Bergsagel DE, Valeriote FA: Growth characteristics of a mouse plasma cell tumor. Cancer Res. 1968, 28 (11): 2187-2196.
CAS
PubMed
Google Scholar
Park CH, Bergsagel DE, McCulloch EA: Mouse myeloma tumor stem cells: a primary cell culture assay. J Natl Cancer Inst. 1971, 46 (2): 411-422.
CAS
PubMed
Google Scholar
Hamburger AW, Salmon SE: Primary bioassay of human tumor stem cells. Science. 1977, 197 (4302): 461-463.
Article
CAS
PubMed
Google Scholar
Hamburger A, Salmon SE: Primary bioassay of human myeloma stem cells. J Clin Invest. 1977, 60 (4): 846-854.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bonnet D, Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997, 3 (7): 730-737.
Article
CAS
PubMed
Google Scholar
Siegel R, Naishadham D, Jemal A: Cancer statistics, 2012. CA Cancer J Clin. 2012, 62 (1): 10-29.
Article
PubMed
Google Scholar
Anderson KC, Carrasco RD: Pathogenesis of myeloma. Annu Rev Pathol. 2011, 6: 249-274.
Article
CAS
PubMed
Google Scholar
Boyd KD, et al: Understanding the molecular biology of myeloma and its therapeutic implications. Expert Rev Hematol. 2012, 5 (6): 603-617.
Article
CAS
PubMed
Google Scholar
Mahindra A, et al: Latest advances and current challenges in the treatment of multiple myeloma. Nat Rev Clin Oncol. 2012, 9 (3): 135-143.
Article
CAS
PubMed
Google Scholar
Bakkus MH, et al: Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood. 1992, 80 (9): 2326-2335.
CAS
PubMed
Google Scholar
Bakkus MH, et al: Evidence that the clonogenic cell in multiple myeloma originates from a pre-switched but somatically mutated B cell. Br J Haematol. 1994, 87 (1): 68-74.
Article
CAS
PubMed
Google Scholar
Bergsagel PL, et al: In multiple myeloma, clonotypic B lymphocytes are detectable among CD19+ peripheral blood cells expressing CD38, CD56, and monotypic Ig light chain. Blood. 1995, 85 (2): 436-447.
CAS
PubMed
Google Scholar
Billadeau D, et al: The bone marrow of multiple myeloma patients contains B cell populations at different stages of differentiation that are clonally related to the malignant plasma cell. J Exp Med. 1993, 178 (3): 1023-1031.
Article
CAS
PubMed
Google Scholar
Pilarski LM, et al: In multiple myeloma, circulating hyperdiploid B cells have clonotypic immunoglobulin heavy chain rearrangements and may mediate spread of disease. Clin Cancer Res. 2000, 6 (2): 585-596.
CAS
PubMed
Google Scholar
Szczepek AJ, et al: A high frequency of circulating B cells share clonotypic Ig heavy-chain VDJ rearrangements with autologous bone marrow plasma cells in multiple myeloma, as measured by single-cell and in situ reverse transcriptase-polymerase chain reaction. Blood. 1998, 92 (8): 2844-2855.
CAS
PubMed
Google Scholar
Bergui L, et al: Interleukin 3 and interleukin 6 synergistically promote the proliferation and differentiation of malignant plasma cell precursors in multiple myeloma. J Exp Med. 1989, 170 (2): 613-618.
Article
CAS
PubMed
Google Scholar
Vescio RA, et al: Myeloma Ig heavy chain V region sequences reveal prior antigenic selection and marked somatic mutation but no intraclonal diversity. J Immunol. 1995, 155 (5): 2487-2497.
CAS
PubMed
Google Scholar
Rasmussen T, et al: In multiple myeloma clonotypic CD38- /CD19+ / CD27+ memory B cells recirculate through bone marrow, peripheral blood and lymph nodes. Leuk Lymphoma. 2004, 45 (7): 1413-1417.
Article
CAS
PubMed
Google Scholar
Yaccoby S, Barlogie B, Epstein J: Primary myeloma cells growing in SCID-hu mice: a model for studying the biology and treatment of myeloma and its manifestations. Blood. 1998, 92 (8): 2908-2913.
CAS
PubMed
Google Scholar
Yaccoby S, Epstein J: The proliferative potential of myeloma plasma cells manifest in the SCID-hu host. Blood. 1999, 94 (10): 3576-3582.
CAS
PubMed
Google Scholar
Kim D, et al: CD19-CD45 low/- CD38 high/CD138+ plasma cells enrich for human tumorigenic myeloma cells. Leukemia. 2012, 26 (12): 2530-2537.
