Mabonga L, Kappo AP. Protein-protein interaction modulators: advances, successes and remaining challenges. Biophys Rev. 2019;11(4):559–81.
CAS
PubMed
PubMed Central
Google Scholar
Koh GC, Porras P, Aranda B, Hermjakob H, Orchard SE. Analyzing protein–protein interaction networks. J Proteome Res. 2012;11(4):2014–31.
CAS
PubMed
Google Scholar
Gonzalez MW, Kann MG. Chapter 4: Protein interactions and disease. PLoS Comput Biol. 2012;8(12):e1002819.
CAS
PubMed
PubMed Central
Google Scholar
Cierpicki T, Grembecka J. Targeting protein-protein interactions in hematologic malignancies: still a challenge or a great opportunity for future therapies? Immunol Rev. 2015;263(1):279–301.
CAS
PubMed
PubMed Central
Google Scholar
Zhong M, Lee GM, Sijbesma E, Ottmann C, Arkin MR. Modulating protein-protein interaction networks in protein homeostasis. Curr Opin Chem Biol. 2019;50:55–65.
CAS
PubMed
PubMed Central
Google Scholar
Titeca K, Lemmens I, Tavernier J, Eyckerman S. Discovering cellular protein-protein interactions: technological strategies and opportunities. Mass Spectrom Rev. 2019;38(1):79–111.
CAS
PubMed
Google Scholar
Pattin KA, Moore JH. Role for protein–protein interaction databases in human genetics. Expert Rev Proteomic. 2009;6(6):647–59.
CAS
Google Scholar
Hu G, Wu Z, Uversky V, Kurgan L. Functional analysis of human hub proteins and their interactors involved in the intrinsic disorder-enriched interactions. Int J Mol Sci. 2017;18(12):2761.
PubMed Central
Google Scholar
Milo R. What is the total number of protein molecules per cell volume? A call to rethink some published values. Bioessays. 2013;35(12):1050–5.
CAS
PubMed
PubMed Central
Google Scholar
Kuzmanov U, Emili A. Protein-protein interaction networks: probing disease mechanisms using model systems. Genome Med. 2013;5(4):37.
CAS
PubMed
PubMed Central
Google Scholar
Ori A, Iskar M, Buczak K, Kastritis P, Parca L, Andrés-Pons A, Singer S, Bork P, Beck M. Spatiotemporal variation of mammalian protein complex stoichiometries. Genome Biol. 2016;17(1):47.
PubMed
PubMed Central
Google Scholar
Yang GJ, Wang W, Mok SWF, Wu C, Law BYK, Miao XM, et al. Selective inhibition of lysine-specific demethylase 5A (KDM5A) using a rhodium (III) complex for triple-negative breast cancer therapy. Angew Chem Int Ed. 2018;57(40):13091–5.
CAS
Google Scholar
Ivanov AA, Khuri FR, Fu H. Targeting protein–protein interactions as an anticancer strategy. Trends Pharmacol Sci. 2013;34(7):393–400.
CAS
PubMed
PubMed Central
Google Scholar
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.
CAS
PubMed
Google Scholar
Garner AL, Janda KD. Protein-protein interactions and cancer: targeting the central dogma. Curr Top Med Chem. 2011;11(3):258–80.
CAS
PubMed
Google Scholar
Miao S, Qiu T, Zhao Y, Wang H, Sun X, Wang Y, Xuan Y, Qin Y, Jiao WJT. Overexpression of S100A13 protein is associated with tumor angiogenesis and poor survival in patients with early-stage non-small cell lung cancer. Thoracic Cancer. 2018;9(9):1136–44.
CAS
PubMed
PubMed Central
Google Scholar
Han H, Zhan Z, Xu J, Song ZJO. Therapy: TMEFF2 inhibits pancreatic cancer cells proliferation, migration, and invasion by suppressing phosphorylation of the MAPK signaling pathway. OncoTargets Ther. 2019;12:11371–82.
CAS
Google Scholar
Huang Y, Liu N, Liu J, et al. Mutant p53 drives cancer chemotherapy resistance due to loss of function on activating transcription of PUMA. Cell Cycle. 2019;18(24):3442–55.
