Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486–541.
Article
PubMed
PubMed Central
Google Scholar
Green DR. The coming decade of cell death research: five riddles. Cell. 2019;177(5):1094–107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adams JM, Cory S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ. 2018;25(1):27–36.
Article
CAS
PubMed
Google Scholar
Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15(1):49–63.
Article
CAS
PubMed
Google Scholar
Moldoveanu T, Follis A, Kriwacki R, Green D. Many players in BCL-2 family affairs. Trends Biochem Sci. 2014;39(3):101–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fogarty L, Flemmer R, Geizer B, Licursi M, Karunanithy A, Opferman J, et al. Mcl-1 and Bcl-xL are essential for survival of the developing nervous system. Cell Death Differ. 2019;26(8):1501–15.
Article
CAS
PubMed
Google Scholar
Opferman JT, Letai A, Beard C, Sorcinelli MD, Ong CC, Korsmeyer SJ, Opferman JT, et al. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature. 2004;426(6967):671–6.
Article
CAS
Google Scholar
Wang X, Bathina M, Lynch J, Koss B, Calabrese C, Frase S, et al. Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction. Genes Dev. 2013;27(12):1351–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gores G, Kaufmann S. Selectively targeting Mcl-1 for the treatment of acute myelogenous leukemia and solid tumors. Genes Dev. 2012;26(4):305–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hird AW, Tron AE. Recent advances in the development of Mcl-1 inhibitors for cancer therapy. Pharmacol Ther. 2019;198(06):59–67.
Article
CAS
PubMed
Google Scholar
Shahar N, Larisch S. Inhibiting the inhibitors: targeting anti-apoptotic proteins in cancer and therapy resistance. Drug Resist Update. 2020;52(09):100712.
Article
Google Scholar
Czabotar P, Lee E, van Delft M, Day C, Smith B, Huang D, et al. Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc Natl Acad Sci USA. 2007;104(15):6217–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomas LW, Lam C, Edwards SW. Mcl-1; the molecular regulation of protein function. FEBS Lett. 2010;584(14):2981–9.
Article
CAS
PubMed
Google Scholar
Morciano G, Giorgi C, Balestra D, Marchi S, Perrone D, Pinotti M, et al. Mcl-1 involvement in mitochondrial dynamics is associated with apoptotic cell death. Mol Biol Cell. 2016;27(1):20–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bae J, Leo C, Hsu S, Hsueh A. MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain. J Biol Chem. 2000;275(33):25255–61.
Article
CAS
PubMed
Google Scholar
Kim J, Bae J. MCL-1ES induces MCL-1L-dependent BAX- and BAK-independent mitochondrial apoptosis. PLoS ONE. 2013;8(11):e79626.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim J-H, Sim S-H, Ha H-J, Ko J-J, Lee K, Bae J. MCL-1ES, a novel variant of MCL-1, associates with MCL-1L and induces mitochondrial cell death. FEBS Lett. 2009;583(17):2758–64.
Article
CAS
PubMed
Google Scholar
Véronèse L, Tournilhac O, Verrelle P, Davi F, Dighiero G, Chautard E, et al. Strong correlation between VEGF and MCL-1 mRNA expression levels in B-cell chronic lymphocytic leukemia. Leuk Res. 2009;33(12):1623–6.
Article
PubMed
CAS
Google Scholar
Cherla R, Zhang Y, Ledbetter L, et al. Coxiella burnetii inhibits neutrophil apoptosis by exploiting survival pathways and antiapoptotic protein Mcl-1. Infect Immun. 2018;86(4):e00504-e517.
Article
PubMed
PubMed Central
Google Scholar
Choi B, Chun E, Kim SY, Kim M, Lee KY, Kim SJ. Notch-induced hIL-6 production facilitates the maintenance of self-renewal of hCD34+ cord blood cells through the activation of Jak-PI3K-STAT3 pathway. Am J Pathol. 2012;180(1):351–64.
Article
CAS
PubMed
Google Scholar
Pan B, Wang D, Li L, Shang L, Xia F, Zhang F, et al. IL-22 Accelerates thymus regeneration via Stat3/Mcl-1 and decreases chronic graft-versus-host disease in mice after allotransplants. Biol Blood Marrow Transplant. 2019;25(10):1911–9.
Article
CAS
PubMed
Google Scholar
Shenoy AR, Kirschnek S, Häcker G. IL-15 regulates Bcl-2 family members Bim and Mcl-1 through JAK/STAT and PI3K/AKT pathways in T cells. Eur J Immunol. 2014;44(8):2500–7.
Article
CAS
PubMed
Google Scholar
Liu SM, Lin CH, Lu J, Lin IY, Tsai MS, Chen MH, et al. miR-596 modulates melanoma growth by regulating cell survival and death. J Investig Dermatol. 2018;138(4):911–21.
Article
CAS
PubMed
Google Scholar
Abraham M, Klein S, Bulvik B, Wald H, Peled A. The CXCR4 inhibitor BL-8040 induces the apoptosis of AML blasts by down-regulating ERK BCL-2, MCL-1 and cyclin-D1 via altered miR-15a/16-1 expression. Leukemia. 2017;31(11):2336–46.
Article
CAS
PubMed
Google Scholar
Klein S, Abraham M, Bulvik B, Dery E, Weiss ID, Barashi N, et al. CXCR4 promotes neuroblastoma growth and therapeutic resistance through miR-15a/16-1 mediated ERK and BCL2/cyclin D1 pathways. Cancer Res. 2018;78(6):1471–83.