Article
CAS
PubMed
Google Scholar
Pilarski LM, et al: Myeloma progenitors in the blood of patients with aggressive or minimal disease: engraftment and self-renewal of primary human myeloma in the bone marrow of NOD SCID mice. Blood. 2000, 95 (3): 1056-1065.
CAS
PubMed
Google Scholar
Pilarski LM, et al: Leukemic B cells clonally identical to myeloma plasma cells are myelomagenic in NOD/SCID mice. Exp Hematol. 2002, 30 (3): 221-228.
Article
CAS
PubMed
Google Scholar
Matsui W, et al: Characterization of clonogenic multiple myeloma cells. Blood. 2004, 103 (6): 2332-2336.
Article
PubMed Central
CAS
PubMed
Google Scholar
Matsui W, et al: Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res. 2008, 68 (1): 190-197.
Article
PubMed Central
CAS
PubMed
Google Scholar
Reghunathan R, et al: Clonogenic multiple myeloma cells have shared stemness signature assocuated with patient survival. Oncotarget. 2013, 4 (8): 1230-1240.
Article
PubMed Central
PubMed
Google Scholar
Taipale J, Beachy PA: The Hedgehog and Wnt signalling pathways in cancer. Nature. 2001, 411 (6835): 349-354.
Article
CAS
PubMed
Google Scholar
Ruizi Altaba AP, Sanchez N, Dahmane : Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer. 2002, 2 (5): 361-372.
Article
CAS
Google Scholar
Wang Z, et al: Emerging role of Notch in stem cells and cancer. Cancer Lett. 2009, 279 (1): 8-12.
Article
PubMed Central
CAS
PubMed
Google Scholar
Takebe N, et al: Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 2011, 8 (2): 97-106.
Article
CAS
PubMed
Google Scholar
Peacock CD, et al: Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci U S A. 2007, 104 (10): 4048-4053.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ingham PW, McMahon AP: Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001, 15 (23): 3059-3087.
Article
CAS
PubMed
Google Scholar
Vestergaard J, et al: Hedgehog signaling in small-cell lung cancer: frequent in vivo but a rare event in vitro. Lung Cancer. 2006, 52 (3): 281-290.
Article
PubMed
Google Scholar
Mimeault M, et al: Cytotoxic effects induced by docetaxel, gefitinib, and cyclopamine on side population and nonside population cell fractions from human invasive prostate cancer cells. Mol Cancer Ther. 2010, 9 (3): 617-630.
Article
PubMed Central
CAS
PubMed
Google Scholar
Von Hoff DD, et al: Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med. 2009, 361 (12): 1164-1172.
Article
CAS
PubMed
Google Scholar
Rudin CM, et al: Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med. 2009, 361 (12): 1173-1178.
Article
CAS
PubMed
Google Scholar
Angers S, Moon RT: Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol. 2009, 10 (7): 468-477.
Article
CAS
PubMed
Google Scholar
Grigoryan T, et al: Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev. 2008, 22 (17): 2308-2341.
Article
PubMed Central
CAS
PubMed
Google Scholar
Derksen PW, et al: Illegitimate WNT signaling promotes proliferation of multiple myeloma cells. Proc Natl Acad Sci U S A. 2004, 101 (16): 6122-6127.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bueno C, Lopes LF, Menendez P: Bone marrow stromal cell-derived Wnt signals as a potential underlying mechanism for cyclin D1 deregulation in multiple myeloma lacking t(11;14)(q13;q32). Blood Cells Mol Dis. 2007, 39 (3): 366-368.
Article
CAS
PubMed
Google Scholar
Chim CS, et al: Epigenetic dysregulation of Wnt signaling pathway in multiple myeloma. Leukemia. 2007, 21 (12): 2527-2536.
Article
CAS
PubMed
Google Scholar
Dutta-Simmons J, et al: Aurora kinase A is a target of Wnt/beta-catenin involved in multiple myeloma disease progression. Blood. 2009, 114 (13): 2699-2708.
Article
CAS
PubMed
Google Scholar
Qiang YW, et al: Characterization of Wnt/beta-catenin signalling in osteoclasts in multiple myeloma. Br J Haematol. 2010, 148 (5): 726-738.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yao H, et al: AV-65, a novel Wnt/beta-catenin signal inhibitor, successfully suppresses progression of multiple myeloma in a mouse model. Blood Cancer J. 2011, 1 (11): e43-
Article
PubMed Central
CAS
PubMed
Google Scholar
Narayanan BA, et al: Antagonistic effect of small-molecule inhibitors of Wnt/beta-catenin in multiple myeloma. Anticancer Res. 2012, 32 (11): 4697-4707.