CAS
PubMed
PubMed Central
Google Scholar
Ryan DP, Matthews JM. Protein-protein interactions in human disease. Curr Opin Struct Biol. 2005;15(4):441–6.
CAS
PubMed
Google Scholar
Bowler EH, Wang Z, Ewing RM. How do oncoprotein mutations rewire protein–protein interaction networks? 2015;12(5):449–55.
Kar G, Gursoy A, Keskin O. Human cancer protein-protein interaction network: a structural perspective. PLoS Comput Biol. 2009;5(12):e1000601.
PubMed
PubMed Central
Google Scholar
Nero TL, Morton CJ, Holien JK, et al. Oncogenic protein interfaces: small molecules, big challenges. Nat Rev Cancer. 2014;14(4):248–62.
CAS
PubMed
Google Scholar
Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8(6):595–608.
CAS
PubMed
PubMed Central
Google Scholar
Arkin MR, Tang Y, Wells JA. Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol. 2014;21(9):1102–14.
CAS
PubMed
PubMed Central
Google Scholar
Basse MJ, Betzi S, Morelli X, et al. 2P2Idb v2: update of a structural database dedicated to orthosteric modulation of protein–protein interactions. Database. 2016;2016.
Cossar PJ, Lewis PJ, McCluskey A. Protein-protein interactions as antibiotic targets: a medicinal chemistry perspective. Med Res Rev. 2018:1–26.
Raj M, Bullock BN, Arora PS. Plucking the high hanging fruit: a systematic approach for targeting protein–protein interactions. Bioorg Med Chem. 2013;21(14):4051–7.
CAS
PubMed
Google Scholar
London N, Raveh B, Movshovitz, Attias D, et al. Can self-inhibitory peptides be derived from the interfaces of globular protein–protein interactions? Proteins. 2010;78(15):3140–9.
CAS
PubMed
PubMed Central
Google Scholar
He S, Senter TJ, Pollock J, Han C, Upadhyay SK, Purohit T, et al. High-affinity small-molecule inhibitors of the menin-mixed lineage leukemia (MLL) interaction closely mimic a natural protein–protein interaction. J Med Chem. 2014;57(4):1543–56.
CAS
PubMed
PubMed Central
Google Scholar
Bourgeas R, Basse M-J, Morelli X, Roche PJP. Atomic analysis of protein-protein interfaces with known inhibitors: the 2P2I database. 2010;5(3):e9598.
Basse MJ, Betzi S, Bourgeas R, Bouzidi S, Chetrit B, Hamon V, et al. 2P2Idb: a structural database dedicated to orthosteric modulation of protein–protein interactions. Nucleic Acids Res. 2012;41(D1):D824–7.
PubMed
PubMed Central
Google Scholar
Higueruelo AP, Jubb H, Blundell TL. TIMBAL v2. Update of a database holding small molecules modulating protein–protein interactions. Database. 2013;2013.
Labbé CM, Laconde G, Kuenemann MA, et al. iPPI-DB: a manually curated and interactive database of small non-peptide inhibitors of protein–protein interactions. Drug Discov Today. 2013;18(19-20):958–68.
PubMed
Google Scholar
Choi S, Choi KY. Screening-based approaches to identify small molecules that inhibit protein-protein interactions. Expert Opin Drug Discovery. 2017;12(3):293–303.
CAS
Google Scholar
Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov. 2010;9(3):203.
CAS
PubMed
Google Scholar
Jin L, Wang W, Fang G. Targeting protein-protein interaction by small molecules. Annu Rev Pharmacol Toxicol. 2014;54:435–56.
CAS
PubMed
Google Scholar
Singh J, Petter RC, Baillie TA, Whitty A. The resurgence of covalent drugs. Nat Rev Drug Discov. 2011;10(4):307–17.
CAS
PubMed
Google Scholar
Zhong HJ, Lu L, Leung KH, Wong CC, Peng C, Yan SC, et al. An iridium (III)-based irreversible protein–protein interaction inhibitor of BRD4 as a potent anticancer agent. Chem Sci. 2015;6(10):5400–8.