Article
CAS
PubMed
Google Scholar
Gao J, Li L, Wu M, Liu M, Xie X, Guo J, et al. MiR-26a inhibits proliferation and migration of breast cancer through repression of MCL-1. PLoS ONE. 2013;8(6):e65138.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shirjang S, Mansoori B, Asghari S, Duijf PHG, Mohammadi A, Gjerstorff M, et al. MicroRNAs in cancer cell death pathways: apoptosis and necroptosis. Free Radic Biol Med. 2019;139(1):1–15.
Article
CAS
PubMed
Google Scholar
Schwickart M, Huang X, Lill JR, Liu J, Dixit VM. Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature. 2009;463(7277):103–7.
Article
PubMed
CAS
Google Scholar
Zhang S, Zhang M, Jing Y, Yin X, Ma P, Zhang Z, et al. Deubiquitinase USP13 dictates MCL1 stability and sensitivity to BH3 mimetic inhibitors. Nat Commun. 2018;9(1):215.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maurer U, Charvet C, Wagman AS, Dejardin E, Green DR. Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell. 2006;21(6):749–60.
Article
CAS
PubMed
Google Scholar
Nifoussi SK, Ratcliffe NR, Ornstein DL, Kasof G, Strack S, Craig RW. Inhibition of protein phosphatase 2A (PP2A) prevents Mcl-1 protein dephosphorylation at the Thr-163/Ser-159 phosphodegron, dramatically reducing expression in Mcl-1-amplified lymphoma cells. J Biol Chem. 2014;289(32):21950–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conage-Pough JE, Boise LH. Phosphorylation alters Bim-mediated Mcl-1 stabilization and priming. FEBS J. 2018;286(14):2626–40.
Article
CAS
Google Scholar
Nakajima W, Hicks MA, Tanaka N, Krystal GW, Harada H. Noxa determines localization and stability of MCL-1 and consequently ABT-737 sensitivity in small cell lung cancer. Cell Death Dis. 2014;5(2):e1052.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pang X, Zhang J, Lopez H, Wang Y, Li W, O’Neill K, et al. The carboxyl-terminal tail of Noxa protein regulates the stability of Noxa and Mcl-1. J Biol Chem. 2014;289(25):17802–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fogha J, Marekha B, De Giorgi M, Voisin-Chiret AS, Rault S, Bureau R, et al. Towards understanding Mcl-1 promiscuous and specific binding mode. J Chem Inf Model. 2017;57(11):2885–95.
Article
CAS
PubMed
Google Scholar
Morsi RZ, Hage-Sleiman R, Kobeissy H, Dbaibo G. Noxa: role in cancer pathogenesis and treatment. Curr Cancer Drug Targets. 2018;18(10):914–28.
Article
CAS
PubMed
Google Scholar
D’Aguanno S, Del Bufalo D. Inhibition of anti-apoptotic Bcl-2 proteins in preclinical and clinical studies: current overview in cancer. Cells. 2020;9(5):1287.
Article
CAS
PubMed Central
Google Scholar
Wei AH, Roberts AW, Spencer A, Rosenberg AS, Siegel D, Walter RB, et al. Targeting MCL-1 in hematologic malignancies: rationale and progress. Blood Rev. 2020;44:100672.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moujalled D, Pomilio G, Ghiurau C, Ivey A, Salmon J, Rijal S, et al. Combining BH3-mimetics to target both BCL-2 and MCL1 has potent activity in pre-clinical models of acute myeloid leukemia. Leukemia. 2019;33(4):905–17.
Article
CAS
PubMed
Google Scholar
Yue S, Li Y, Chen X, Wang J, Li M, Chen Y, et al. FGFR-TKI resistance in cancer: current status and perspectives. J Hematol Oncol. 2021;14(1):23.
Article
PubMed
PubMed Central
Google Scholar
Jafarlou M, Shanehbandi D, Dehghan P, Mansoori B, Othman F, Baradaran B. Enhancement of chemosensitivity by simultaneously silencing of Mcl-1 and Survivin genes using small interfering RNA in human myelomonocytic leukaemia. Artif Cells Nanomed Biotechnol. 2018;46(8):1792–8.
CAS
PubMed
Google Scholar
Xiang W, Yang C-Y, Bai L. MCL-1 inhibition in cancer treatment. Onco Targets Ther. 2018;11:7301–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Senichkin V, Streletskaia A, Zhivotovsky B, Kopeina G. Molecular comprehension of Mcl-1: from gene structure to cancer therapy. Trends Cell Biol. 2019;29(7):549–62.
Article
CAS
PubMed
Google Scholar
Quinn BA, Dash R, Azab B, Sarkar S, Das SK, Kumar S, et al. Targeting Mcl-1 for the therapy of cancer. Expert Opin Investig Drugs. 2011;20(10):1397–411.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ngoi N, Choong C, Lee J, Bellot G, Wong A, Goh B, et al. Targeting mitochondrial apoptosis to overcome treatment resistance in cancer. Cancers (Basel). 2020;12(3):574–603.
Article
CAS
Google Scholar
Oltersdorf T, Elmore S, Shoemaker A, Armstrong R, Augeri D, Belli B, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005;435(7042):677–81.