PubMed Central
CAS
PubMed
Google Scholar
Li X, Zhang K, Li Z: Unfolded protein response in cancer: the Physician's perspective. J Hematol Oncol. 2011, 4 (1): 8-
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu B, et al: Essential roles of grp94 in gut homeostasis via chaperoning canonical Wnt pathway. Proc Natl Acad Sci U S A. 2013, 110 (17): 6877-6882.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hua Y, et al: Molecular chaperone gp96 is a novel therapeutic target of multiple myeloma. Clin Cancer Res. 2013, 19 (22): 6242-6251.
Article
CAS
PubMed
Google Scholar
Artavanis-Tsakonas S, Rand MD, Lake RJ: Notch signaling: cell fate control and signal integration in development. Science. 1999, 284 (5415): 770-776.
Article
CAS
PubMed
Google Scholar
Hassan KA, et al: Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma. Clin Cancer Res. 2013, 19 (8): 1972-1980.
Article
PubMed Central
CAS
PubMed
Google Scholar
Won HY, et al: Loss of Mel-18 enhances breast cancer stem cell activity and tumorigenicity through activating Notch signaling mediated by the Wnt/TCF pathway. FASEB J. 2012, 26 (12): 5002-5013.
Article
CAS
PubMed
Google Scholar
Bao B, et al: Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett. 2011, 307 (1): 26-36.
Article
PubMed Central
CAS
PubMed
Google Scholar
Garcia Campelo MR, et al: Stem cell and lung cancer development: blaming the Wnt, Hh and Notch signalling pathway. Clin Transl Oncol. 2011, 13 (2): 77-83.
Article
PubMed
CAS
Google Scholar
Hovinga KE, et al: Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells. 2010, 28 (6): 1019-1029.
Article
CAS
PubMed
Google Scholar
Chiron D, et al: Critical role of the NOTCH ligand JAG2 in self-renewal of myeloma cells. Blood Cells Mol Dis. 2012, 48 (4): 247-253.
Article
CAS
PubMed
Google Scholar
Xu D, et al: Dll1/Notch activation accelerates multiple myeloma disease development by promoting CD138+ MM-cell proliferation. Leukemia. 2012, 26 (6): 1402-1405.
Article
CAS
PubMed
Google Scholar
Jundt F, et al: Jagged1-induced Notch signaling drives proliferation of multiple myeloma cells. Blood. 2004, 103 (9): 3511-3515.
Article
CAS
PubMed
Google Scholar
Boucher K, et al: Stemness of B-cell progenitors in multiple myeloma bone marrow. Clin Cancer Res. 2012, 18 (22): 6155-6168.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nefedova Y, et al: Inhibition of Notch signaling induces apoptosis of myeloma cells and enhances sensitivity to chemotherapy. Blood. 2008, 111 (4): 2220-2229.
Article
CAS
PubMed
Google Scholar
Schwarzer R, et al: Notch inhibition blocks multiple myeloma cell-induced osteoclast activation. Leukemia. 2008, 22 (12): 2273-2277.
Article
CAS
PubMed
Google Scholar
Mirandola L, et al: Anti-Notch treatment prevents multiple myeloma cells localization to the bone marrow via the chemokine system CXCR4/SDF-1. Leukemia. 2013, 27 (7): 1558-1566.
Article
CAS
PubMed
Google Scholar
Weder C: Urethane in the treatment of multiple myeloma. Can Med Assoc J. 1950, 62 (6): 589-590.
PubMed Central
CAS
PubMed
Google Scholar
Hoogstraten B, et al: Melphalan in multiple myeloma. Blood. 1967, 30 (1): 74-83.
CAS
PubMed
Google Scholar
Korst DR, et al: Multiple myeloma. Ii. Analysis of cyclophosphamide therapy in 165 patients. JAMA. 1964, 189: 758-762.
Article
CAS
PubMed
Google Scholar
Alexanian R, et al: Treatment for multiple myeloma. Combination chemother with different melphalan dose regimens. JAMA. 1969, 208 (9): 1680-1685.
Article
CAS
PubMed
Google Scholar
Cooper MR, et al: Single, sequential, and multiple alkylating agent therapy for multiple myeloma: a CALGB Study. J Clin Oncol. 1986, 4 (9): 1331-1339.
CAS
PubMed
Google Scholar
Blade J, et al: Increased conventional chemotherapy does not improve survival in multiple myeloma: long-term results of two PETHEMA trials including 914 patients. Hematol J. 2001, 2 (4): 272-278.
