide-drug conjugate for prostate cancer therapy. Mol Pharm. 2011, 8 (3): 901-912. 10.1021/mp200007b. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3163154&tool=pmcentrez&rendertype=abstract
Article
PubMed Central
CAS
PubMed
Google Scholar
Karjalainen K, Jaalouk DE, Bueso-Ramos CE, Zurita AJ, Kuniyasu A, Eckhardt BL, Marini FC: Targeting neuropilin-1 in human leukemia and lymphoma. Blood. 2011, 117 (3): 920-927. 10.1182/blood-2010-05-282921.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schally AV, Engel JB, Emons G, Block NL, Pinski J: Use of analogs of peptide hormones conjugated to cytotoxic radicals for chemotherapy targeted to receptors on tumors. Curr Drug Deliv. 2011, 8 (1): 11-25. 10.2174/156720111793663598. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21034424
Article
CAS
PubMed
Google Scholar
Majumdar S, Siahaan TJ: Peptide-mediated targeted drug delivery. Med Res Rev. 2012, 32 (3): 637-658. 10.1002/med.20225.
Article
CAS
PubMed
Google Scholar
Otvos L: Peptide-based drug design: here and now. Meth Mol Biol (Clifton, N.J). 2008, 494: 1-8. 10.1007/978-1-59745-419-3_1.
Article
CAS
Google Scholar
van Zutphen S, Robillard MS, van der Marel GA, Overkleeft HS, den Dulk H, Brouwer J, Reedijk J: Extending solid-phase methods in inorganic synthesis: the first dinuclear platinum complex synthesised via the solid phase. Chem Commun (Camb). 2003, 634-635. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12669861, 5
Pakkala M, Hekim C, Soininen P, Leinonen J, Koistinen H, Weisell J, Stenman U-H: Activity and stability of human kallikrein-2-specific linear and cyclic peptide inhibitors. J Pept Sci Offic Publ Eur Pept Soc. 2007, 13 (5): 348-353. 10.1002/psc.849.
CAS
Google Scholar
Clark RJ, Craik DJ: Engineering cyclic peptide toxins. Meth Enzymol. 2012, 503: 57-74. 10.1016/B978-0-12-396962-0.00003-3.
Article
CAS
PubMed
Google Scholar
Lu Y, Yang J, Sega E: Issues related to targeted delivery of proteins and peptides. AAPS J. 2006, 8 (3): E466-E478. 10.1208/aapsj080355.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sharman W: Targeted photodynamic therapy via receptor mediated delivery systems. Adv Drug Deliv Rev. 2004, 56 (1): 53-76. 10.1016/j.addr.2003.08.015. Retrieved from http://dx.doi.org/10.1016/j.addr.2003.08.015
Article
CAS
PubMed
Google Scholar
Li H, Qian ZM: Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev. 2002, 22 (3): 225-250. 10.1002/med.10008. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11933019
Article
CAS
PubMed
Google Scholar
Daniels TR, Bernabeu E, Rodríguez JA, Patel S, Kozman M, Chiappetta DA, Holler E: The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta. 2012, 1820 (3): 291-317. 10.1016/j.bbagen.2011.07.016. Retrieved from http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=Refine&qid=4&SID=N1kMhGPnDfGo@3EINjI&page=1&doc=4&cacheurlFromRightClick=no
Article
PubMed Central
CAS
PubMed
Google Scholar
Yoon DJ, Liu CT, Quinlan DS, Nafisi PM, Kamei DT: Intracellular trafficking considerations in the development of natural ligand-drug molecular conjugates for cancer. Ann Biomed Eng. 2011, 39 (4): 1235-1251. 10.1007/s10439-011-0280-y. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3069328&tool=pmcentrez&rendertype=abstract
Article
PubMed Central
PubMed
Google Scholar
Duncan R, Richardson SCW: Endocytosis and Intracellular Trafficking as Gateways for Nanomedicine Delivery: Opportunities and Challenges. Mol Pharm. 2012, Retrieved from http://dx.doi.org/10.1021/mp300293n
Google Scholar
Meyer-Losic F, Quinonero J, Dubois V, Alluis B, Dechambre M, Michel M, Cailler F: Improved therapeutic efficacy of doxorubicin through conjugation with a novel peptide drug delivery technology (Vectocell). J Med Chem. 2006, 49 (23): 6908-6916. 10.1021/jm0606591. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17154520
Article
CAS
PubMed
Google Scholar
Hong FD, Clayman GL: Isolation of a peptide for targeted drug delivery into human head and neck solid tumors. Canc Res. 2000, 60 (23): 6551-6556. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11118031
CAS
Google Scholar
Flessner MF, Choi J, Credit K, Deverkadra R, Henderson K: Resistance of tumor interstitial pressure to the penetration of intraperitoneally delivered antibodies into metastatic ovarian tumors. Clin Canc Res Offic J Am Assoc Canc Res. 2005, 11 (8): 3117-3125. 10.1158/1078-0432.CCR-04-2332. Retrieved from http://clincancerres.aacrjournals.org/cgi/content/abstract/11/8/3117
Article
CAS
Google Scholar
Heine M, Freund B, Nielsen P, Jung C, Reimer R, Hohenberg H, Zangemeister-Wittke U: High interstitial fluid pressure is associated with low tumour penetration of diagnostic monoclonal antibodies applied for molecular imaging purposes. (M. Ho, Ed.). PLoS One. 2012, 7 (5): e36258-10.1371/journal.pone.0036258. Retrieved from http://dx.plos.org/10.1371/journal.pone.0036258
Article
PubMed Central
CAS
PubMed
Google Scholar
Roth L, Agemy L, Kotamraju VR, Braun G, Teesalu T, Sugahara KN, Hamzah J: Transtumoral targeting enabled by a novel neuropilin-binding peptide. Oncogene. 2011, Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22179825
Google Scholar
Corti A, Pastorino F, Curnis F, Arap W, Ponzoni M, Pasqualini R: Targeted Drug Delivery and Penetration Into Solid Tumors. Med Res Rev. 2011, 32 (5): 1078-1091. 10.1002/med.