Article
CAS
PubMed
Google Scholar
Tse C, Shoemaker A, Adickes J, Anderson M, Chen J, Jin S, et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 2008;68(9):3421–8.
Article
CAS
PubMed
Google Scholar
Souers A, Leverson J, Boghaert E, Ackler S, Catron N, Chen J, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19(2):202–8.
Article
CAS
PubMed
Google Scholar
Stewart ML, Fire E, Keating AE, Walensky LD. The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nat Chem Biol. 2010;6(8):595–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Denis C, Sopková-deOliveiraSantos J, Bureau R, Voisin-Chiret AS. Hot-spots of Mcl-1 protein. J Med Chem. 2020;63(3):928–43.
Article
CAS
PubMed
Google Scholar
Rezende Miranda R, Fu Y, Chen X, Perino J, Cao P, Carpten J, et al. Development of a potent and specific FGFR4 inhibitor for the treatment of hepatocellular carcinoma. J Med Chem. 2020;63(20):11484–97.
Article
CAS
PubMed
Google Scholar
Zhou M, Zheng H, Li Y, Huang H, Min X, Dai S, et al. Discovery of a novel AR/HDAC6 dual inhibitor for prostate cancer treatment. Aging. 2021;13(5):6982–98.
Article
PubMed
PubMed Central
Google Scholar
Leung C, Zhang J, Yang G, Liu H, Han Q, Ma D. Emerging screening approaches in the development of Nrf2-Keap1 protein-protein interaction inhibitors. Int J Mol Sci. 2019;20(18):4445.
Article
CAS
PubMed Central
Google Scholar
Zhong H, Lee B, Boyle J, Wang W, Ma D, Hong Chan P, et al. Structure-based screening and optimization of cytisine derivatives as inhibitors of the menin-MLL interaction. Chem Commun (Camb). 2016;52(34):5788–91.
Article
CAS
Google Scholar
Kotschy A, Szlavik Z, Murray J, Davidson J, Maragno AL, Le Toumelin-Braizat G, et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature. 2016;538(7626):477–82.
Article
PubMed
CAS
Google Scholar
Szlávik Z, Ondi L, Csékei M, Paczal A, Szabó Z, Radics G, et al. Structure-guided discovery of a selective Mcl-1 inhibitor with cellular activity. J Med Chem. 2019;62(15):6913–24.
Article
PubMed
CAS
Google Scholar
Szlavik Z, Csekei M, Paczal A, Szabo ZB, Sipos S, Radics G, et al. Discovery of S64315, a potent and selective Mcl-1 inhibitor. J Med Chem. 2020;63(22):13762–95.
Article
CAS
PubMed
Google Scholar
Phase I Study of MIK665, a Mcl-1 Inhibitor, in Patients With Refractory or Relapsed Lymphoma or Multiple Myeloma. https://clinicaltrials.gov/ct2/show/NCT02992483. Accessed 20 September 2020.
Phase I Study of S64315 Administered Intravenously in Patients With Acute Myeloid Leukaemia or Myelodysplastic Syndrome. https://clinicaltrials.gov/ct2/show/NCT02979366. Accessed 20 September 2020.
Phase I Dose Escalation Study of Intravenously Administered S64315 in Combination With Orally Administered Venetoclax in Patients With Acute Myeloid Leukaemia. https://clinicaltrials.gov/ct2/show/NCT03672695. Accessed 20 September 2020.
Tron AE, Belmonte MA, Adam A, Aquila BM, Boise LH, Chiarparin E, et al. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat Commun. 2018;9(1):5341.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bruncko M, Wang L, Sheppard G, Phillips D, Tahir S, Xue J, et al. Structure-guided design of a series of MCL-1 inhibitors with high affinity and selectivity. J Med Chem. 2015;58(5):2180–94.
Article
CAS
PubMed
Google Scholar
Friberg A, Vigil D, Zhao B, Daniels R, Burke J, Garcia-Barrantes P, et al. Discovery of potent myeloid cell leukemia 1 (Mcl-1) inhibitors using fragment-based methods and structure-based design. J Med Chem. 2013;56(1):15–30.
Article
CAS
PubMed
Google Scholar
Study of AZD5991 in Relapsed or Refractory Haematologic Malignancies. https://clinicaltrials.gov/ct2/show/NCT03218683. Accessed 20 September 2020.
Caenepeel S, Brown SP, Belmontes B, Moody G, Keegan KS, Chui D, et al. AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies. Cancer Discov. 2018;8(12):1582–97.
Article
CAS
PubMed
Google Scholar
Caenepeel S, Karen R, Belmontes B, Verlinsky A, Tan H, Yang Y, et al. Abstract 6218: discovery and preclinical evaluation of AMG 397, a potent, selective and orally bioavailable MCL1 inhibitor. Cancer Res. 2020;80(16 Supplement):6218.
Article
Google Scholar
Li K. Interdiction at a protein-protein interface: MCL-1 inhibitors for oncology. Bioorg Med Chem Lett. 2021;32:127717.
Article
CAS
PubMed
Google Scholar
AMG 176 First in Human Trial in Subjects With Relapsed or Refractory Multiple Myeloma and Subjects With Relapsed or Refractory Acute Myeloid Leukemia. https://clinicaltrials.gov/ct2/show/NCT02675452. Accessed 20 September 2020.