Article
CAS
PubMed
Google Scholar
Singhal S, et al: Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med. 1999, 341 (21): 1565-1571.
Article
CAS
PubMed
Google Scholar
Dimopoulos M, et al: Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med. 2007, 357 (21): 2123-2132.
Article
CAS
PubMed
Google Scholar
Usmani SZ, et al: The anti-myeloma activity of a novel purine scaffold HSP90 inhibitor PU-H71 is via inhibition of both HSP90A and HSP90B1. J Hematol Oncol. 2010, 3 (1): 40-
Article
PubMed Central
PubMed
CAS
Google Scholar
Akinleye A, et al: Ibrutinib and novel BTK inhibitors in clinical development. J Hematol Oncol. 2013, 6: 59-
Article
PubMed Central
CAS
PubMed
Google Scholar
Saini N, Mahindra A: Novel immunomodulatory compounds in multiple myeloma. Expert Opin Investig Drugs. 2013, 22 (2): 207-215.
Article
CAS
PubMed
Google Scholar
Latif T, et al: Thalidomide and its analogues in the treatment of multiple myeloma. Exp Hematol Oncol. 2012, 1 (1): 27-
Article
PubMed Central
CAS
PubMed
Google Scholar
Clevers H: The cancer stem cell: premises, promises and challenges. Nat Med. 2011, 17 (3): 313-319.
Article
CAS
PubMed
Google Scholar
Moser K, et al: Stromal niches, plasma cell differentiation and survival. Curr Opin Immunol. 2006, 18 (3): 265-270.
Article
CAS
PubMed
Google Scholar
Tokoyoda K, et al: Organization of immunological memory by bone marrow stroma. Nat Rev Immunol. 2010, 10 (3): 193-200.
Article
CAS
PubMed
Google Scholar
Anjos-Afonso F, Bonnet D: Flexible and dynamic organization of bone marrow stromal compartment. Br J Haematol. 2007, 139 (3): 373-384.
Article
CAS
PubMed
Google Scholar
Nilsson SK, et al: Immunofluorescence characterization of key extracellular matrix proteins in murine bone marrow in situ. J Histochem Cytochem. 1998, 46 (3): 371-377.
Article
CAS
PubMed
Google Scholar
Vanderkerken K, et al: Insulin-like growth factor-1 acts as a chemoattractant factor for 5 T2 multiple myeloma cells. Blood. 1999, 93 (1): 235-241.
CAS
PubMed
Google Scholar
Podar K, et al: Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood. 2001, 98 (2): 428-435.
Article
CAS
PubMed
Google Scholar
Mitsiades CS, et al: Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell. 2004, 5 (3): 221-230.
Article
CAS
PubMed
Google Scholar
Chauhan D, et al: Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood. 1996, 87 (3): 1104-1112.
CAS
PubMed
Google Scholar
Moreaux J, et al: BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood. 2004, 103 (8): 3148-3157.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dankbar B, et al: Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood. 2000, 95 (8): 2630-2636.
CAS
PubMed
Google Scholar
Hideshima T, et al: The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene. 2001, 20 (33): 4519-4527.
Article
CAS
PubMed
Google Scholar
Gupta D, et al: Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia. 2001, 15 (12): 1950-1961.
Article
CAS
PubMed
Google Scholar
Roodman GD, et al: Interleukin 6. A potential autocrine/paracrine factor in Paget's disease of bone. J Clin Invest. 1992, 89 (1): 46-52.
Article
PubMed Central
CAS
PubMed
Google Scholar
Barille S, et al: Myeloma cells upregulate interleukin-6 secretion in osteoblastic cells through cell-to-cell contact but downregulate osteocalcin. Blood. 1995, 86 (8): 3151-3159.
CAS
PubMed
Google Scholar
Shipman CM, Croucher PI: Osteoprotegerin is a soluble decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand and can function as a paracrine survival factor for human myeloma cells. Cancer Res. 2003, 63 (5): 912-916.
CAS
PubMed
Google Scholar
Bataille R, et al: Mechanisms of bone destruction in multiple myeloma: the importance of an unbalanced process in determining the severity of lytic bone disease. J Clin Oncol. 1989, 7 (12): 1909-1914.
CAS
PubMed
Google Scholar
Roodman GD: Pathogenesis of myeloma bone disease. Leukemia. 2009, 23 (3): 435-441.
Article
CAS
PubMed
Google Scholar
Ehrlich LA, Roodman GD: The role of immune cells and inflammatory cytokines in Paget's disease and multiple myeloma. Immunol Rev. 2005, 208: 252-266.