CAS
PubMed
PubMed Central
Google Scholar
Bjij I, Ramharack P, Khan S, Cherqaoui D, Soliman MEJM. Tracing potential covalent inhibitors of an E3 ubiquitin ligase through target-focused modelling. Molecules. 2019;24(17):3125.
CAS
PubMed Central
Google Scholar
Lonsdale R, Ward RA. Structure-based design of targeted covalent inhibitors. Chem Soc Rev. 2018;47(11):3816–30.
CAS
PubMed
Google Scholar
Walter AO, Sjin RTT, Haringsma HJ, Ohashi K, Sun J, Lee K, et al. Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discov. 2013;3(12):1404–15.
CAS
PubMed
PubMed Central
Google Scholar
Rudolph J, Stokoe D. Selective inhibition of mutant Ras protein through covalent binding. Angew Chem Int Ed. 2014;53(15):3777–9.
CAS
Google Scholar
Basu D, Richters A, Rauh D. Structure-based design and synthesis of covalent-reversible inhibitors to overcome drug resistance in EGFR. Bioorg Med Chem. 2015;23(12):2767–80.
CAS
PubMed
Google Scholar
Finlay MRV, Anderton M, Ashton S, Ballard P, Bethel PA, Box MR, et al. Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor. ACS Publications. 2014:8249–67.
Barf T, Kaptein AJ. Irreversible protein kinase inhibitors: balancing the benefits and risks. J Med Chem. 2012;55(14):6243–62.
CAS
PubMed
Google Scholar
Choi S, Connelly S, Reixach N, Wilson IA, Kelly JW. Chemoselective small molecules that covalently modify one lysine in a non-enzyme protein in plasma. Nat Chem Biol. 2010;6(2):133.
CAS
PubMed
PubMed Central
Google Scholar
Akçay G, Belmonte MA, Aquila B, Chuaqui C, Hird AW, Lamb ML, et al. Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain. Nat Chem Biol. 2016;12(11):931.
PubMed
Google Scholar
Tsou LK, Cheng Y, Cheng YC. Therapeutic development in targeting protein–protein interactions with synthetic topological mimetics. Curr Opin Pharmacol. 2012;12(4):403–7.
CAS
PubMed
PubMed Central
Google Scholar
Wu X, Wang L, Han Y, Regan N, Li PK, Villalona MA, et al. Creating diverse target-binding surfaces on FKBP12: synthesis and evaluation of a rapamycin analogue library. ACS Comb Sci. 2011;13(5):486–95.
PubMed
PubMed Central
Google Scholar
Wu C, Yao M, Li W, Cui B, Dong H, Ren Y, Yang C, Gan CJM. Simultaneous determination and pharmacokinetics study of six triterpenes in rat plasma by UHPLC-MS/MS after oral administration of sanguisorba officinalis L extract. Molecules. 2018;23(11):2980.
PubMed Central
Google Scholar
Liu L, Leung K, Chan DS, Wang Y, Ma D. Leung CH, disease: Identification of a natural product-like STAT3 dimerization inhibitor by structure-based virtual screening. Cell Death Dis. 2014;5(6):e1293.
CAS
PubMed
PubMed Central
Google Scholar
Jubb H, Higueruelo AP, Winter A, Blundell TL. Structural biology and drug discovery for protein-protein interactions. Trends Pharmacol Sci. 2012;33(5):241–8.
CAS
PubMed
Google Scholar
Backus KM, Correia BE, Lum KM, Forli S, Horning BD, González-Páez GE, Chatterjee S, Lanning BR, Teijaro JR, Olson A. Proteome-wide covalent ligand discovery in native biological systems. Nature. 2016;534(7608):570.
CAS
PubMed
PubMed Central
Google Scholar
London N, Miller RM, Krishnan S, Uchida K, Irwin JJ, Eidam O, et al. Covalent docking of large libraries for the discovery of chemical probes. Nat Chem Biol. 2014;10(12):1066.
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Zhang D, Tian H, Jiao Y, Shi Z, Ran T, et al. Identification of covalent binding sites targeting cysteines based on computational approaches. J Med Chem. 2016;13(9):3106–18.