A Study of Venetoclax and AMG 176 in Patients With Relapsed/Refractory Hematologic Malignancies. https://clinicaltrials.gov/ct2/show/NCT03797261. Accessed 20 September 2020
Safety, Tolerability, Pharmacokinetics and Efficacy of AMG 397 in Subjects with Multiple Myeloma, NHL, and AML. https://clinicaltrials.gov/ct2/show/NCT03465540. Accessed 20 September 2020.
A study of the safety and tolerability of ABBV-467 in adult participants with relapsed/refractory (R/R) multiple myeloma. https://clinicaltrials.gov/ct2/show/NCT04178902. Accessed 20 September 2020.
A study of PRT1419 in patients with relapsed/refractory hematologic malignancies. https://clinicaltrials.gov/ct2/show/NCT04543305 Accessed 20 December 2020.
Guikema JE, Amiot M, Eldering E. Exploiting the pro-apoptotic function of NOXA as a therapeutic modality in cancer. Expert Opin Ther Targets. 2017;21(8):767–79.
Article
CAS
PubMed
Google Scholar
Zhu Z-C, Liu J-W, Li K, Zheng J, Xiong Z-Q. KPNB1 inhibition disrupts proteostasis and triggers unfolded protein response-mediated apoptosis in glioblastoma cells. Oncogene. 2018;37(22):2936–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ding X, Zhang Y, Huang T, Xu G, Peng C, Chen G, et al. Targeting sphingosine kinase 2 suppresses cell growth and synergizes with BCL2/BCL-XL inhibitors through NOXA-mediated MCL1 degradation in cholangiocarcinoma. Am J Cancer Res. 2019;9(3):546–61.
CAS
PubMed
PubMed Central
Google Scholar
Medeiros HCD, Colturato-Kido C, Ferraz LS, Costa CA, Moraes VWR, Paredes-Gamero EJ, et al. AMPK activation induced by promethazine increases NOXA expression and Beclin-1 phosphorylation and drives autophagy-associated apoptosis in chronic myeloid leukemia. Chem Biol Interact. 2020;315:108888.
Article
CAS
PubMed
Google Scholar
Hedir S, De Giorgi M, Fogha J, De Pascale M, Weiswald L-B, Brotin E, et al. Structure-guided design of pyridoclax derivatives based on Noxa/Mcl-1 interaction mode. Eur J Med Chem. 2018;159:357–80.
Article
CAS
PubMed
Google Scholar
Gloaguen C, Voisin-Chiret AS, Sopkova-de Oliveira Santos J, Fogha J, Gautier F, De Giorgi M, et al. First evidence that oligopyridines, α-helix foldamers, inhibit Mcl-1 and sensitize ovarian carcinoma cells to Bcl-xL-targeting strategies. J Med Chem. 2015;58(4):1644–68.
Article
CAS
PubMed
Google Scholar
Hadji A, Schmitt GK, Schnorenberg MR, Roach L, Hickey CM, Leak LB, et al. Preferential targeting of MCL-1 by a hydrocarbon-stapled BIM BH3 peptide. Oncotarget. 2019;10(58):6219–33.
Article
PubMed
PubMed Central
Google Scholar
Foight G, Ryan J, Gullá S, Letai A, Keating A. Designed BH3 peptides with high affinity and specificity for targeting Mcl-1 in cells. ACS Chem Biol. 2014;9(9):1962–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cohen Nicole A, Stewart Michelle L, Gavathiotis E, Tepper Jared L, Bruekner Susanne R, Koss B, et al. A Competitive stapled peptide screen identifies a selective small molecule that overcomes MCL-1-dependent leukemia cell survival. Chem Biol. 2012;19(9):1175–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bannister T, Koenig M, He Y, Mishra J, Spicer T, Minond D, et al., ML311: a small molecule that potently and selectively disrupts the protein-protein interaction of Mcl-1 and Bim: a probe for studying lymphoid tumorigenesis. In Probe reports from the NIH molecular libraries program, National Center for Biotechnology Information (US): Bethesda (MD), 2010.
Richard DJ, Lena R, Bannister T, Blake N, Pierceall WE, Carlson NE, et al. Hydroxyquinoline-derived compounds and analoguing of selective Mcl-1 inhibitors using a functional biomarker. Bioorg Med Chem. 2013;21(21):6642–9.
Article
CAS
PubMed
Google Scholar
Abulwerdi F, Liao C, Liu M, Azmi AS, Aboukameel A, Mady ASA, et al. A novel small-molecule inhibitor of Mcl-1 blocks pancreatic cancer growth in vitro and in vivo. Mol Cancer Ther. 2014;13(3):565–75.
Article
CAS
PubMed
Google Scholar
Leverson JD, Zhang H, Chen J, Tahir SK, Phillips DC, Xue J, et al. Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax). Cell Death Dis. 2015;6(1):e1590.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burke J, Bian Z, Shaw S, Zhao B, Goodwin C, Belmar J, et al. Discovery of tricyclic indoles that potently inhibit Mcl-1 using fragment-based methods and structure-based design. J Med Chem. 2015;58(9):3794–805.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pelz N, Bian Z, Zhao B, Shaw S, Tarr J, Belmar J, et al. Discovery of 2-Indole-acylsulfonamide myeloid cell leukemia 1 (Mcl-1) inhibitors using fragment-based methods. J Med Chem. 2016;59(5):2054–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shaw S, Bian Z, Zhao B, Tarr J, Veerasamy N, Jeon K, et al. Optimization of potent and selective tricyclic indole diazepinone myeloid cell leukemia-1 inhibitors using structure-based design. J Med Chem. 2018;61(6):2410–21.