Article
CAS
PubMed
Google Scholar
Desgrosellier JS, Cheresh DA: Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010, 10 (1): 9-22.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pellat-Deceunynck C, et al: Adhesion molecules on human myeloma cells: significant changes in expression related to malignancy, tumor spreading, and immortalization. Cancer Res. 1995, 55 (16): 3647-3653.
CAS
PubMed
Google Scholar
Damiano JS, et al: Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood. 1999, 93 (5): 1658-1667.
CAS
PubMed
Google Scholar
Westhoff MA, et al: Identification of a novel switch in the dominant forms of cell adhesion-mediated drug resistance in glioblastoma cells. Oncogene. 2008, 27 (39): 5169-5181.
Article
CAS
PubMed
Google Scholar
Matsunaga T, et al: Combination therapy of an anticancer drug with the FNIII14 peptide of fibronectin effectively overcomes cell adhesion-mediated drug resistance of acute myelogenous leukemia. Leukemia. 2008, 22 (2): 353-360.
Article
CAS
PubMed
Google Scholar
Alsayed Y, et al: Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood. 2007, 109 (7): 2708-2717.
PubMed Central
CAS
PubMed
Google Scholar
Lapidot T: Mechanism of human stem cell migration and repopulation of NOD/SCID and B2mnull NOD/SCID mice. The role of SDF-1/CXCR4 interactions. Ann N Y Acad Sci. 2001, 938: 83-95.
Article
CAS
PubMed
Google Scholar
Miyamoto T, Weissman IL, Akashi K: AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Natl Acad Sci U S A. 2000, 97 (13): 7521-7526.
Article
PubMed Central
CAS
PubMed
Google Scholar
Meng S, et al: Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res. 2004, 10 (24): 8152-8162.
Article
PubMed
Google Scholar
Stuart SA, Minami Y, Wang JY: The CML stem cell: evolution of the progenitor. Cell Cycle. 2009, 8 (9): 1338-1343.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vereecque R, et al: A new murine aggressive leukemic model. Leuk Res. 1999, 23 (4): 415-416.
Article
CAS
PubMed
Google Scholar
Vereecque R, et al: Gene transfer of GM-CSF, CD80 and CD154 cDNA enhances survival in a murine model of acute leukemia with persistence of a minimal residual disease. Gene Ther. 2000, 7 (15): 1312-1316.
Article
CAS
PubMed
Google Scholar
Saudemont A, Quesnel B: In a model of tumor dormancy, long-term persistent leukemic cells have increased B7-H1 and B7.1 expression and resist CTL-mediated lysis. Blood. 2004, 104 (7): 2124-2133.
Article
CAS
PubMed
Google Scholar
Mellman I, Coukos G, Dranoff G: Cancer immunotherapy comes of age. Nature. 2011, 480 (7378): 480-489.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tirapu I, et al: Low surface expression of B7-1 (CD80) is an immunoescape mechanism of colon carcinoma. Cancer Res. 2006, 66 (4): 2442-2450.
Article
CAS
PubMed
Google Scholar
Pratt G, Goodyear O, Moss P: Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol. 2007, 138 (5): 563-579.
Article
CAS
PubMed
Google Scholar
Prabhala RH, et al: Dysfunctional T regulatory cells in multiple myeloma. Blood. 2006, 107 (1): 301-304.
Article
PubMed Central
CAS
PubMed
Google Scholar
Beyer M, et al: In vivo peripheral expansion of naive CD4 + CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood. 2006, 107 (10): 3940-3949.
Article
CAS
PubMed
Google Scholar
Muthu Raja KR, et al: Increased T regulatory cells are associated with adverse clinical features and predict progression in multiple myeloma. PLoS One. 2012, 7 (10): e47077-
Article
PubMed Central
CAS
PubMed
Google Scholar
Dhodapkar KM, et al: Dendritic cells mediate the induction of polyfunctional human IL17-producing cells (Th17-1 cells) enriched in the bone marrow of patients with myeloma. Blood. 2008, 112 (7): 2878-2885.
Article
PubMed Central
CAS
PubMed
Google Scholar
Prabhala RH, et al: Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood. 2010, 115 (26): 5385-5392.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gorgun GT, et al: Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood. 2013, 121 (15): 2975-2987.
Article
PubMed Central
CAS
PubMed
Google Scholar
Carbone E, et al: HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells. Blood. 2005, 105 (1): 251-258.
Article
CAS
PubMed
Google Scholar
Dhodapkar MV, et al: A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J Exp Med. 2003, 197 (12): 1667-1676.
Article
PubMed Central
CAS
PubMed
Google Scholar