CAS
Google Scholar
Zhao Z, Liu Q, Bliven S, Xie L. Bourne PEJJomc. Determining cysteines available for covalent inhibition across the human kinome. J Med Chem. 2017;60(7):2879–89.
CAS
PubMed
PubMed Central
Google Scholar
Wu S, Luo H, Wang H, Zhao W, Hu Q, Yang YJB. The first comprehensive database for proteins with targetable cysteine and their covalent inhibitors. Biochem Biophys Res Commun. 2016;478(3):1268–73.
CAS
PubMed
Google Scholar
Guo Z, Li B, Cheng L-T, Zhou S, McCammon JA. Che J Identification of protein–ligand binding sites by the level-set variational implicit-solvent approach. J Chem Theory Comput. 2015;11(2):753–65.
CAS
PubMed
PubMed Central
Google Scholar
Cai Q, Sun H, Peng Y, Lu J, Nikolovska-Coleska Z, McEachern D, et al. A potent and orally active antagonist (SM-406/AT-406) of multiple inhibitor of apoptosis proteins (IAPs) in clinical development for cancer treatment. J Med Chem. 2011;54(8):2714–26.
CAS
PubMed
PubMed Central
Google Scholar
Liu Z, Sun C, Olejniczak ET, Meadows RP, Betz SF, Oost T, et al. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature. 2000;408(6815):1004.
CAS
PubMed
Google Scholar
Gambini L, Baggio C, Udompholkul P, Jossart J, Salem AF, et al. Covalent inhibitors of protein-protein interactions targeting lysine, tyrosine, or histidine residues. J Med Chem. 2019;62(11):5616–27.
CAS
PubMed
PubMed Central
Google Scholar
Oost TK, Sun C, Armstrong RC, Al-Assaad A-S, Betz SF, Deckwerth TL, et al. Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J Med Chem. 2004;47(18):4417–26.
CAS
PubMed
Google Scholar
Chen X, Wong YK, Wang J, Zhang J, Lee YM, Shen HM, et al. Target identification with quantitative activity-based protein profiling (ABPP). Proteomics. 2017;17(3-4):1600212.
Google Scholar
Maurais AJ, Weerapana E. Reactive-cysteine profiling for drug discovery. Curr Opin Chem Biol. 2019;50:29–36.
CAS
PubMed
PubMed Central
Google Scholar
Lanning BR, Whitby LR, Dix MM, Douhan J, Gilbert AM, Hett EC, et al. Niessen SJNcb: A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat Chem Biol. 2014;10(9):760.
CAS
PubMed
PubMed Central
Google Scholar
Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MB, et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature. 2010;468(7325):790.
CAS
PubMed
PubMed Central
Google Scholar
Shannon DA, Banerjee R, Webster ER, Bak DW, Wang C, Weerapana E. Investigating the proteome reactivity and selectivity of aryl halides. J Am Chem Soc 2014;136(9):3330–3.
Ward CC, Kleinman JI, Nomura DK. NHS-esters as versatile reactivity-based probes for mapping proteome-wide ligandable hotspots. ACS Chem Biol. 2017;12(6):1478–83.
CAS
PubMed
PubMed Central
Google Scholar
Louie SM, Grossman EA, Crawford LA, Ding L, Camarda R, Huffman TR, et al. GSTP1 is a driver of triple-negative breast cancer cell metabolism and pathogenicity. Cell Chem Biol. 2016;23(5):567–78.
CAS
PubMed
PubMed Central
Google Scholar
Anderson KE, To M, Olzmann JA, Nomura DK. Chemoproteomics-enabled covalent ligand screening reveals a thioredoxin-caspase 3 interaction disruptor that impairs breast cancer pathogenicity. ACS Chem Biol. 2017;12(10):2522–8.
CAS
PubMed
PubMed Central
Google Scholar
Lu X-G, Wang Z, Cui Y, Jin Z. Computational thermodynamics, computational kinetics, and materials design. Chin Sci Bull. 2014;59(15):1662–71.
Google Scholar
Honarparvar B, Govender T, Maguire GE, Soliman ME. Kruger HGJCr. Integrated approach to structure-based enzymatic drug design: molecular modeling, spectroscopy, and experimental bioactivity. Chem Rev. 2013;114(1):493–537.