Article
CAS
PubMed
Google Scholar
Lee T, Bian Z, Zhao B, Hogdal L, Sensintaffar J, Goodwin C, et al. Discovery and biological characterization of potent myeloid cell leukemia-1 inhibitors. FEBS Lett. 2017;591(1):240–51.
Article
CAS
PubMed
Google Scholar
Lee T, Christov PP, Shaw S, Tarr JC, Zhao B, Veerasamy N, et al. Discovery of potent myeloid cell leukemia-1 (Mcl-1) inhibitors that demonstrate in vivo activity in mouse xenograft models of human cancer. J Med Chem. 2019;62(8):3971–88.
Article
CAS
PubMed
Google Scholar
Chen G, Magis A, Xu K, Park D, Yu D, Owonikoko T, et al. Targeting Mcl-1 enhances DNA replication stress sensitivity to cancer therapy. J Clin Investig. 2018;128(1):500–16.
Article
PubMed
Google Scholar
Akçay G, Belmonte M, Aquila B, Chuaqui C, Hird A, Lamb M, et al. Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain. Nat Chem Biol. 2016;12(11):931–6.
Article
PubMed
CAS
Google Scholar
Tan W, Lu J, Huang M, Li Y, Chen M, Wu G, et al. Anti-cancer natural products isolated from Chinese medicinal herbs. Chin Med. 2011;6(1):27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gapil Tiamas S, Daressy F, Abou Samra A, Bignon J, Steinmetz V, Litaudon M, et al. Pro-apoptotic carboxamide analogues of natural fislatifolic acid targeting Mcl-1 and Bcl-2. Bioorg Med Chem Lett. 2020;30(7):127003.
Article
CAS
PubMed
Google Scholar
Litaudon M, Bousserouel H, Awang K, Nosjean O, Martin M, Dau M, et al. A dimeric sesquiterpenoid from a Malaysian Meiogyne as a new inhibitor of Bcl-xL/BakBH3 domain peptide interaction. J Nat Prod. 2009;72(3):480–3.
Article
CAS
PubMed
Google Scholar
Abou Samra A, Robert A, Gov C, Favre L, Eloy L, Jacquet E, et al. Dual inhibitors of the pro-survival proteins Bcl-2 and Mcl-1 derived from natural compound meiogynin A. Eur J Med Chem. 2018;148:26–38.
Article
CAS
PubMed
Google Scholar
Oh H, Jensen P, Murphy B, Fiorilla C, Sullivan J, Ramsey T, et al. Cryptosphaerolide, a cytotoxic Mcl-1 inhibitor from a marine-derived ascomycete related to the genus Cryptosphaeria. J Nat Prod. 2010;73(5):998–1001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haste N, Hughes C, Tran D, Fenical W, Jensen P, Nizet V, et al. Pharmacological properties of the marine natural product marinopyrrole A against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2011;55(7):3305–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doi K, Li R, Sung SS, Wu H, Liu Y, Manieri W, et al. Discovery of marinopyrrole A (maritoclax) as a selective Mcl-1 antagonist that overcomes ABT-737 resistance by binding to and targeting Mcl-1 for proteasomal degradation. J Biol Chem. 2012;287(13):10224–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Molinaro C, Martoriati A, Pelinski L, Cailliau K. Copper complexes as anticancer agents targeting topoisomerases I and II. Cancers (Basel). 2020;12(10):2863.
Article
CAS
Google Scholar
Lu X, Liu Y, Orvig C, Liang H, Chen Z. Discovery of a copper-based Mcl-1 inhibitor as an effective antitumor agent. J Med Chem. 2020;63(17):9154–67.
Article
CAS
PubMed
Google Scholar
Lu X, Liu Y, Orvig C, Liang H, Chen Z. Discovery of β-carboline copper(II) complexes as Mcl-1 inhibitor and in vitro and in vivo activity in cancer models. Eur J Med Chem. 2019;181:111567.
Article
CAS
PubMed
Google Scholar
Schapira M, Calabrese M, Bullock A, Crews C. Targeted protein degradation: expanding the toolbox. Nat Rev Drug Discov. 2019;18(12):949–63.
Article
CAS
PubMed
Google Scholar
Papatzimas J, Gorobets E, Maity R, Muniyat M, MacCallum J, Neri P, et al. From inhibition to degradation: targeting the antiapoptotic protein myeloid cell leukemia 1 (MCL1). J Med Chem. 2019;62(11):5522–40.
Article
CAS
PubMed
Google Scholar
Wang Z, He N, Guo Z, Niu C, Song T, Guo Y, et al. Proteolysis targeting chimeras for the selective degradation of Mcl-1/Bcl-2 derived from nonselective target binding ligands. J Med Chem. 2019;62(17):8152–63.
Article
CAS
PubMed
Google Scholar
Chen J, Wu C, Jiao L, Zhao L, Zhou Y, Li D, et al. Abstract 73: development of APG-3526 as a novel and highly efficacious MCL-1 inhibitor. Cancer Res. 2020;80(16 Supplement):73.