Article
PubMed
CAS
Google Scholar
Nascimento FD, Sancey L, Pereira A, Rome C, Oliveira V, Oliveira EB, Nader HB: The natural cell-penetrating peptide crotamine targets tumor tissue in vivo and triggers a lethal calcium-dependent pathway in cultured cells. Mol Pharm. 2012, 9 (2): 211-221. 10.1021/mp2000605. Retrieved from http://apps.webofknowledge.com.mgs-ariel.macam.ac.il/full_record.do?product=WOS&search_mode=GeneralSearch&qid=13&SID=Z27Mm17en7OkOBJcCh7&page=1&doc=2&cacheurlFromRightClick=no
Article
CAS
PubMed
Google Scholar
Sarko D, Beijer B, Garcia Boy R, Nothelfer E-M, Leotta K, Eisenhut M, Altmann A: The pharmacokinetics of cell-penetrating peptides. Mol Pharm. 2010, 7 (6): 2224-2231. 10.1021/mp100223d. Retrieved from http://apps.webofknowledge.com.mgs-ariel.macam.ac.il/full_record.do?product=WOS&search_mode=GeneralSearch&qid=13&SID=Z27Mm17en7OkOBJcCh7&page=1&doc=3&cacheurlFromRightClick=no
Article
CAS
PubMed
Google Scholar
Myrberg H, Zhang L, Mäe M, Langel U: Design of a tumor-homing cell-penetrating peptide. Bioconjug Chem. 2008, 19 (1): 70-75. 10.1021/bc0701139. Retrieved from http://apps.webofknowledge.com.mgs-ariel.macam.ac.il/full_record.do?product=WOS&search_mode=GeneralSearch&qid=13&SID=Z27Mm17en7OkOBJcCh7&page=1&doc=9&cacheurlFromRightClick=no
Article
CAS
PubMed
Google Scholar
Takara K, Hatakeyama H, Ohga N, Hida K, Harashima H: Design of a dual-ligand system using a specific ligand and cell penetrating peptide, resulting in a synergistic effect on selectivity and cellular uptake. Int J Pharm. 2010, 396 (1–2): 143-148. Retrieved from http://apps.webofknowledge.com.mgs-ariel.macam.ac.il/full_record.do?product=WOS&search_mode=GeneralSearch&qid=13&SID=Z27Mm17en7OkOBJcCh7&page=1&doc=5&cacheurlFromRightClick=no
Article
CAS
PubMed
Google Scholar
Bolhassani A: Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochim Biophys Acta. 2011, 1816 (2): 232-246. Retrieved from http://apps.webofknowledge.com.mgs-ariel.macam.ac.il/full_record.do?product=WOS&search_mode=GeneralSearch&qid=13&SID=Z27Mm17en7OkOBJcCh7&page=1&doc=6&cacheurlFromRightClick=no
CAS
PubMed
Google Scholar
Zaro JL, Fei L, Shen W-C: Recombinant peptide constructs for targeted cell penetrating peptide-mediated delivery. J Contr Release Offic J Contr Release Soc. 2012, 158 (3): 357-361. Retrieved from http://apps.webofknowledge.com.mgs-ariel.macam.ac.il/full_record.do?product=WOS&search_mode=GeneralSearch&qid=13&SID=Z27Mm17en7OkOBJcCh7&page=1&doc=10&cacheurlFromRightClick=no
Article
CAS
Google Scholar
Bruckdorfer T, Marder O, Albericio F: From production of peptides in milligram amounts for research to multi-tons quantities for drugs of the future. Curr Pharm Biotechnol. 2004, 5 (1): 29-43. 10.2174/1389201043489620. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14965208
Article
CAS
PubMed
Google Scholar
Thayer A: Making peptides at large scale. Chem Eng News. 2011, 89 (22): 81-85.
Google Scholar
Methods in Molecular Biology: Peptide-based drug design. (L Otvos, Ed.). Edited by: Otvos L. 2008, Human Press
Google Scholar
Hallam T, Murray C: Protein Engineering. Biopharm Int. 2011, 50-54.
Google Scholar
Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M: Synthetic therapeutic peptides: science and market. Drug Discov Today. 2010, 15 (1–2): 40-56. 10.1016/j.drudis.2009.10.009.
Article
CAS
PubMed
Google Scholar
Vrielink J, Heins MS, Setroikromo R, Szegezdi E, Mullally MM, Samali A, Quax WJ: Synthetic constrained peptide selectively binds and antagonizes death receptor 5. FEBS J. 2010, 277 (7): 1653-1665. 10.1111/j.1742-4658.2010.07590.x.
Article
CAS
PubMed
Google Scholar