PubMed
Google Scholar
Scarpino A, Ferenczy GG, Keserű GM. Comparative evaluation of covalent docking tools. J Chem Inf Model. 2018;58(7):1441–58.
CAS
PubMed
Google Scholar
Kumalo HM, Bhakat S, Soliman ME. Theory and applications of covalent docking in drug discovery: merits and pitfalls. Molecules. 2015;20(2):1984–2000.
PubMed
PubMed Central
Google Scholar
Ouyang X, Zhou S, Su CTT, Ge Z, Li R, Kwoh CK. CovalentDock: automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints. J Comput Chem. 2013;34(4):326–36.
CAS
PubMed
Google Scholar
Cosconati S, Forli S, Perryman AL, Harris R, Goodsell DS, Olson A. Virtual screening with AutoDock: theory and practice. Expert Opin Drug Discovery. 2010;5(6):597–607.
CAS
Google Scholar
Toledo Warshaviak D, Golan G, Borrelli KW, Zhu K, Kalid O. Structure-based virtual screening approach for discovery of covalently bound ligands. J Chem Inf Model. 2014;54(7):1941–50.
CAS
PubMed
Google Scholar
Nguyen VS, Loh XY, Wijaya H, Wang J, Lin Q, Lam Y, et al. Specificity and inhibitory mechanism of andrographolide and its analogues as antiasthma agents on NF-κB p50. J Nat Prod. 2015;78(2):208–17.
CAS
PubMed
Google Scholar
Miller RM, Paavilainen VO, Krishnan S, Serafimova IM, Taunton J. Electrophilic fragment-based design of reversible covalent kinase inhibitors. J Am Chem Soc. 2013;135(14):5298–301.
CAS
PubMed
PubMed Central
Google Scholar
Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KMJN. K-Ras (G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013;503(7477):548.
CAS
PubMed
PubMed Central
Google Scholar
Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov 2011;0(7):507.
Craven GB, Affron DP, Allen CE, Matthies S, Greener JG, Morgan RM, et al. High-throughput kinetic analysis for target-directed covalent ligand discovery. Angew Chem Int Ed. 2018;57(19):5257–61.
CAS
Google Scholar
Chen X, Zhou Y, Peng X, Yoon JJCSR. Fluorescent and colorimetric probes for detection of thiols. Chem Soc Rev. 2010;39(6):2120–35.
CAS
PubMed
Google Scholar
Cardoso R, Love R, Nilsson CL, Bergqvist S, Nowlin D, Yan J, et al. Identification of Cys255 in HIF-1α as a novel site for development of covalent inhibitors of HIF-1α/ARNT PasB domain protein–protein interaction. Protein Sci. 2012;21(12):1885–96.
CAS
PubMed
PubMed Central
Google Scholar
Yu Y, Nie Y, Feng Q, Qu J, Wang R, Bian L, et al. Targeted covalent inhibition of Grb2-Sos1 interaction through proximity-induced conjugation in breast cancer cells. Mol Pharm. 2017;14(5):1548–57.
CAS
PubMed
Google Scholar
Ishiba H, Noguchi T, Shu K, Ohno H, Honda K, Kondoh Y, et al. Investigation of the inhibitory mechanism of apomorphine against MDM2-p53 interaction. Bioorg Med Chem Lett. 2017;27(11):2571–4.
CAS
PubMed
Google Scholar
Zeng M, Lu J, Li L, Feru F, Quan C, Gero TW, et al. Potent and selective covalent quinazoline inhibitors of KRAS G12C. Cell Chem Biol. 2017;24(8):1005–1016e1003.
CAS
PubMed
Google Scholar
Lv Z, Yuan L, Atkison JH, Williams KM, Sessions EH, Divlianska DB, et al. Molecular mechanism of a covalent allosteric inhibitor of SUMO E1 activating enzyme. Nat Commun. 2018;9(1):5145.
PubMed
PubMed Central
Google Scholar
He H, Jiang H, Chen Y, Ye J, Wang A, Wang C, et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat Commun. 2018;9(1):2550.