Article
Google Scholar
Wang Z, Xu W, Song T, Guo Z, Liu L, Fan Y, et al. Fragment-based design, synthesis, and biological evaluation of 1-substituted-indole-2-carboxylic acids as selective Mcl-1 inhibitors. Arch Pharm. 2017;350(1):e1600251.
Article
CAS
Google Scholar
Liu J, Tian Z, Zhou N, Liu X, Liao C, Lei B, et al. Targeting the apoptotic Mcl-1-PUMA interface with a dual-acting compound. Oncotarget. 2017;8(33):54236–42.
Article
PubMed
PubMed Central
Google Scholar
Kump K, Miao L, Mady A, Ansari N, Shrestha U, Yang Y, et al. Discovery and characterization of 2,5-substituted benzoic acid dual inhibitors of the anti-apoptotic Mcl-1 and Bfl-1 proteins. J Med Chem. 2020;63(5):2489–510.
Article
CAS
PubMed
PubMed Central
Google Scholar
Du J, Liu L, Liu B, Yang J, Hou X, Yu J, et al. Structure-based virtual screening, biological evaluation and biophysical study of novel Mcl-1 inhibitors. Future Med Chem. 2020;12(14):1293–304.
Article
CAS
PubMed
Google Scholar
Shah V, Sherborne AL, Walker BA, Johnson DC, Boyle EM, Ellis S, et al. Prediction of outcome in newly diagnosed myeloma: a meta-analysis of the molecular profiles of 1905 trial patients. Leukemia. 2018;32(1):102–10.
Article
CAS
PubMed
Google Scholar
Wuillème-Toumi S, Robillard N, Gomez P, Moreau P, Le Gouill S, Avet-Loiseau H, et al. Mcl-1 is overexpressed in multiple myeloma and associated with relapse and shorter survival. Leukemia. 2005;19(7):1248–52.
Article
PubMed
CAS
Google Scholar
Gong J, Khong T, Segal D, Yao Y, Riffkin C, Garnier J, et al. Hierarchy for targeting prosurvival BCL2 family proteins in multiple myeloma: pivotal role of MCL1. Blood. 2016;128(14):1834–44.
Article
CAS
PubMed
Google Scholar
Gomez-Bougie P, Maiga S, Tessoulin B, Bourcier J, Bonnet A, Rodriguez M, et al. BH3-mimetic toolkit guides the respective use of BCL2 and MCL1 BH3-mimetics in myeloma treatment. Blood. 2018;132(25):2656–69.
Article
CAS
PubMed
Google Scholar
Pan R, Hogdal L, Benito J, Bucci D, Han L, Borthakur G, et al. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 2014;4(3):362–75.
Article
CAS
PubMed
Google Scholar
Xiang Z, Luo H, Payton J, Cain J, Ley T, Opferman J, et al. MCL-1 haploinsufficiency protects mice from Myc-induced acute myeloid leukemia. J Clin Invest. 2010;120(6):2109–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koss B, Morrison J, Perciavalle R, Singh H, Rehg J, Williams R, et al. Requirement for antiapoptotic MCL-1 in the survival of BCR-ABL B-lineage acute lymphoblastic leukemia. Blood. 2013;122(9):1587–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Konopleva M, Contractor R, Tsao T, Samudio I, Ruvolo P, Kitada S, et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell. 2006;10(5):375–88.
Article
CAS
PubMed
Google Scholar
Wang Q, Wan J, Zhang W, Hao S. MCL-1 or BCL-xL-dependent resistance to the BCL-2 antagonist (ABT-199) can be overcome by specific inhibitor as single agents and in combination with ABT-199 in acute myeloid leukemia cells. Leuk Lymphoma. 2019;60(9):2170–80.
Article
CAS
PubMed
Google Scholar
Ewald L, Dittmann J, Vogler M, Fulda S. Side-by-side comparison of BH3-mimetics identifies MCL-1 as a key therapeutic target in AML. Cell Death Dis. 2019;10(12):917.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inoue C, Sobue S, Kawamoto Y, Nishizawa Y, Ichihara M, Abe A, et al. Involvement of MCL1, c-myc, and cyclin D2 protein degradation in ponatinib-induced cytotoxicity against T315I(+) Ph+leukemia cells. Biochem Biophys Res Commun. 2020;525(4):1074–80.
Article
CAS
PubMed
Google Scholar
Yi X, Sarkar A, Kismali G, Aslan B, Ayres M, Iles LR, et al. AMG-176, an Mcl-1 antagonist, shows preclinical efficacy in chronic lymphocytic leukemia. Clin Cancer Res. 2020;26(14):3856–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Q, Hao S. A-1210477, a selective MCL-1 inhibitor, overcomes ABT-737 resistance in AML. Oncol Lett. 2019;18(5):5481–9.
CAS
PubMed
PubMed Central
Google Scholar
Ramsey HE, Fischer MA, Lee T, Gorska AE, Arrate MP, Fuller L, et al. A novel MCL1 inhibitor combined with venetoclax rescues venetoclax-resistant acute myelogenous leukemia. Cancer Discov. 2018;8(12):1566–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klanova M, Klener P. BCL-2 Proteins in Pathogenesis and Therapy of B-Cell Non-Hodgkin Lymphomas. Cancers (Basel). 2020;12(4):938.