PubMed
PubMed Central
Google Scholar
Bum-Erdene K, Zhou D, Gonzalez-Gutierrez G, Ghozayel MK, Si Y, Xu D, et al. Small-molecule covalent modification of conserved cysteine leads to allosteric inhibition of the TEAD Yap protein-protein interaction. Cell Chem Biol. 2019;26(3):378–389e313.
CAS
PubMed
Google Scholar
Deak PE, Kim B, Abdul Qayum A, Shin J, Vitalpur G, Kloepfer KM, et al. Designer covalent heterobivalent inhibitors prevent IgE-dependent responses to peanut allergen. Proc Natl Acad Sci U S A. 2019;116(18):8966–74.
CAS
PubMed
PubMed Central
Google Scholar
Charoenpattarapreeda J, Tan YS, Iegre J, Walsh SJ, Fowler E, Eapen RS, et al. Targeted covalent inhibitors of MDM2 using electrophile-bearing stapled peptides. Chem Commun (Camb). 2019;55(55):7914–7.
CAS
Google Scholar
Bakail M, Ochsenbein F. Targeting protein–protein interactions, a wide open field for drug design. Comptes Rendus Chimie. 2016;19(1-2):19–27.
CAS
Google Scholar
Li Y-J, Du L, Wang J, Vega R, Lee TD, Miao Y, et al. Allosteric inhibition of ubiquitin-like modifications by a class of inhibitor of SUMO-activating enzyme. Cell Chem Biol. 2019;26(2):278–88.e276.
CAS
PubMed
Google Scholar
Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15(1):49.
CAS
PubMed
Google Scholar
Wei G, Margolin AA, Haery L, Brown E, Cucolo L, Julian B, et al. Chemical genomics identifies small-molecule MCL1 repressors and BCL-xL as a predictor of MCL1 dependency. Cancer Cell. 2012;21(4):547–62.
CAS
PubMed
PubMed Central
Google Scholar
Zhang T, Kwiatkowski N, Olson CM, Dixon-Clarke SE, Abraham BJ, Greifenberg AK, et al. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. Nat Chem Biol. 2016;12(10):876–84.
CAS
PubMed
PubMed Central
Google Scholar
Iniguez AB, Stolte B, Wang EJ, Conway AS, Alexe G, Dharia NV, et al. EWS/FLI confers tumor cell synthetic lethality to CDK12 inhibition in Ewing sarcoma. Cancer Cell. 2018;33(2):202–216.e206.
CAS
PubMed
PubMed Central
Google Scholar
Cal PM, Vicente JB, Pires E, Coelho AV, Veiros LF, Cordeiro C, et al. Iminoboronates: a new strategy for reversible protein modification. J Am Chem Soc. 2012;134(24):10299–305.
CAS
PubMed
Google Scholar
Aguilar A, Zheng K, Xu T, Xu S, Huang L, Fernandez-Salas E, et al. Structure-based discovery of M-89 as a highly potent inhibitor of the menin-mixed lineage leukemia (Menin-MLL) protein-protein interaction. J Med Chem. 2019;62(13):6015–34.
CAS
PubMed
PubMed Central
Google Scholar
Zhong HJ, Lee BR, Boyle JW, Wang W, Ma D-L, Chan PWH, et al. Structure-based screening and optimization of cytisine derivatives as inhibitors of the menin–MLL interaction. Chem Commun. 2016;52(34):5788–91.
CAS
Google Scholar
Tan HY, Wang N, Lam W, Guo W, Feng Y, Cheng YC. Targeting tumour microenvironment by tyrosine kinase inhibitor. Mol Cancer. 2018;17(1):43.
PubMed
PubMed Central
Google Scholar
Yj M, Liang Y, Hb H, Zhao Hy WCP, Wang F, et al. Apatinib (YN968D1) reverses multidrug resistance by inhibiting the efflux function of multiple ATP-binding cassette transporters. Cancer Res. 2010;70(20):7981–91.