Article
CAS
PubMed Central
Google Scholar
Wenzel SS, Grau M, Mavis C, Hailfinger S, Wolf A, Madle H, et al. MCL1 is deregulated in subgroups of diffuse large B-cell lymphoma. Leukemia. 2013;27(6):1381–90.
Article
CAS
PubMed
Google Scholar
Grabow S, Delbridge A, Aubrey B, Vandenberg C, Strasser A. Loss of a single Mcl-1 allele inhibits MYC-driven lymphomagenesis by sensitizing Pro-B cells to apoptosis. Cell Rep. 2016;14(10):2337–47.
Article
CAS
PubMed
Google Scholar
Dengler M, Teh C, Thijssen R, Gangoda L, Lan P, Herold M, et al. Potent efficacy of MCL-1 inhibitor-based therapies in preclinical models of mantle cell lymphoma. Oncogene. 2020;39(9):2009–23.
Article
CAS
PubMed
Google Scholar
Knapp C, He J, Lister J, Whitehead K. Lipidoid nanoparticle mediated silencing of Mcl-1 induces apoptosis in mantle cell lymphoma. Exp Biol Med (Maywood). 2016;241(9):1007–13.
Article
CAS
Google Scholar
Brennan MS, Chang C, Tai L, Lessene G, Strasser A, Dewson G, et al. Humanized Mcl-1 mice enable accurate preclinical evaluation of MCL-1 inhibitors destined for clinical use. Blood. 2018;132(15):1573–83.
Article
CAS
PubMed
Google Scholar
Moujalled D, Hanna D, Hediyeh-Zadeh S, Pomilio G, Brown L, Litalien V, et al. Cotargeting BCL-2 and MCL-1 in high-risk B-ALL. Blood Adv. 2020;4(12):2762–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phillips D, Xiao Y, Lam L, Litvinovich E, Roberts-Rapp L, Souers A, et al. Loss in MCL-1 function sensitizes non-Hodgkin’s lymphoma cell lines to the BCL-2-selective inhibitor venetoclax (ABT-199). Blood Cancer J. 2015;5(11):e368.
Article
CAS
PubMed
PubMed Central
Google Scholar
Munkhbaatar E, Dietzen M, Agrawal D, Anton M, Jesinghaus M, Boxberg M, et al. MCL-1 gains occur with high frequency in lung adenocarcinoma and can be targeted therapeutically. Nat Commun. 2020;11(1):4527.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakano T, Go T, Nakashima N, Liu D, Yokomise H. Overexpression of antiapoptotic MCL-1 predicts worse overall survival of patients with non-small cell lung cancer. Anticancer Res. 2020;40(2):1007–14.
Article
CAS
PubMed
Google Scholar
Chen G, Park D, Magis A, Behera M, Ramalingam S, Owonikoko T, et al. Mcl-1 interacts with Akt to promote lung cancer progression. Cancer Res. 2019;79(24):6126–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wieczorek S, Breitenbuecher F, Soni A, Paul-Konietzko K, Ziegler S, Sak A, et al. Deregulated BCL-2 family proteins impact on repair of DNA double-strand breaks and are targets to overcome radioresistance in lung cancer. J Cancer Res Clin Oncol. 2017;143(9):1733–44.
Article
CAS
PubMed
Google Scholar
Campbell K, Dhayade S, Ferrari N, Sims A, Johnson E, Mason S, et al. MCL-1 is a prognostic indicator and drug target in breast cancer. Cell Death Dis. 2018;9(2):19.
Article
PubMed
PubMed Central
CAS
Google Scholar
Floros K, Lochmann T, Hu B, Monterrubio C, Hughes M, Wells J, et al. miR-4728Coamplification of protects-amplified breast cancers from targeted therapy. Proc Natl Acad Sci USA. 2018;115(11):E2594–603.
Article
CAS
PubMed
PubMed Central
Google Scholar
Merino D, Whittle JR, Vaillant F, Serrano A, Gong JN, Giner G, et al. Synergistic action of the MCL-1 inhibitor S63845 with current therapies in preclinical models of triple-negative and HER2-amplified breast cancer. Sci Transl Med. 2017;9(401):eaam7049.
Article
PubMed
CAS
Google Scholar
Xiao Y, Nimmer P, Sheppard G, Bruncko M, Hessler P, Lu X, et al. MCL-1 Is a key determinant of breast cancer cell survival: validation of MCL-1 dependency utilizing a highly selective small molecule inhibitor. Mol Cancer Ther. 2015;14(8):1837–47.
Article
CAS
PubMed
Google Scholar
Williams M, Elion D, Rahman B, Hicks D, Sanchez V, Cook R. Therapeutic inhibition of Mcl-1 blocks cell survival in estrogen receptor-positive breast cancers. Oncotarget. 2019;10(52):5389–402.
Article
PubMed
PubMed Central
Google Scholar
Vallet S, Fan F, Malvestiti S, Pecherstorfer M, Sattler M, Schneeweiss A, et al. Rationally derived drug combinations with the novel Mcl-1 inhibitor EU-5346 in breast cancer. Breast Cancer Res Treat. 2019;173(3):585–96.
Article
CAS
PubMed
Google Scholar
Lee W, Park Y, Kim N, Oh H, Son D, Kim M, et al. Myeloid cell leukemia-1 is associated with tumor progression by inhibiting apoptosis and enhancing angiogenesis in colorectal cancer. Am J Cancer Res. 2015;5(1):101–13.