Google Scholar
Wang L, Zhang L, Li L, Jiang J, Zheng Z, Shang J, et al. Small-molecule inhibitor targeting the Hsp90-Cdc37 protein-protein interaction in colorectal cancer. Sci Adv. 2019;5(9):eaax2277.
CAS
PubMed
PubMed Central
Google Scholar
Chen ZS, Tiwari AK. Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS J. 2011;278(18):3226–45.
CAS
PubMed
PubMed Central
Google Scholar
Valkov E, Sharpe T, Marsh M, Greive S, Hyvönen M. Targeting protein–protein interactions and fragment-based drug discovery. Fragment-Based Drug Discovery and X-Ray Crystallography. 2011:145–79.
MC Meireles L, Mustata G. Discovery of modulators of protein-protein interactions: current approaches and limitations. Curr Top Med Chem. 2011;11(3):248–57.
Winter A, Higueruelo AP, Marsh M, Sigurdardottir A, Pitt WR, Blundell TL. Biophysical and computational fragment-based approaches to targeting protein–protein interactions: applications in structure-guided drug discovery. Q Rev Biophys. 2012;45(4):383–426.
CAS
PubMed
Google Scholar
Lin L, Hutzen B, Li P-K, Ball S, Zuo M, DeAngelis S, et al. A novel small molecule, LLL12, inhibits STAT3 phosphorylation and activities and exhibits potent growth-suppressive activity in human cancer cells. Neoplasia. 2010;12(1):39–IN35.
CAS
PubMed
PubMed Central
Google Scholar
Zhong HJ, Liu LJ, Chong C-M, Lu L, Wang M, Chan DS-H, et al. Discovery of a natural product-like iNOS inhibitor by molecular docking with potential neuroprotective effects in vivo. PLoS One. 2014;9(4):e92905.
PubMed
PubMed Central
Google Scholar
Tejo C, See YFA, Mathiew M, Chan PW. Synthesis of 1, 4-amino alcohols by Grignard reagent addition to THF and N-tosyliminobenzyliodinane. Org Biomol Chem. 2016;14(3):844–8.
CAS
PubMed
Google Scholar
Liu LJ, Wang W, Huang SY, Hong Y, Li G, Lin S, et al. Inhibition of the Ras/Raf interaction and repression of renal cancer xenografts in vivo by an enantiomeric iridium (III) metal-based compound. Chem Sci. 2017;8(7):4756–63.
CAS
PubMed
PubMed Central
Google Scholar
Scott DE, Bayly AR, Abell C, Skidmore J. Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Nat Rev Drug Discov. 2016;15(8):533–50.
CAS
PubMed
Google Scholar
Morelli X, Bourgeas R, Roche P. Chemical and structural lessons from recent successes in protein–protein interaction inhibition (2P2I). Curr Opin Chem Biol. 2011;15(4):475–81.
CAS
PubMed
Google Scholar
Wendt MD. Protein-protein interactions as drug targets. In: Protein-Protein Interactions Springer. 2012:1–55.
Smith RD, Lu J, Carlson HA. Are there physicochemical differences between allosteric and competitive ligands? PLoS Comput Biol. 2017;13(11):e1005813.
PubMed
PubMed Central
Google Scholar
Long MJC, Aye Y. Privileged electrophile sensors: a resource for covalent drug development. Cell Chem Biol. 2017;24(7):787–800.
CAS
PubMed
PubMed Central
Google Scholar
Wacker D, Stevens RC. Roth BL How ligands illuminate GPCR molecular pharmacology. Cell. 2017;170(3):414–27.
CAS
PubMed
PubMed Central
Google Scholar
Joseph-McCarthy D, Campbell AJ, Kern G. Moustakas D, modeling: Fragment-based lead discovery and design. J Chem Inf Model. 2014;54(3):693–704.
CAS
PubMed
Google Scholar
Moellering RE, Cravatt BF. How chemoproteomics can enable drug discovery and development. Chem Biol. 2012;19(1):11–22.
CAS
PubMed
PubMed Central
Google Scholar
Li N, Overkleeft HS, Florea BI. Activity-based protein profiling: an enabling technology in chemical biology research. Curr Opin Chem Biol. 2012;16(1-2):227–33.
CAS
PubMed
Google Scholar
Sanman LE, Bogyo M. Activity-based profiling of proteases. Annu Rev Biochem. 2014;83:249–73.
CAS
PubMed
Google Scholar
Schirle M, Bantscheff M. Kuster B Mass spectrometry-based proteomics in preclinical drug discovery. Anal Chem. 2012;19(1):72–84.
CAS
Google Scholar
Law FC, Yao M, Bi HC, Lam S. Physiologically based pharmacokinetic modeling of tea catechin mixture in rats and humans. Pharmacol Res Perspect. 2017;5(3):e00305.
PubMed
PubMed Central
Google Scholar
Way JC. Covalent modification as a strategy to block protein–protein interactions with small-molecule drugs. Curr Opin Chem Biol. 2000;4(1):40–6.
CAS
PubMed
Google Scholar
Smith AJ, Zhang X, Leach AG, Houk KN. Beyond picomolar affinities: quantitative aspects of noncovalent and covalent binding of drugs to proteins. J Med Chem. 2009;52(2):225–33.
CAS
PubMed
PubMed Central
Google Scholar
Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov. 2006;5(12):993.
CAS
PubMed
Google Scholar
Copeland RA, Pompliano DL, Meek TD. Drug–target residence time and its implications for lead optimization. Nat Rev Drug Discov. 2006;5(9):730.
CAS
PubMed
Google Scholar
Brink A, Pähler A, Funk C, Schuler F, Schadt S. Minimizing the risk of chemically reactive metabolite formation of new drug candidates: implications for preclinical drug design. Drug Discov Today. 2017;22(5):751–6.
CAS
PubMed
Google Scholar
González-Bello C. Designing irreversible inhibitors—worth the effort? Chem Med Chem. 2016;11(1):22–30.
PubMed
Google Scholar
Baillie TA. The contributions of Sidney D. Nelson to drug metabolism research. Drug Metab. Rev. 2015;47(1):4–11.
CAS
Google Scholar
Baillie TA. Targeted covalent inhibitors for drug design. Angew Chem Int Ed. 2016;55(43):13408–21.
CAS
Google Scholar
Johnson DS, Weerapana E, Cravatt BF. Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future Med Chem. 2010;2(6):949–64.
CAS
PubMed
Google Scholar
Yu HS, Gao C, Lupyan D, Wu YJ, Kimura T, Wu CJ, et al. Towards atomistic modelling of irreversible covalent inhibitor binding kinetics. J Chem Inf Model. 2019;59(9):3955–67.
CAS
PubMed
Google Scholar
Goldman JL, Koen YM, Rogers SA, Li K, Leeder JS, Hanzlik RP. Bioactivation of trimethoprim to protein-reactive metabolites in human liver microsomes. Drug Metab Dispos. 2016;44(10):1603–7.
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Shu YZ, Humphreys WG. Label-free bottom-up proteomic workflow for simultaneously assessing the target specificity of covalent drug candidates and their off-target reactivity to selected proteins. Chem Res Toxicol. 2016;29(1):109–16.
CAS
PubMed
Google Scholar
Wilson AJ, Kerns JK, Callahan JF, Moody CJ. Keap calm, and carry on covalently. J Med Chem. 2013;56(19):7463–76.
CAS
PubMed
Google Scholar
Carmi C, Lodola A, Rivara S, Vacondio F, Cavazzoni AR, Alfieri R, et al. Epidermal growth factor receptor irreversible inhibitors: chemical exploration of the cysteine-trap portion. Mini-Rev Med Chem. 2011;11(12):1019–30.
CAS
PubMed
Google Scholar
Lonsdale R, Burgess J, Colclough N, Davies NL, Lenz EM, Orton AL, et al. Expanding the armory: predicting and tuning covalent warhead reactivity. J Chem Inf Model. 2017;57(12):3124–37.
CAS
PubMed
Google Scholar
Schwartz PA, Kuzmic P, Solowiej J, Bergqvist S, Bolanos B, Almaden C et al. Covalent EGFR inhibitor analysis reveals importance of reversible interactions to potency and mechanisms of drug resistance. Proc Natl Acad Sci 2014;111(1):173-178.