PubMed
Google Scholar
Tong J, Tan S, Zou F, Yu J, Zhang L. FBW7 mutations mediate resistance of colorectal cancer to targeted therapies by blocking Mcl-1 degradation. Oncogene. 2017;36(6):787–96.
Article
CAS
PubMed
Google Scholar
Song X, Shen L, Tong J, Kuang C, Zeng S, Schoen R, et al. Mcl-1 inhibition overcomes intrinsic and acquired regorafenib resistance in colorectal cancer. Theranostics. 2020;10(18):8098–110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawakami H, Huang S, Pal K, Dutta S, Mukhopadhyay D, Sinicrope F. Mutant BRAF upregulates MCL-1 to confer apoptosis resistance that is reversed by MCL-1 antagonism and cobimetinib in colorectal cancer. Mol Cancer Ther. 2016;15(12):3015–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKee C, Hill D, Redfern C, Armstrong J, Lovat P. Oncogenic BRAF signalling increases Mcl-1 expression in cutaneous metastatic melanoma. Exp Dermatol. 2013;22(11):767–9.
Article
CAS
PubMed
Google Scholar
Boisvert-Adamo K, Longmate W, Abel EV, Aplin AE. Mcl-1 is required for melanoma cell resistance to anoikis. Mol Cancer Res. 2009;7(4):549–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mukherjee N, Skees J, Todd K, West D, Lambert K, Robinson W, et al. MCL1 inhibitors S63845/MIK665 plus Navitoclax synergistically kill difficult-to-treat melanoma cells. Cell Death Dis. 2020;11(6):443.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mukherjee N, Amato C, Skees J, Todd K, Lambert K, Robinson W, et al. Simultaneously inhibiting BCL2 and MCL1 is a therapeutic option for patients with advanced melanoma. Cancers (Basel). 2020;12(8):2182.
Article
CAS
Google Scholar
Respondek M, Beberok A, Rzepka Z, Rok J, Wrześniok D. MIM1 induces COLO829 melanoma cell death through mitochondrial membrane breakdown, GSH depletion, and DNA damage. Fundam Clin Pharmacol. 2020;34(1):20–31.
Article
CAS
PubMed
Google Scholar
Respondek M, Beberok A, Rzepka Z, Rok J, Wrześniok D. Mcl-1 inhibitor induces cells death in BRAF-mutant amelanotic melanoma trough GSH depletion, DNA damage and cell cycle changes. Pathol Oncol Res. 2020;26(3):1465–74.
Article
CAS
PubMed
Google Scholar
Zhang H, Li G, Chen G, Zhang Y, Pan J, Tang H, et al. Targeting Mcl-1 inhibits survival and self-renewal of hepatocellular cancer stem-like cells. Clin Res Hepatol Gastroenterol. 2019;43(3):292–300.
Article
CAS
PubMed
Google Scholar
Zhang H, Li G, Zhang Y, Guo W, Zhang J, Li J, et al. Upregulation of Mcl-1 inhibits JQ1-triggered anticancer activity in hepatocellular carcinoma cells. Biochem Biophys Res Commun. 2018;495(4):2456–61.
Article
CAS
PubMed
Google Scholar
Sieghart W, Losert D, Strommer S, Cejka D, Schmid K, Rasoul-Rockenschaub S, et al. Mcl-1 overexpression in hepatocellular carcinoma: a potential target for antisense therapy. J Hepatol. 2006;44(1):151–7.
Article
CAS
PubMed
Google Scholar
Hsu C, Lin LI, Cheng YC, Feng ZR, Shao YY, Cheng AL, et al. Cyclin E1 inhibition can overcome sorafenib resistance in hepatocellular carcinoma cells through Mcl-1 suppression. Clin Cancer Res. 2016;22(10):2555–64.
Article
CAS
PubMed
Google Scholar
Ow T, Thomas C, Fulcher C, Chen J, López A, Reyna D, et al. Apoptosis signaling molecules as treatment targets in head and neck squamous cell carcinoma. Laryngoscope. 2020;130(11):2643–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Zhu S, Zhang X, Zhou T, Gu J, Xu Y, et al. Targeting the synthetic vulnerability of PTEN-deficient glioblastoma cells with MCL1 inhibitors. Mol Cancer Ther. 2020;19(10):2001–11.
Article
CAS
PubMed
Google Scholar
Lian B, Yek A, Shuvas H, Abdul Rahman S, Muniandy K, Mohana-Kumaran N. Synergistic anti-proliferative effects of combination of ABT-263 and MCL-1 selective inhibitor A-1210477 on cervical cancer cell lines. BMC Res Notes. 2018;11(1):197.
Article
PubMed
PubMed Central
CAS
Google Scholar
Habata S, Iwasaki M, Sugio A, Suzuki M, Tamate M, Satohisa S, et al. BAG3-mediated Mcl-1 stabilization contributes to drug resistance via interaction with USP9X in ovarian cancer. Int J Oncol. 2016;49(1):402–10.
Article
CAS
PubMed
Google Scholar
Lin J, Fu D, Dai Y, Lin J, Xu T. Mcl-1 inhibitor suppresses tumor growth of esophageal squamous cell carcinoma in a mouse model. Oncotarget. 2017;8(70):114457–62.
Article
PubMed
PubMed Central
Google Scholar